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Abstract: Changes in snow cover over the Tibetan Plateau (TP) have a significant impact on agricul-
ture, hydrology, and ecological environment of surrounding areas. This study investigates the spa-
tio-temporal pattern of snow depth (SD) and snow cover days (SCD), as well as the impact of tem-
perature and precipitation on snow cover over TP from 1979 to 2018 by using the ERA5 reanalysis 
dataset, and uses the Mann–Kendall test for significance. The results indicate that (1) the average 
annual SD and SCD in the southern and western edge areas of TP are relatively high, reaching 10 
cm and 120 d or more, respectively. (2) In the past 40 years, SD (s = 0.04 cm decade–1, p = 0.81) and 
SCD (s = −2.3 d decade–1, p = 0.10) over TP did not change significantly. (3) The positive feedback 
effect of precipitation is the main factor affecting SD, while the negative feedback effect of temper-
ature is the main factor affecting SCD. This study improves the understanding of snow cover change 
and is conducive to the further study of climate change on TP. 
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1. Introduction 
The Tibetan Plateau (TP) is an important snow-covered area in the mid-latitudes of 

the northern hemisphere [1]. The snow cover over TP adjusts the surface energy balance 
through albedo feedback, thereby affecting the atmospheric circulation and climate sys-
tem in East Asia [2–4]. Snowmelt can replenish water sources for river runoff over TP [5], 
effectively promote hydrological cycles [6,7], and thus affect agricultural production, hy-
dropower generation, and change the ecological environment [8,9]. Therefore, studying 
the spatial and temporal characteristics of snow cover over TP is of important scientific 
significance. 

In recent decades, global warming has accelerated. According to the Intergovern-
mental Panel on Climate Change [10], between 1951 and 2005 the average temperature in 
China increased by 1.3 °C, which has had an adverse impact on snow cover [11,12]. Many 
studies have analyzed the changing characteristics of snow depth (SD) and snow cover 
days (SCD), but views on snow cover changes are rather different. Qin and Liu [13], with 
Scanning Multichannel Microwave Radiometer (SMMR) dataset, identified that the an-
nual cumulative daily snow depth of TP increased by 2.3 % year–1 from 1957 to 1998. How-
ever, Ma et al. [14], with observations of meteorological stations, suggested that SD and 
SCD in most areas of TP decreased from 1971 to 2000. Based on Moderate Resolution Im-
aging Spectroradiometer (MODIS) dataset analysis, Sun et al. [15] and Wang et al. [16] 
found that the snow cover over TP has had a downward trend since 2000, while Duo et 
al. [17] and Wang et al. [18] found that the snow cover has not changed significantly since 
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2000. Bian et al. [19] analyzed the datasets of the National Aeronautical and Space Admin-
istration Modern-Era Retrospective Analysis for Research and Applications Version 2 
(MERRA-2), the Japanese 55-year Reanalysis (JRA-55), and passive microwave (MW) sat-
ellite observations from 1980 to 2018, and found that the average annual SD shows a 
downward trend to varying degrees in the three datasets, while SCD presents a down-
ward trend in the JRA-55 and MW datasets, and an upward trend in the MERRA-2 da-
taset. Therefore, it is necessary to further analyze the change of snow cover over TP in the 
past 40 years. 

The variation of snow cover is affected by many factors, such as precipitation, tem-
perature, and altitude, but the effect degree is not clear [20]. Li et al. [21] found that pre-
cipitations the main factor affecting the change of snow cover over TP from 2001 to 2014, 
however, Li [22] and Hu and Liang [23] noted that SD of TP is positively correlated with 
the average temperature of the northern hemisphere, and that temperature changes have 
the most obvious effect on increasing snowmelt. Some studies have also demonstrated 
that the competing effects of temperature and precipitation simultaneously affect snow 
cover to different degrees. For example, Ke et al. [24] believe that snow cover is negatively 
correlated with winter temperature, and positively correlated with precipitation in winter 
and spring. Wang et al. [25] emphasized that temperature is a key factor affecting snow 
cover in autumn and spring, while precipitation is a key factor in winter. Therefore, it is 
necessary to analyze the relationship between TP snow cover and climatic factors (tem-
perature and precipitation). In addition, some studies have pointed out that the warming 
of high-altitude areas is stronger than that of low-altitude areas, which leads to the differ-
ence in the distribution and change of snow cover in different altitude areas [26–28]. How-
ever, few studies have investigated the impacts of climatic factors on snow cover variation 
in different altitudes of TP, which is made up for by this paper. 

A series of studies have been conducted to investigate the distribution and change of 
snow cover by using in situ observations and remote sensing products [29–32]. Since most 
of the meteorological stations of the China Meteorological Administration (CMA) are lo-
cated in the eastern part of TP, with few stations in the high-altitude areas of the central 
and western regions, the representativeness of using local-scale observation for TP as a 
whole is questionable [33]. Remote sensing data are widely used in optical remote sensing 
(MODIS), passive microwave remote sensing (the Advanced Microwave Scanning Radi-
ometer for EOS(AMSR-E), the Special Sensor Microwave Image(SSM/I), etc.) [34–37]. 
MODIS has a high spectral and spatial resolution. However, MODIS’ short record (2000–
present) obscures understanding of snow’s long-term response to climate change [38–40]; 
passive microwave remote sensing products are not affected by weather, but the monitor-
ing of scattered snow in mountainous areas is prone to deviations due to their low spatial 
resolution [30,41]. In recent years, the rapid development of the reanalysis dataset has 
made a compromise between station data and satellite data [42–45]. A reanalysis dataset 
is obtained through data assimilation models (assimilating satellite, surface, and upper-
air conventional observation data) and surface process model simulations [46,47]. With 
advantages of long time series and wide monitoring range, it is suitable for analysis of the 
long-term variation trend of snow cover and the information of cryosphere climate feed-
back, and so forth. [48,49]. It should be noted that under the influence of assimilation data, 
the reanalysis data has strong inhomogeneities, so there is certain uncertainty in the trend 
analysis. 

Based on the ERA5 dataset including SD, temperature, and precipitation provided 
by the European Centre for Medium-Range Weather Forecast (ECMWF), a long-term and 
large-scale spatio-temporal characteristic analysis of SD and SCD from 1979 to 2018 is 
conducted. More specifically, (1) a comparative analysis of the differences in spatio-tem-
poral patterns of SD and SCD over TP is considered; (2) the inter-annual variations of SD 
and SCD are quantified, and their changing trends at different altitudes are analyzed; (3) 
the relationships between climatic factors (precipitation and temperature), altitudes, and 
SD and SCD are studied. The objective of this paper is to investigate the dynamic changes 
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of snow cover on TP and provide an effective reference for local water resource manage-
ment, climate change research, and future snow cover prediction. 

2. Materials and Methods 
2.1. Study Area 

TP, the highest and largest plateau in the world, is located in southwestern China 
and central Eurasia, with an average elevation of more than 4000 m and an area of more 
than 200 × 104 km2 [50]. The range of this area in China is 26°00′12″ N to 39°46′50″ N and 
73°18′52″ E to 104°46′59″ E, spanning all of Tibet and parts of Qinghai, Xinjiang, Gansu, 
Sichuan, and Yunnan. It is connected with the Kunlun Mountains, Altun Mountains, 
Qaidam Basin, and Qilian mountains in the north, including Karakoram Mountains and 
Pamir regions in the northwest. In the central region are Northern TP, the Tangula Moun-
tains, Bayan Har Mountains, and Nyainqentanglha Mountains. The Himalayas are in the 
south and extend to the Hengduan Mountains in the southeast (Figure 1). As the water 
tower of Asia, TP is the source of many rivers (such as the Indus, Yangtze, Yellow, and 
Brahmaputra), providing fresh water for billions of people [51]. Snowfall is the surface 
characteristic of TP with the greatest seasonal variations. It is closely related to the East 
Asian and South Asian monsoons and impacts both drought and floods, including on the 
middle and lower reaches of the Yangtze River [52–54]. 

 
Figure 1. Physiographical regions and distribution of meteorological stations over the Tibetan Plateau (TP). 

2.2. Data 
2.2.1. Snow Data 

In this paper, ERA5 daily SD data in 0.25° × 0.25° grid from 1979 to 2018 were used 
to study the change of snow cover. ERA5 is produced by Copernicus Climate Change 
Service (C3S), and it is obtained by using extensive station and satellite measurement data 
modeling (land model version is HTESSEL, atmospheric model is the Integrated Forecast 
System (IFS) Cy41r2) and data assimilation analysis (4D-variational algorithm) (as de-
tailed by Rosnay et al. [55] and Hersbach et al. [56]). IFS uses the surface data assimilation 
model to conduct two-dimensional optimal interpolation analysis of IMS(Interactive Mul-
tisensor Snow and Ice Mapping) snow cover data and station data, where the IMS dataset 
integrates various satellite images (Advanced Very High Resolution Radiome-
ter(AVHRR), Geostationary Operational Environmental Satellites(GOES), etc.) and de-
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rived mapping products (AMSR-E, National Centers for Environmental Predic-
tion(NCEP) Model, etc.). National Oceanic and Atmospheric Administration(NOAA) has 
been in operation since 1997 as one of the assimilation data sources for IMS dataset. It has 
a nominal resolution of 24 km at the daily time scale. Since 23 February, 2004, the IMS has 
been distributed at a pixel size of 4 km. Since 2 December, 2014, the IMS has been distrib-
uted at a pixel size of 1 km. More information is provided by the official documentation, 
please see https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation. 
The dataset is available on the website https://cds.climate.copernicus.eu/. 

Wang et al. [57], Liu et al. [58], Hersbach et al. [59], Terzago et al. [60], and Orsolini 
et al. [61] conducted a comprehensive assessment of snow cover parameters for this da-
taset, the findings showed that the ERA5 dataset can well capture the spatial distribution 
of snow cover and a wide range of characteristics of seasonal changes despite its large 
positive bias. Wang et al. [62], Matveeva and Sidorchuk [63], and Yılmaz et al. [64] also 
used this data for snow study. 

The formula for the snow model in ERA5 dataset is as follows: 

( ) ( )( )snow cover SC min 1, RW SD RSN 0.1= ⋅
 

(1)

where RW is water density, RSN is snow density, SD is snow depth, and SC means snow 
cover. Equation (1) is given by https://confluence.ecmwf.int/dis-
play/CKB/ERA5%3A+data+documentation; it briefly describes the treatment of snow 
cover. More detail can be seen on the website https://www.ecmwf.int/sites/de-
fault/files/elibrary/2016/17117-part-iv-physical-processes.pdf#section.H.4. 

SCD is obtained by accumulating the number of days with daily snow depth >1 cm. 
n

i
i=1

SCD s=  (2)

SCD represents snow cover days, which is the duration of snow cover, is  is a 0–1 
variable, is 1=  and is 0=  respectively represent snow and no snow conditions. 

SD and SCD are integrated into snow cover year (from 1 August to 31 July of next 
year). The snow cover year is divided into four seasons: spring (March to May), summer 
(June to August), autumn (September to November), and winter (December to February). 
It should be noted that snowfall mainly occurs in the cold season when temperature and 
precipitation have a greater impact on snow cover. Therefore, referring to the research of 
[65,66], this paper merely analyzes the spatio-temporal variation in autumn, winter, 
spring, and snow cover year together with their correlation with temperature and precip-
itation. 

2.2.2. DEM Data 
SRTM 90 DEM (V004) data were obtained from the National Map Seamless Data Dis-

tribution Systems (http://seamless.usgs.gov) with a spatial resolution of 90°. Nearest-
neighbor interpolation was used to resample the original DEM data, and the spatial reso-
lution was adjusted to 0.25° × 0.25°. DEM data were used to investigate the change of snow 
cover at different altitude intervals. 

2.2.3. Climate Data 
In order to study the relationship between snow cover and climatic factors (air tem-

perature and precipitation), the ERA5 dataset was used to analyze the total precipitation 
and temperature of 2 m on the surface. He et al. [67], Xue et al. [68], Li et al. [69], and Wang 
et al. [70] verified the feasibility of the ERA5 dataset in analyzing climate change on TP. 
In addition, Josey et al. [71], Watterson [72], Tarek et al. [73], and Tang et al. [74] also used 
ERA5 temperature and precipitation datasets for hydrology modeling, climate change, 
and other studies. 
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2.3. Theory and Method 
2.3.1. Theil–Sen Slope 

The Theil–Sen slope estimator (median trend) was used to analyze the trend of SD 
and SCD [75]. The calculation formula is as follows: 

 − 
= >  − 

i jx x
β Median , i j

i j

 
(3)

where i  is a time series, ix  is snow depth or snow days, β 0>  represents trend in-
crease, and β 0<  represents trend decrease. 

2.3.2. Pearson Correlation Coefficients 
Pearson correlation coefficients were used to analyze the relationship between 

SD/SCD and temperature/precipitation. Pearson correlation coefficients can measure the 
linear correlation between two variables x  and y . The calculation formula is as follows: 

( )( )
( ) ( )

n
i ii=1

2 2n n
i ii=1 i=1

x x y y
r

x x y y

− −
=

− ⋅ −


 

 (4)

where x  is the variable of SD or SCD, and y  represents temperature or precipitation. 
r 0> , r 0< , r 0=  respectively represent positive correlation, negative correlation, and 
no correlation between the two factors. 

2.3.3. Mann–Kendall 
A Mann–Kendall method was used to test the significance level of SD and SCD. The 

Mann–Kendall method is a nonparametric statistical test method. When applied to the 
test of monotone nonlinear data, it will not be adversely affected by outliers [76]. In this 
study, the confidence level of 95% was used to evaluate the significance of trend and cor-
relation. The calculation formula is as follows: 

( )n n
j ii 1 j i 1

S sgn x x
= = +

= −   (5)

( )
( )

( )
( )

j i

j i j i

j i

+1, if x x >0

sgn x x 0,  if x x =0

1, if x x <0

 −

− = −


− −

 (6)

where n  is the number of years, S 0>  is an increasing trend, S 0=  represents no 
change, and S 0<  is a downward trend. If n 0< , S  can be directly used for bilateral 
trend test. Under a given significance level α , if αS S 2≤ , the trend is significant; oth-
erwise, it is not significant. 

3. Results 
3.1. Spatial Distribution of SD and SCD 

Figure 2 illustrates the spatial distribution of average SD and SCD over TP in autumn, 
winter, spring, and snow cover years from 1979 to 2018. The spatial distribution patterns 
of SD and SCD are similar, both showing extremely high spatial heterogeneity. Overall, 
in snow cover years, areas with high SD (>5 cm) over TP account for 7%, and areas with 
high SCD (>240 d) account for 6%, mainly distributed in the Karakoram Mountains and 
the Nyainqentanglha Mountains, the southern edge of the Himalayas and the Qilian 
Mountains. Areas with low SD (<5 cm) account for 21%, and areas with low SCD (<20 d) 
account for 26%, mainly distributed in the valleys of southern Tibet, Yarlung Zangbo 
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River Valley, Northern Tibet Plateau, and Qaidam Basin. In winter, areas with SD > 1 cm 
and SCD > 60 d are the highest, accounting for 54% and 38%, respectively. In autumn, the 
areas with SD < 0.5 cm and SCD < 60 d are the highest, both accounting for 50%. 

 
Figure 2. Spatial patterns of snow depth (SD) and snow cover days (SCD) from 1979 to 2018. Illustration in the lower left 
corner shows the frequency distribution of the mean. (a–d) are spatial distribution of SD in autumn, winter, spring and 
snow cover year. (e–h) are spatial distribution of SCD in autumn, winter, spring and snow cover year. 

3.2. Spatial and Temporal Trends of SD and SCD 
3.2.1. Spatial Variation Trends of SD and SCD 

Figure 3 shows the spatial variation trends of SD and SCD over TP from 1979 to 2018. 
In snow cover years, the areas with reduced SD and SCD account for 83% and 81%, re-
spectively, among which the most obvious reduction trends are -5 cm decade–1 and -1 d 
decade–1 in Nyainqentanglha Mountain. However, in the Kunlun Mountains, Bayankera 
Mountains, and the southern edge of the Himalayas, SD and SCD both show increasing 
trends, 3 cm decade-1 and 1 d decade-1, respectively. It is worth noting that the Himalayas 
on the southern edge of the Tibetan Plateau are the areas where the freezing line rises [77]. 
In the central part of the Himalayas, SD and SCD show a decreasing trend, while in the 
northern and southern parts of the Himalayas, they show an increasing trend. Similarly, 
in the central and southern part of the Kunlun Mountains, there is an increasing trend, 
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while in the northern part of Kunlun Mountains, there is a decreasing trend. This may be 
due to the large area of the two mountains, the wide transverse span, the complex terrain, 
and so forth. The range of SD decrease in spring is the largest (80%), and the range of SD 
increase in winter is the largest (33%) In each season, SCD decreases across ~90% of the 
TP and increases across ~10% of the TP. 

 
Figure 3. Trends in SD and SCD from 1979 to 2018. Illustration in the lower left corner of each sub-figure shows the fre-
quency distribution of the trends, and the black dots indicate the areas that pass the significance test ( p 0 05.< ). (a–d) are 
variation trends of SD in autumn, winter, spring and snow cover year. (e–h) are variation trends of SCD in autumn, winter, 
spring and snow cover year. 

  



Water 2021, 13, 307 8 of 20 
 

 

3.2.2. Interannual Variation Trends of SD and SCD 
Figure 4 explores the interannual variation of snow cover over TP. The study found 

no significant change in SD (s = 0.04 cm decade–1, R2 = 0.0014, p > 0.05) or SCD (s = -2.33 d 
decade–1, R2 = 0.066, p > 0.05) from 1979 to 2018. It can be seen from Figure 4 that there was 
a slight increase in SD from 1979 to 2018, which may be related to the high value of SD in 
2015–2018. Deeper snow raises the SD level throughout the cycle to a certain extent. Con-
trary to SD, SCD decreased slightly, with high values mainly concentrated before 2000, 
such as in 1983 (129 d), 1990 (121 d), and 1997 (130 d). Please see Figure S1 and Table S1 
for interannual variations in different seasons. 

 
Figure 4. Interannual variability and trends in SD and SCD from 1979 to 2018. 

3.2.3. Variation Trend of SD and SCD at Different Altitude Intervals 
Figure 5 and Table 1 show the changes of SD and SCD at different altitude intervals. 

The study area was divided into equal altitude intervals with a constant altitude distance 
of 1000 m, and the interannual changes of SD and SCD in different altitude intervals over 
TP from 1979 to 2018 were analyzed. The results showed that SD and SCD both increased 
as the altitude increased. To be specific, when the altitude exceeds 6000 m, the annual 
average SD and SCD can reach more than 100 cm and 150 d, respectively. At the altitude 
of 5000–6000 m, SD increased significantly (s = 0.7 cm decade–1, p = 0.02), which was caused 
by the sudden increase of SD at this altitude interval from 2015 to 2018. Moreover, the 
variation trend of SCD fluctuated greatly, and the overall average SCD was decreasing (s 
= -2.3 d decade–1, p = 0.1). Please see Figures S2–S4 and Table S2–S4 for interannual varia-
tions of SD and SCD in different seasons and different altitudes. In addition, due to the 
significant regional differences between the Himalayas and Kunlun Mountains, we ana-
lyzed the interannual variation of snow cover at different altitudes in these two areas. 
Please see Figures S5 and S6 and Tables S5 and S6 of the Supplementary Files. 

Table 1. Assimilation data source. 

Dataset Name Observation Measurement 
SYNOP Land station Snow depth 

Additional national reports Land station Snow depth 
NOAA IMS Merged satellite Snow cover (NH only) 
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Figure 5. Interannual variability in the SD (a) and SCD (b) at various altitude intervals across TP during 1979–2018. 

3.3. Correlation between SD/SCD and Temperature/Precipitation 
3.3.1. Correlation between SD and Temperature/Precipitation 

To analyze the climatic factors that affect snow variation, we used Pearson correlation 
coefficients to analyze the correlation between SD and temperature/precipitation (Figure 6). 
The findings showed that SD was negatively correlated with temperature in most parts of 
TP, while SD was highly heterogeneous with precipitation. In snow cover years, SD in 
99% of the areas showed a negative correlation with temperature, of which 73% have a 
significant correlation. There is a negative correlation between SD and precipitation in 
52% of the areas, mainly located in the Kunlun Mountains, southern Tibet, and the central 
and eastern parts of TP, and a positive correlation between SD and precipitation in 48% 
of the areas, mainly located in the northern TP, Qaidam Basin, and the southeastern edge 
of TP. Areas with negative correlation between SD and temperature ( − < < −1 r 0 6. ) con-
centrate in autumn and spring, accounting for 76% and 70%, respectively, while those 
with positive correlation ( 0 4 r 1 0. .< < ) are most found in winter, accounting for 80%. 
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Figure 6. Correlation between mean snow depth and temperature/precipitation during 1979–2018. Illustration in the lower left corner 
of each sub-figure shows the frequency distribution of the correlation coefficient, and the black dots indicate areas that pass the 
significance test ( <p 0 05. ).(a–d) are correlation coefficients between SD and temperature in autumn, winter, spring and snow cover 
year.(e–h) are correlation coefficients between SD and precipitation in autumn, winter, spring and snow cover year. 

3.3.2. Correlation between SCD and Temperature/Precipitation 
Figure 7 analyzes the correlation between SCD and temperature/precipitation, which 

presents a spatial distribution characteristic similar to the correlation between SD and 
temperature/precipitation. Precisely, the correlation coefficient of the former is smaller 
than that of the latter. For example, in the northern TP, the negative correlation coefficient 
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between SCD and temperature is − < < −0 8 r 0 6. .  in spring, and the positive correlation 
coefficient between SCD and the precipitation is 0 r 0 4.< <  in autumn. 

 
Figure 7. Correlation between SCD and temperature/precipitation during 1979–2018. Illustration in the lower left corner 
of each sub-figure shows the frequency distribution of the correlation coefficients, and the black dots indicate areas that 
pass the significance test ( p 0 05.< ). (a–d) are correlation coefficients between SCD and temperature in autumn, winter, 
spring and snow cover year. (e–h) are correlation coefficients between SCD and precipitation in autumn, winter, spring 
and snow cover year. 

3.3.3. Correlations between SD/SCD and Temperature/Precipitation at Different  
Altitude intervals 

To further understand the spatial heterogeneity of the correlation between SD/SCD 
and temperature/precipitation, Figure 8 analyzes the variations of SCD and temperature 
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( sd tR - ), SD and precipitation ( sd pR - ), SCD and temperature ( scd tR - ), and SCD and precip-

itation ( scd pR - ) at different altitudes. The results show that as the altitude increases, the 
negative correlation of SD and SCD with temperature gradually increases, while the pos-
itive correlation with precipitation gradually decreases. sd pR -  shows a significant posi-

tive correlation between SD and precipitation at 2500–5000 m. scd tR -  shows a negative 
correlation between SCD and temperature, increasing gradually from 2500 m to 3500 m, 
then stabilizing at 3500–4700 m, and gradually decreasing over 4700 m. scd pR -  indicates 
that SCD is positively correlated with precipitation, which decreases gradually from 2000 
m to 4500 m, and increases slightly from 4500 m to 5500 m. In addition, we analyzed the 
correlation between the SD/SCD and temperature/precipitation of the Kunlun Mountains 
and the Himalayas at different altitudes. Please see Figures S7 and S8 of the Supplemen-
tary Files. 

 
Figure 8. The correlation between SD (a)/SCD (b) and temperature/precipitation at different altitude intervals. The red 
line represents the correlation coefficient between SD/SCD and temperature, and the blue line represents the correlation 
coefficient between SD/SCD and precipitation. The solid points are significant at 99%, the half-filled points are significant 
at 95%, and the hollow points are insignificant. 

The following analyses were conducted from the overall perspective, as is shown in 
Table 2. Pearson correlation coefficients between SCD and temperature in autumn, winter, 
spring, and snow cover years are −0.802, −0.704, −0.800, and −0.744 ( p 0.01< ), respectively. 
Pearson correlation coefficients between SD and temperature in winter and spring are 
−0.373 and −0.513 ( p 0.01< ), respectively. However, the correlations between SD/SCD 
and precipitation are statistically insignificant ( p 0.05> ). 

Table 2. Pearson correlation coefficients between SD/SCD and temperature/precipitation of au-
tumn, winter, spring, and snow cover year in the TP from 1979 to 2018. One and two asterisks 
denote significance at the 0.05 and 0.01 levels, respectively. 

 Temperature Precipitation Temperature Precipitation 
 Autumn Winter 

SCD −0.802 ** 0.101 −0.704 ** 0.301 
SD −0.086 0.042 −0.373 0.054 

 Temperature Precipitation Temperature Precipitation 
 Spring Snow Cover Years 

SCD −0.800 ** −0.289 −0.744 ** −0.107 
SD −0.513 * −0.160 −0.053 −0.210 
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4. Discussion 
4.1. Analysis of the Causes of Spatio-Temporal Variation of Snow Cover 

It was found that SD and SCD did not change significantly from 1979 to 2018, which 
is consistent with the researches of Wang et al. [18] and Xu et al. [78]. Bian et al. [19] ana-
lyzed the variation trend of the annual mean SD over TP from 1980 to 2018, and found 
that SD showed different decreasing trends for MERRA-2 (−0.03 cm decade–1, p = 0.47), 
JRA-55 (−0.27 cm decade–1, p = 0.00) and MW (−0.18 cm decade-1, p = 0.00), while analyzing 
the variation trend of annual SCD, and found that SCD showed an insignificant increasing 
trend for MERRA-2 (0.38 d decade–1, p = 0.86), and a significant decreasing trend for JRA-
55 (−6.04 d decade-1, p = 0.00) and MW (−3.88 d decade–1, p = 0.01). This difference in trend 
has a certain relationship with the uncertainty of the reanalyzed data. (Details will be dis-
cussed in Section 4.3) Differently, Bian et al. focused on the whole TP, while this paper 
focuses instead on the part of TP in China. The area studied in this paper does not include 
parts of the Pamir Plateau and the Himalayas, which have more snow cover and are more 
variable. 

We believe that the high spatial heterogeneity of TP snow cover may be one of the 
reasons for the insignificant changes in SD and SCD (Figure 3). Among them, the areas 
with a significant decrease in SD are mainly concentrated in the southwestern and a small 
part of the western of TP, among them, the Nianqing Tanggula Mountains has the most 
significant decrease (<-5 cm decade–1, p < 0.05). The areas showing an increasing trend are 
mainly concentrated in the Kunlun Mountains, the Bayankala Mountains, and the south-
ern edge of the Himalayas (>3 cm decade–1, p > 0.05). Among them, over the Himalayas, 
SD shows significant increasing trends at 4500–5000 m (s = 0.02 cm decade–1, p = 0.02) and 
5000–5500 m (s = 0.09 cm decade–1, p < 0.01), and insignificant increasing trends at 5500–
6000 m (s = 0.2 cm decade–1, p < 0.01). In the Kunlun Mountains, there is an insignificant 
increasing trend at 5500–6000 m (s = 0.001 cm decade–1, p = 0.86). The spatial pattern of 
SCD showing a significant decreasing trend is similar to that of SD. In addition, we found 
that, regarding SCD, there is a significant decrease in the central Himalayas and the north-
ern edge of the Kunlun Mountains (<-1 d decade–1, p < 0.05), and there is a significant 
increase in the Bayan Har Mountains and southern Kunlun Mountains (>1 d decade–1, p < 
0.05). For most other areas, there is no significant trend in SD and SCD, especially in north-
ern TP and the Qaidam Basin. The reason for this phenomenon may be that most of these 
areas are snow-free areas with less snow (Figure 2), resulting in very weak snow changes. 
The spatial analysis of SD trend variations by Bian et al. [19] showed that MERRA-2 has a 
significant decreasing trend in the far western TP, JRA-55 has a significant decreasing 
trend in the western and a small part of the southern TP, while MW has no significant 
change trend in all areas. With respect to SCD, the areas with a decreasing trend focus on 
the far western and southern TP for MERRA-2, the western and eastern TP for JRA-55, 
and the north of the central TP for MW. The above analyses illustrate further the uncer-
tainty of the reanalysis data. 

The main causes of snow cover change over TP are discussed from the perspective of 
climate change. More precisely, the volume of snow cover is related to the temperature 
threshold (0 °C), which has not changed substantially during the recent global warming 
[18]. In addition, the terrain of TP is complex, and the climatic conditions vary from region 
to region [79,80]. Studies have shown that TP warming is accelerating. Except for the 
Qaidam Basin, the temperature gradually decreases from south to north. Precipitation 
tends to increase, but the increased rate decreases from southeast to northwest [81,82], 
thereby showing different degrees of impact on snow. There is a significant negative cor-
relation between snow cover and temperature, but the relationship between snow cover 
and precipitation is spatially heterogeneous (Figures 6 and 7). Specifically, in the Kunlun 
Mountains, the valleys of southern Tibet, and the central and eastern areas of TP, there is 
a negative correlation between snow cover and precipitation; while in the northern TP, 
the Qaidam Basin, and the southeastern edge of TP, there is a positive correlation between 
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snow cover and precipitation. The possible reason for this phenomenon is that the high-
altitude mountains in the west and north have lower temperatures and more precipita-
tion, which helps to form snow cover. For example, in the Kunlun Mountains and the 
Himalayas, there is a negative correlation between temperature and SD/SCD. However, 
the correlation between precipitation and SD/SCD changes greatly at different altitudes. 
In the Himalayas, precipitation is positively correlated with SD and SCD at the altitudes 
of 4000–5000 m and >5500 m. In the Kunlun Mountains, there is a positive correlation 
between precipitation and SD and SCD at an altitude of 4400 m and >6000 m. The central 
and eastern regions, however, are mostly broad plains at lower altitudes, where higher 
temperatures discourage the presence of snow and more precipitation facilitates snow-
melt [83,84]. Furthermore, the competitive effect of temperature and precipitation leads to 
differences in snow cover changes in different areas of TP [78]; Bian et al. [19] insist that 
the relatively small change of the end date of the annual maximum consecutive snow-
covered days (CSCDMaxE) is mainly caused by the combined impact of warmer temper-
atures and more precipitation in March–April.  

4.2. Analysis on the Causes of Snow Cover Variation at Different Altitudes 
The variation range of snow cover at different altitude intervals is significantly dif-

ferent. The research showed that at 1000–5000 m, as the altitude becomes higher, the de-
crease rate of SD gradually decreases (Table 1), sd pR -  is higher than sd tR -  (Figure 8a), 
and precipitation turns into snow when the temperature drops below 0 °C, resulting in the 
positive feedback effect of precipitation that offsets the effect of temperature rise on snow 
depth [38]. Relatively, the trend of SCD fluctuates greatly (Table 3), where the decrease rate 
is the largest at 3000-4000 m (s = -0.33, p = 0.22), and scd tR -  is high (Figure 8b). The possible 
reason is that at lower altitudes, the snow is sparse and shallow, and the temperature is 
relatively high. Changes in temperature directly lead to ablation or maintenance of snow 
[18]. Meanwhile, the altitude of 3000–4000 m is particularly sensitive to higher freezing 
levels. In addition, we found that both SD (0.3 cm decade–1, p = 0.47) and SCD (0.4 d dec-
ade–1, p = 0.90) show insignificant increasing trends when the altitude >6000 m. The rea-
sons are as follows: warming and humidification have become the main characteristics of 
TP climate change, and temperature is obviously dependent on altitude. [21,26]. At the 
altitude of >6000 m, precipitation is beneficial to the accumulation of snow cover at low 
temperatures. This is because at the altitudes of >6000 m, precipitation essentially only 
falls as snow and this region is not yet sensitive to rising freezing levels. Compared with 
similar products, the ERA5 dataset has a low resolution (0.25° × 0.25°), which may lead to 
a less detailed capture of the high mountains. There may be other factors that affect the 
variation of snow cover at high altitudes, such as valley circulation and sublimation of 
snow cover caused by strong winds [27]. Therefore, it is necessary to further analyze the 
influence of other factors on snow cover in the future. 

Table 3. Long-term change trends of annual SD and SCD from 1979 to 2018 at different altitude intervals. 

Altitude (m) 
SD SCD 

Slope (cm decade–1) R2 p-Value Slope (cm decade–1) R2 p-Value 
1000–2000 −0.5 0.06 0.13 −3.0 0.21 <0.01 
2000–3000 −0.4 0.23 <0.01 −2.0 0.16 <0.01 
3000–4000 −0.2 0.03 0.29 3.3 0.14 0.02 
4000–5000 −0.1 0.02 0.43 1.8 0.03 0.30 
5000–6000 0.7 0.12 0.02 2.7 0.03 0.23 

>6000 0.3 0.01 0.47 0.4 0.01 0.90 
Overall 0.04 0.01 0.81 −2.3 0.06 0.10 
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4.3. Implications and Limitations 
Snowmelt has a significant impact on water resources in the surrounding areas of TP 

[85]. Zhang et al. [86] propose that snowmelt runoff accounts for 20–30% of the total runoff 
in major river basins. Li et al. [21] point out that the earlier the snowmelt, the higher the peak 
of spring runoff. This study found that the snow cover decreases most in spring (Figure 3), 
which may lead to natural disasters such as droughts and floods in the Yangtze River 
Basin. It is necessary for relevant departments and residents to take safety precautions 
[87]. For example, in the autumn and winter of 1997, the temperature was lower and the 
precipitation was more, which resulted in abundant snow. However, in the spring of 1998, 
with the increase of temperature, snow decreased rapidly [78], followed by severe floods 
in The Yangtze River basin of China. Chen [88] believes that it is reasonable to believe that 
the flood disaster is related to the snow abnormality of TP. As glaciers shrink, permanent 
snow cover decreases and lake water levels rise [89]. Therefore, monitoring the dynamic 
changes of snow cover over TP is helpful to provide an important scientific basis for re-
gional water resources management and disaster prevention and control [90]. 

Remote sensing technology and data assimilation systems provide advanced meth-
ods for dynamic monitoring and in-depth study of snow cover. However, due to the 
unique geographic location of TP, complex climate environment, and insufficient station 
observational data, the numerical assimilation models in this area generate high temporal 
and spatial uncertainties [91]. In addition, under the impact of assimilation data, ERA5 
shows strong inhomogeneities. The performance test on the ERA5 reanalysis dataset 
showed that ERA5 has a positive bias of overestimating snow depth. This phenomenon 
may be caused by excessive snowfall or sublimation of blowing snow [61]. In fact, exces-
sive snowfall over TP is a common bias among climate and forecast models [92]. Wang 
and Zeng [93] evaluated several reanalysis products in terms of temperature and precipi-
tation, such as ERA-40, ERA-Interim, the MERRA, National Centers for Environmental 
Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis prod-
ucts, Global Land Data Assimilation System (GLDAS) datasets, and Climate Forecast Sys-
tem Reanalysis (CFSR). The results showed that there is excessive precipitation in other 
reanalysis data, except for MERRA-2 over TP. Furthermore, ERA5 has a higher horizontal 
resolution than other reanalysis data, thus allowing a better description of precipitation 
events. However, the precipitation season cycle in the southeast of TP is mainly summer 
monsoon precipitation, which reaches 70–90% of the annual precipitation in the region. In 
addition, when the altitude of this area is above 5000 m, the most snow is acquired in 
summer. The glaciers in the southern region are considered summer accumulation be-
cause most of their snow accumulation occurs during summer monsoon. However, we 
focus instead on the cold season when the precipitation is less and more falls in the form 
of snow. When studying the correlation between snow cover change and temperature and 
precipitation, there is still some uncertainty, and multiple datasets can be compared and 
analyzed at the same time to reduce the errors brought by a single product [19]. Therefore, 
to more accurately monitor the dynamic changes of snow cover in TP in the future, it is 
still necessary to further improve the high-altitude climate monitoring system and require 
more station SD observations [94]. Meanwhile, the implementation of snow processes re-
quires more accurate snow data for assimilation or simulation studies, which can not only 
validate data assimilation products, model simulations, and reanalysis datasets, but can 
also be used for further hydrology, weather, and climate studies [41]. 

5. Conclusions 
This paper studies the temporal and spatial characteristics of SD and SCD over TP 

from 1979 to 2018 using the ERA5 reanalysis dataset. The results show that: (1) the areas 
with high snow cover were mainly distributed in the Karakoram Mountains, Nyainqen-
tanglha Mountains, the southern edge of the Himalayas, and the Qilian Mountains; (2) in 
the snow cover year, 83% of the areas experienced a decline in SD and 81% of the areas 
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experienced a decline in SCD; (3) SD had a sudden change in 1984 and 2015, showing an 
“up-down-up” trend, and SCD had a sudden change in 2000 m, showing an “up-down” 
trend; (4) there is a significant negative correlation between snow cover and temperature, 
while the relationship between snow cover and precipitation has spatial heterogeneity, 
indicating that snow cover and precipitation have a significant positive correlation in the 
western and northern regions, and a significant negative correlation in the central and 
eastern regions; and (5) at different altitudes, the correlation between SD and tempera-
ture/precipitation is different from the correlation between SCD and temperature/precip-
itation. When the altitude exceeds 6000 m, the correlation between SD/SCD and tempera-
ture/precipitation becomes not obvious, which may be associated with a variety of factors, 
and the relevant content needs further study. 

Supplementary Materials: The following are available online at www.mdpi.com/2073-
4441/13/3/307/s1, Figure S1: Interannual variability of SD (black dotted line), SCD (yellow dotted 
line), temperature (red line) and precipitation (bule line) over TP in autumn, winter, spring from 
1979 to 2018, Figure S2. Interannual variability in SD and SCD at various altitude intervals across 
TP in autumn during 1979−2018, Figure S3. Interannual variability in the SD and SCD at various 
altitude intervals across TP in winter during 1979−2018, Figure S4. Interannual variability in the SD 
and SCD at various altitude intervals across TP in spring during 1979−2018, Figure S5. Interannual 
variability in the SD and SCD at various altitude intervals during 1979−2018 over the Himalayas, 
Figure S6. Interannual variability in the SD and SCD at various altitude intervals during 1979−2018 
over the Kunlun Mountains, Figure S7. The correlation between SD (a)/SCD (b) and tempera-
ture/precipitation at different altitude intervals over the Himalayas. The red line represents the cor-
relation coefficient between SD/SCD and temperature, and the blue line represents the correlation 
coefficient between SD/SCD and precipitation, Figure S8. The correlation between SD (a)/SCD (b) 
and temperature/precipitation at different altitude intervals over the Kunlun Mountains. The red 
line represents the correlation coefficient between SD/SCD and temperature, and the blue line rep-
resents the correlation coefficient between SD/SCD and precipitation, Table S1. Summary of chang-
ing trends in snow cover (i.e., SD and SCD) and environmental variables (i.e., precipitation and 
temperature) from 1979 to 2018 over TP. The unit of Slope regarding SCD is -1d decade , the unit of 
Slope regarding SD is 1cm decade− , the unit of Slope regarding Temperature is °C 1 decade− , the 
unit of Slope regarding Precipitation is 1mm decade− , Table S2. Long−term change trends of annual 
SD and SCD from 1979 to 2018 at different altitude intervals in autumn, Table S3. Long−term change 
trends of annual SD and SCD from 1979 to 2018 at different altitude intervals in winter, Table S4. 
Long−term change trends of annual SD and SCD from 1979 to 2018 at different altitude intervals in 
spring, Table S5. Long−term change trends of annual SD and SCD from 1979 to 2018 at different 
altitude intervals over the Himalayas, Table S6. Long−term change trends of annual SD and SCD 
from 1979 to 2018 at different altitude intervals over the Kunlun Mountains. 
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