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Abstract: Predicting water demand helps decision-makers allocate regional water resources efficiently,
thereby preventing water waste and shortage. The aim of this study is to predict water demand
in the Beijing–Tianjin–Hebei region of North China. The explanatory variables associated with
economy, community, water use, and resource availability were identified. Eleven statistical and
machine learning models were built, which used data covering the 2004–2019 period. Interpolation
and extrapolation scenarios were conducted to find the most suitable predictive model. The results
suggest that the gradient boosting decision tree (GBDT) model demonstrates the best prediction
performance in the two scenarios. The model was further tested for three other regions in China,
and its robustness was validated. The water demand in 2020–2021 was provided. The results show
that the identified explanatory variables were effective in water demand prediction. The machine
learning models outperformed the statistical models, with the ensemble models being superior to
the single predictor models. The best predictive model can also be applied to other regions to help
forecast water demand to ensure sustainable water resource management.

Keywords: predictive modeling; machine learning models; water demand prediction; Beijing–Tianjin–
Hebei Region

1. Introduction

Water scarcity is an issue for many cities globally [1]. By 2030, nearly half of the
world’s population is expected to live in water-stressed areas [2]. Water demand prediction
is crucial for the sustainable management of water distribution systems [3]. It is also a
factor that is considered by infrastructure decision-makers to ensure effective water usage
plans and schedules, especially in light of the ongoing urban expansion, where consumers
are encouraged to reduce their energy and resource consumption [4–6].

The economy of the Beijing–Tianjin–Hebei region has been developing rapidly. The de-
mand for city expansion from Beijing to Tianjin and Hebei has increased. This rapid urban
expansion has tightened the region’s ability to provide adequate water resources. In the
existing water distribution conditions, regional water resource management faces uncer-
tainties and challenges such as water shortages, overall growth in water demand, seasonal
demand peaks due to climate change, regional economic competition, and public health
requirements.

This study focuses on water demand prediction in the Beijing–Tianjin–Hebei region to
support water resource planning and management. The explanatory variables associated
with economy, community, water use, and resource availability were derived. A histori-
cal dataset covering the period from 2004 to 2019 was collected from the Annual Water
Resources Reports [7–9] and China Statistics Yearbook [10]. Eleven prediction models,
containing both statistical and machine learning models, were designed. Two prediction
scenarios were considered. In the interpolation prediction scenario (IPS), the training
and the test samples were randomly selected from the entire dataset. In the extrapola-
tion prediction scenario (EPS), the historical dataset was used for training to predict the
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future water demand. Their performances were compared to identify the most suitable
model. To prove its robustness, the best model was further tested on three other regions
in China with different geography, climates, and economies. Further, we predicted the
water demand for the next two years. The results of this study will help water utilities and
policymakers recognize the water demand situation in the Beijing–Tianjin–Hebei region,
helping them to formulate water resource management policies effectively and to ensure a
stable long-term water supply.

The rest of this paper is organized as follows. Section 2 briefly reviews related studies.
Section 3 outlines the methods. Section 4 reports the model test results, and Section 5
summarizes the study and provides some directions for future research.

2. Literature Review

A prediction model combines economic and social factors with geographic informa-
tion to forecast water demand. There are two main steps used in prediction modeling:
explanatory variables selection and model building. Explanatory variables (or model
features) are selected based on their ability to explain trends in water demand. The model
building process involves applying an algorithm to learn the relationship between the
selected features and the prediction target (water demand in this case).

2.1. Variables Considered in the Literature for Explaining Water Demand

Studies have shown that urban water demand is impacted by many factors, including
economy, society, climate, and environment. Lu et al. [11] developed a hybrid model
for predicting monthly water demand in Austin, Texas, pointing out that the demand
was highly related to the local population, monthly average temperature, and monthly
average humidity. Li et al. [12] used principal component analysis regression to study
the annual water demand in Shanghai; the authors found that the population and gross
domestic product (GDP) have a significant impact on annual water demand. Zhao and
Chen [13] adopted the elastic back propagation neural network algorithm to predict the
water demand of urban residents using features such as per capita GDP, the quality of the
population (level of education), water prices, temperature, water companies’ total annual
water supply, and seasonal changes. Tian and Xue [14] built a backpropagation (BP) neural
network model for predicting annual water consumption in Guangdong, China, using
features such as total water resources, precipitation, GDP, industrial added value, perma-
nent residents, added value of tertiary industry, effective irrigated area, added value of
agriculture, forestry, animal husbandry and fishery, and urban green area. Zhang et al. [15]
built models for analyzing water demand in Beijing and Jinan, China, considering fac-
tors such as population, GDP, added value in primary, secondary, and tertiary industries,
and per capita water resources. Sun et al. [16] evaluated the sustainable use of water
resources in Beijing, China, considering the factors of economy, population, water supply
and demand, land resources, and water pollution and management. Tang et al. [17] pro-
posed an improved BP neural network model for predicting water demand in Hubei, Chia,
using features such as population, farmland irrigation area, GDP, and industrial added
value. Zhang et al. [18] found that regional GDP, agricultural output value, industrial
output value, year-end population, irrigation area, and per capita disposable income were
related to regional water demand. Wang et al. [19] chose population, gross agricultural
production, and gross industrial production as the main factors affecting annual water
demand in Nanchang city, China. Water demand was also found to be related to climatic
factors such as precipitation [20,21]. Table 1 summarizes the explanatory variables affecting
water demand.
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Table 1. Main explanatory variables found by other studies to affect water demand.

Explanatory variables Unit Lu et al.
[11]

Li et al.
[12]

Zhao and
Chen [13]

Tian and
Xue [14]

Zhang et al.
[15]

Sun et al.
[16]

Tang et al.
[17]

Zhang et al.
[18]

Wang et al.
[19]

Tiwari et al.
[20]

Chen et al.
[21]

Economy

GDP Billion
Yuan

√ √ √ √ √ √

Per capita GDP Yuan per
Person

√ √ √

Added value of
primary industry

Billion
Yuan

√ √ √ √

Added value of
secondary industry

Billion
Yuan

√ √

Added value of
tertiary industry

Billion
Yuan

√ √ √

Per capita
disposable income Yuan

√ √ √

Community Year-end population Million
√ √ √ √ √ √ √

Water use
Agricultural water

consumption Billion m3 √ √ √

Irrigated area Thousand
Hectare

√ √ √ √

Resource
availability

Total water
resources Billion m3 √

Annual
precipitation mm

√ √ √
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2.2. Models for Predicting Water Demand

Choosing an appropriate water demand prediction model is a challenge because it in-
volves many factors, such as technology, population, society, economy, climate, and public
policy [3,22,23]. Predictive models can be broadly divided into two groups: statistical and
machine-learning models. Statistical models employ probability theory and mathematical
statistics to obtain the functional relationship between different variables. Commonly use
statistical models for regression include linear regression, ridge regression, and lasso re-
gression. In contrast, machine learning models do not require defining a clear relationship
between dependent and explanatory variables [5,24]. Instead, they employ algorithms
such as support vector machine, decision tree, and random forest to learn patterns from
training data and use them to predict future outcomes.

Statistical models are widely used for water demand prediction [25–28]. The main
limitation of statistical models is that they must have a predetermined structure [29],
making it difficult to find one mathematical function that would work well on different
data [30]. Furthermore, statistical models often fail to effectively deal with complex data
relationships; their prediction accuracy also decreases with an increase in the amount
of data [31]. Other methods should be employed when dealing with big and complex
data [32]. For example, Rozos et al. [33] employed an integrated system dynamics and
cellular automata model to predict water demand under alternative approaches, including
distributed water infrastructure.

Machine learning models are becoming increasingly popular and have demonstrated
high predictive performance in domains such as urban infrastructure [34–37], credit
risk [38,39], energy [40], ecology [41–43], and water resource management [44].

Machine learning models can be further divided into single predictors and ensem-
ble algorithms, according to the number of employed predictors. A single predictor
contains only one predictor (or algorithm), such as neural network, support vector ma-
chine, or decision tree. Ensemble algorithms such as random forest, AdaBoost, bagging,
and gradient-boosting tree aggregate a number of predictors, all contributing to the final
prediction result.

Ensemble learning is becoming increasingly popular [45,46]. It uses statistical sam-
pling principles to train multiple models. Each of these models is used to separately predict
a new sample. The value of the final prediction result for the new sample is selected based
on the majority voting mechanism. In other words, ensemble learning transforms different
hypotheses provided by single predictors into one hypothesis.

In the field of predicting water resources, Lee et al. [30] investigated 12 statistical and
machine-learning models to predict daily household water usage in response to residential
water demand. Pesantez et al. [5] applied random forest, artificial neural network, and sup-
port vector machine to smart-meter data to predict the hourly water demand of 90 accounts.
Parisouj et al. [47] employed support vector regression, artificial neural network with back-
propagation, and extreme learning machine to predict the monthly and daily streamflows
of four river basins in the United States. Villarin and Rodriguez-Galiano [32] used classifica-
tion and regression trees and random forest to establish a multivariate prediction model for
water demand in Seville, Spain. Sengupta et al. [48] used support vector machine, artificial
neural network, and random forest to predict changes in stream channel morphology.

China’s Beijing–Tianjin–Hebei region is an area with a severe water shortage. Water
demand prediction can help its decision-makers to achieve more efficient water resource
allocation. Existing studies have used one or a few models to predict water demand.
In contrast, this study provides, for the first time, a comprehensive comparative analysis of
several statistical and machine-learning models under IPS and EPS. The training and test
data refer to the same period of time under IPS, whereas models are built using historical
training data and then applied to predict future water demand under EPS.
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3. Methodology
3.1. Research Design

This study was designed to investigate the performance of 11 modeling techniques
under two prediction scenarios of water demand in the Beijing–Tianjin–Hebei region.
The research design was divided into five steps: data preprocessing, modeling, model
training, cross-validation (CV), and model testing (Figure 1).
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Figure 1. Research design.

As the first step, data preprocessing allowed us to reduce the sensitivity of the models
to different data scales. The following two prediction scenarios were considered (more
details are provided in Sections 3.4–3.6):

(1) Interpolation prediction scenario (IPS): For each model, a 10-fold CV was applied
to randomly selected training samples accounting for 80% of all the data. The fitted
models were then tested on the remaining 20% of the data to verify their prediction
performance.

(2) Extrapolation prediction scenario (EPS): For each model, a 10-fold CV was applied to
the training data covering the period from 2004 to 2018. The fitted models were then
tested on the 2019 data.

3.2. Data Preprocessing

Feature scaling was used consistently across all the studied models to ensure the
comparability of their prediction results. Normalization was chosen as the feature scal-
ing method. Let D = {X, y} denote the training set, where X = (x1, x2, . . . , xn) is the
n-dimensional explanatory space, and y represents the dependent variable. The normaliza-
tion of xi can be expressed as

x′i =
xi −min(x)

max(x)−min(x)
(1)

where xi’ denotes the normalized value of an explanatory variable x for an ith sample;
max(x) and min(x) denote the maximum and minimum values of x, respectively. Both ex-
planatory and dependent variables were normalized in this study.

3.3. Modeling

The following 11 models were introduced in this study to predict water demand:
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• Statistical models: linear regression (LR), ridge regression, least absolute shrinkage
and selection operator (lasso) regression, kernel ridge regression (KRR), and Bayesian
ridge regression (BRR);

• Machine learning models:

â Single predictors: backpropagation neural network (BPNN), decision tree (DT),
and support vector machine (SVM);

â Ensemble methods: random forest (RF), adaptive boosting (AdaBoost), and gradient-
boosting decision tree (GBDT). RF is a parallel integration algorithm, whereas
AdaBoost and GBDT are serial-integration algorithms.

The Python Scikit-Learn library [49,50] was used to implement the models. The pre-
diction models for each method listed in Section 3.3 were built separately. The default
hyperparameter values of each algorithm were used to train the models. Each algorithm is
briefly described below.

3.3.1. Linear Regression

LR expresses the relationship between the explanatory variable(s) x and the dependent
variable y through a linear function. It fits a linear model to minimize the residual sum of
squares between the actual and estimated values of the dependent variable. The coefficients
are estimated using the ordinary least squares (OLS) method.

3.3.2. Ridge and Lasso Regression

Ridge regression and lasso regression are variations of LR. Ridge regression [51] is
an improvement of the OLS method. It is a more stable and reliable regression algorithm,
owing to the employment of the loss of unbiasedness [52]. The regularization term L2
is added after the sum of squared error (SSE) to control the trade-off between variance
and bias.

Lasso regression was proposed by Tibshirani [53]. The important characteristic of
this algorithm is that it completely eliminates the least important features by setting their
weights to zero [52]. Lasso regression automatically performs feature selection and outputs
a sparse matrix model. It replaces the regularization term L2 with the regularization
term L1.

3.3.3. Kernel and Bayesian Ridge Regression

KRR is an extension of ridge regression that works well on nonlinear data by mapping
them to a new feature space using a kernel, where the data become linearly separable.
BRR combines ridge regression with Bayesian statistics.

3.3.4. Backpropagation Neural Network

BPNN, also known as a multilayer perceptron (MLP), comprises an input layer, one or
more hidden layers, and an output layer. Its signal propagates forward from the input
layer to the output layer through the hidden layers, while the error propagates backward
from the output layer to the input layer [54].

In BPNN, a weight vector is applied element-wise to the input feature vector, and the
result is passed through an activation function to obtain the dependent value. The com-
monly used activation functions are threshold, sigmoid, and hyperbolic tangent functions.
The objective function is the SSE. The minimum value of the objective function is deter-
mined using the gradient descent method.

3.3.5. Decision Tree

DT is a classic machine-learning algorithm. It builds a binary tree based on sample
features. The process of arriving at the prediction result is easy to understand and interpret
since the resulting decision tree structure is similar to a flowchart, where leaf nodes
correspond to the predicted values.
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3.3.6. Support Vector Machine

SVM finds a separating hyperplane, fitting y based on x with the largest margin.
SVM uses a kernel function to map the original training set with nonlinear features to a
high-dimensional feature space, where the data become linearly separable [55]. The popular
kernel functions are linear, polynomial, and radial basis functions.

3.3.7. Random Forest

RF, first proposed by Breiman [56], is an ensemble learning algorithm that uses the
bagging algorithm for feature selection. In particular, replacement without sampling is
used to randomly select a subset of features to construct each tree in the ensemble, while
replacement sampling is used to select samples from the original data to train the trees.
For each new test sample, the prediction result output by each trained tree in the ensemble
is integrated using the majority voting mechanism to obtain the final result.

3.3.8. AdaBoost

AdaBoost is a famous boosting algorithm [57], where each sample is assigned an initial
weight, and the weighted data set is then used to train a model. The weight of a sample
is increased if the prediction result for it is wrong. Then, the next model is trained again
by increasing some weights. This process is repeated several times to get weak learners.
The weak learners are then combined to obtain a strong learner [58].

3.3.9. Gradient Boosting Decision Tree

GBDT, first developed by Friedman [59], uses gradient boosting to promote per-
formance. It updates parameters in the direction of the gradient descent. The model’s
performance is evaluated using a loss function. GBDT usually operates as a combination
of decision trees. Each decision tree learns the residuals from all previous trees. The final
result is the aggregation of the results obtained by all decision trees [60].

3.4. Model Training

Random samples, accounting for 80% of the entire dataset, covering the period from
2004 to 2019, constituted the training data in the IPS model. The training data in the EPS
model were the data from 2004 to 2018.

3.5. Cross-Validation

When fitting a model using the training set and validating it using the test set,
the model can be prone to overfitting, i.e., the model will perform well on seen data
but poorly on unseen data. To overcome the problem of overfitting, a 10-fold CV was
introduced for the training data. The 10-fold CV randomly divides the training data into
ten different subsets, with each subset constituting one fold. Each model is then trained
on the nine folds and validated on the remaining fold 10 times, with the validation fold
changed in each iteration. The average prediction score and the standard deviation are
calculated using the ten scores output by CV. The same CV process was adopted for both
IPS and EPS.

3.6. Model Testing

The remaining random samples that account for 20% of the entire dataset for the
period from 2004 to 2019 constituted the test data in the IPS model. The test data in the EPS
model were the data for 2019 only. To evaluate each model’s performance, the following
three metrics were employed: mean squared error (MSE), mean absolute error (MAE),
and coefficient of determination (R2). These metrics were considered due to their wide use
in studies on water demand prediction [5,30–32].
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MSE and MAE were used to measure the difference between the actual and predicted
values for each sample as follows:

MSE =
1
n

n−1

∑
i=0

(yi − ŷi)
2 (2)

MAE =
1
n

n−1

∑
i=0
|yi − ŷi| (3)

where ŷi denotes the predicted value of the ith sample; yi denotes the corresponding actual
value; n denotes the number of samples. Lower values of MSE and MAE indicate a better
fit of models.

R2 indicates the goodness of fit. It measures the proportion of variance explained by
the explanatory variables used in a model, as follows:

R2 = 1− ∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − y)2 (4)

where ŷi and yi denote the predicted and corresponding actual values of the ith sample,
respectively, and y denotes the average value of all actual values, y = 1

n ∑n
i=1 yi. The pro-

portion of explained variance reflects how well unseen samples are predicted. The best
possible value of R2 is 1.0.

4. Cast Study: Beijing–Tianjin–Hebei Region in China
4.1. Study Region

The Beijing–Tianjin–Hebei region is located in the north of China, comprising Beijing,
Tianjin, and Hebei. It has a population of 110 million and covers an area of 21.67 million
ha [61]. The Beijing–Tianjin–Hebei region is adjacent to China’s most water-short river
basin. The region suffers serious water scarcity problems [61–63].

The total amount of water resources in the Beijing–Tianjin–Hebei region in 2019 was
14.62 billion m3 [10]. The per capita water resources of Beijing, Tianjin, and Hebei were
114.02, 51.79, and 149.5 m3 per person, respectively, which is far below the internation-
ally recognized extreme water shortage standard of 500 m3 per person. While the total
amount of water resources in the Beijing–Tianjin–Hebei region is less than 1% of the total
water resources of the country, the region accounts for 8% of the country’s total GDP
and population.

4.2. Dataset

The following eleven explanatory variables were chosen to characterize water demand
based on the literature review presented in Section 2.1:

1. Economy: GDP, per capita GDP, added value of primary industry, added value of sec-
ondary industry, added value of tertiary industry, and per capita disposable income;

2. Community: year-end population;
3. Water use: agriculture water consumption and irrigated area;
4. Resource availability: total water resources and annual precipitation.

Agriculture water consumption and annual precipitation for the Beijing–Tianjin–Hebei
region from 2004 to 2019 were obtained from the Annual Water Resources Reports [7–9],
while the data from the same period for the remaining variables came from the China Statis-
tics Yearbook [10]. The explanatory variable dataset had 48 rows and 16 columns, of which
48 represented 16 years of historical data from Beijing, Tianjin, and Hebei, and 11 represented
the number of explanatory variables. The water demand of the Beijing–Tianjin–Hebei region
is the sum of each subregion. Table A1 listed the basic statistics of the variables.
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4.3. Predictive Results
4.3.1. Training and CV Results

The blue and red bars in Figure 2 represent the training and CV R2 scores for all
11 models, respectively, with the black circles and lines representing the mean and standard
deviation of the CV scores, respectively. LR was considered as the baseline model across
all the statistical models.
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The CV scores of all the models were higher than 95% in IPS. Relatively large standard
deviations were observed for KRR, BPNN, and SVM, indicating that the R2 values were
highly dispersed across the ten-folds of these models, which means that the models’
performance in each fold significantly deviated from the average performance. In addition
to lower standard deviations, the CV scores of LR, BRR, AdaBoost, and GBDT models
ranked in the top four. These four models were considered for the test set.

Similarly, the CV scores of all the models were also higher than 95% in EPS. Lasso,
KRR, BPNN, SVM, and RF showed higher standard deviations in this scenario. The models
that obtained the best CV performance were also the LR, BRR, AdaBoost, and GBDT
models. These four models were further promoted to the test set.

The CV performance of the models in EPS was slightly lower than that in IPS. This was
mainly because the EPS model focused on future prediction, for which it is much more
difficult to achieve a higher prediction effect. On the contrary, IPS predicted data from the
same historical period as the training data. Hence, the uncertainties were lower than that
in the case of EPS.

4.3.2. Test Results

Table 2 shows the results achieved by the models over the test set under IPS and EPS,
respectively. The best values for each metric are highlighted in bold.
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Table 2. Test performance of the models.

IPS.

Metric LR BRR AdaBoost GBDT

MSE 0.00010812 0.00010758 0.00000057 0.00000016
MAE 0.00906555 0.00929241 0.00040798 0.00032787

R2 (%) 99.9468% 99.9470% 99.9997% 99.9999%

EPS

Metric LR BRR AdaBoost GBDT

MSE 0.00079666 0.00053748 0.00009235 0.00006178
MAE 0.02147535 0.01805283 0.00720000 0.00584230

R2 (%) 99.4558% 99.6329% 99.9369% 99.9578%

The GBDT model outperformed the other models in both scenarios, achieving the
lowest MSE and MAE and R2 scores of 99.9999% and 99.9578% in IPS and EPS, respectively.
The R2 scores of LR, BRR, and AdaBoost models were lower than that of GBDT by 0.0531%,
0.0529%, and 0.0002%, respectively, in IPS; in EPS, AdaBoost came second and BRR and
LR came third and fourth. The test results confirm that the machine-learning models
outperform the statistical models, with the ensemble models being superior to the single
predictor models. The best model for predicting water demand in these two scenarios
is GBDT.

4.3.3. Model Robustness

The GBDT model was further applied to three other regions in China to verify its
robustness because it exhibited the best performance in both IPS and EPS. However,
the other three models (i.e., LR, BRR, and AdaBoost; see Table 2) had only slightly lower
efficiencies. All four models were, therefore, tested for model robustness.

The Harbin–Changchun region is located in the northeast of China, and it comprises
Heilongjiang and Jilin, covering an area of 263,640.92 km2 and having an estimated popula-
tion of 65 million. The Central Plains urban region is located in the central and eastern parts
of China and comprises Henan, Shanxi, Hebei, Shandong, and Anhui. It covers an area of
287,000 km2 and has an estimated population of 374 million. The Chengdu–Chongqing
region is located in southwestern China and comprises Szechwan and Chongqing. It covers
an area of 185,000 km2 and has a population of 115 million. These three regions have vastly
different geographical locations (from the north to the south of China) and climate and
economic conditions.

The yearly explanatory variables and the dependent variable were collected from
2004 to 2019, according to the related reports [64–71]. The dataset size was 32× 11, 80 × 11,
and 32 × 11 for the Harbin–Changchun region, the Central Plains urban region, and the
Chengdu–Chongqing region, respectively. The explanatory variable data were imported
into the LR, BRR, AdaBoost, and GBDT models to obtain the predicted value of annual
water demand.

Figure 3 shows the comparison results of the actual and predicted values of water
demand in the three regions. The LR model’s prediction results are not shown in Figure 3
because the model failed to obtain effective prediction results. This indicates that the LR
model is effective for predicting the water demand in the Beijing–Tianjin–Hebei region but
cannot be extended to other regions in China.
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urban region, and (c) the Chengdu–Chongqing region (WD is the water demand, AV is the actual value, and PV is the
predicted value).

In contrast, BRR, AdaBoost, and GBDT models could predict the outcomes. The prediction
accuracy (R2) of the GBDT model reached 93.1503% (Harbin–Changchun region), 83.1108%
(Central Plains urban region), and 93.3015% (Chengdu–Chongqing region). It also obtained the
highest prediction accuracy for the Central Plains urban region, with an accuracy greater than
that of BRR and AdaBoost models by 8% and 35%, respectively. These models showed minor
differences (i.e., the accuracy difference was less than 5%) for the Harbin–Changchun region
and the Chengdu–Chongqing region. The BRR model achieved the best results, which was
both 3% higher than the other two models for the Harbin–Changchun region and 2% and
3% higher than that of AdaBoost and GBDT models for the Chengdu–Chongqing region.
The AdaBoost model performed poorly for the Central Plains urban region, with only
47.93% accuracy. The accuracy should be higher than 50% for robust and acceptable model
performance [72,73]. Overall, the GBDT and BRR models proved to be robust. Compared
with these two models, the accuracy of the GBDT model was better than that of the BRR
model by 3% in these three regions.

Good agreement was not obtained for the Chengdu–Chongqing region before 2012.
The early economic growth for this region was relatively flat. Its economic growth rate
could not match the Beijing–Tianjin–Hebei region. Further, the region experienced a
magnitude-8 earthquake in 2008. Its reconstruction was not completed until the end
of 2011 [74]. To accelerate economic development, the Chengyu Economic Zone was
established in May 2011. The construction of this economic zone has promoted regional
economic development. As seen from Figure 3, the differences between the predicted and
actual values decreased after 2012.

4.3.4. Prediction for the Next Two Years

Water demand in the Beijing–Tianjin–Hebei region for the next two years was further
predicted. It is difficult to obtain the relevant explanatory variables in a timely manner and
to use them to predict the next two years of water demand. Here, we adjusted the forecast
period to predict the next two years of water demand.

The next two years’ prediction (NTYP) was similar to the EPS model. The EPS model
was trained using the data of the past 15 years (i.e., 2004 to 2018) and was tested on the
16th year’s (i.e., 2019) water demand. NTYP was trained using the data of the past 12 years
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to predict the future 12 years’ water demand. The GBDT model was used in NTYP as it
achieved the best performance in EPS. The actual and predicted values of water demand
are shown in Figure 4.
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region from 2010 to 2021 (WD is the water demand, AV is the actual value, and PV is the predicted value).

The R2 scores from 2010 to 2019 were 86.62% (Beijing), 94.94% (Tianjin), and 95.57%
(Hebei). The water demand in the Beijing–Tianjin–Hebei region was the sum of the
demands of its subregions. For the next two years, Beijing’s water demand remains stable,
while Tianjin’s water demand first decreases and then increases. Hebei’s water demand
remains stable, with a slight decrease. Water demand in the Beijing–Tianjin–Hebei region
shows an overall downward trend.

This trend was affected by the policy of the “Beijing–Tianjin–Hebei Coordinated Devel-
opment Plan” announced in 2015. Half of the manufacturing and advanced manufacturing
productions in Beijing were relocated to Hebei. At the same time, Hebei is a big agricultural
province with a large population. These factors led to an upward trend in its water demand.
With the release of the policy effect, Hebei’s water demand was gradually flattened. Tianjin
is focused on finance, commerce, and technology, and its industries were in a relatively
advanced condition to form the downward water demand trend.

We further discuss the differences between the actual and predicted values. The pre-
dicted value was less than the actual value for Beijing and Tianjin but not for Hebei for
2018–2019 (Figure 4). To actively cooperate with the Beijing–Tianjin–Hebei Coordinated De-
velopment Plan, the Beijing Tongzhou District released a city subsidiary-center construction
plan at the end of 2018. The subsidiary-center demolition and the substructure construction
of an underground utility tunnel were completed in 2019. In the same year, the construc-
tion of theme parks, resorts, theaters, libraries, and museums started. The large-scale
city subsidiary-center construction caused a significant increase in water demand in 2019.
Tianjin began to adjust its GDP calculation method in 2017, resulting in an overall decrease
of about 30% in Tianjin’s economy [75]. GDP is an economic explanatory variable. Owing
to the adjustment of statistical data, the predicted values for 2018 and 2019 were lower
than the actual values. Hebei realized that the proportion of tertiary industry surpassed
the proportion of secondary industry in 2018, which was a turning point in its economic
development; hence, the actual value of its water demand was lower than the predicted
value. There was little difference between the actual and predicted values in 2019.

5. Conclusions

Water scarcity has become a problem of concern for many cities in the world. Predict-
ing water demand helps policymakers and water suppliers maintain the balance between
the supply and demand of urban water resources, thereby preventing water wastage
and shortage.
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This study presents an analysis of water demand in the Beijing–Tianjin–Hebei region
of China between 2004 and 2019. Eleven statistical and machine-learning models were
built for predicting water demand based on economy, community, water use, and resource
availability in IPS and EPS. Models were trained using 10-fold CV. The best four models
were evaluated on the test data by the metrics of MSE, MAE, and R2 score.

According to the results, the GBDT model demonstrated the best performance among
all the considered models, achieving the lowest error rates and R2 scores of 99.9999%
and 99.9578% in IPS and EPS, respectively. A comparison of model performance also
showed that the machine-learning models outperformed the statistical models. Among
the machine-learning models, the ensemble models appeared to be superior to the single
predictor models.

The GBDT model was further validated in three other regions in China with different
geography, climates, and economies. The predicted accuracies were higher than 80%
in all the cases. This proves the robustness of the GBDT model. Datasets with the same
explanatory variables can be applied to water demand prediction in other areas. In addition,
for the next two years, water demand was predicted by adjusting the training and test
datasets. The trend was provided, and the reasons were explained.

The results of the study will help municipalities and utilities combine their own
databases and the needs of corporate industry to carry out water demand prediction,
optimizing the relationship between water supply and demand and saving uncertain water
scheduling costs. In the future, we plan to further subdivide water demand and analyze
the crucial reasons for changes in water demand in the Beijing–Tianjin–Hebei region.
Multiscenario water demand forecasting should also be designed to be optimized with
water supply data. In this study, a relatively small dataset was used. Large water demand
datasets that cover all provinces and cities in China should be considered. The reused
water from wastewater and polluted water can be considered in the predictive model as it
mitigates overall demand. In addition, the year 2020 is different from other years, owing to
the impact of COVID-19. It is worthy to compare the water demand data between 2020 and
previous years. The difference between the actual and predicted values of water demand
can also be discussed after the 2020 data are released.
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Table A1. Basic statistics of the variables used in the study. (The abbreviations of the standard deviation is Std).

Variables Units Mean Std Min Max

Water demand Billion m3 8.45 7.74 2.21 20.4
GDP Billion Yuan 1736.35 936.79 311.10 3537.13

Per capita GDP Yuan per Person 66,566.60 37,324.61 12,487.00 16,422.00
Added value of primary industry Billion Yuan 98.21 129.20 8.74 351.84

Added value of secondary industry Billion Yuan 671.37 422.17 168.60 1584.62
Added value of tertiary industry Billion Yuan 966.78 655.00 131.98 2954.25

Per capita disposable income Yuan 28,810.09 15,283.60 7951.31 73,848.51
Year-end population Million 35.02 26.79 10.24 75.92

Agricultural water consumption Billion m3 5.38 6.20 0.37 15.69
Irrigated area Thousand Hectare 1668.90 2030.30 109.24 4603.07

Total water resources Billion m3 6.37 6.48 0.81 23.55
Annual precipitation mm 531.89 85.15 408.20 850.30
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