
water

Article

Estimating the Pan Evaporation in Northwest China by
Coupling CatBoost with Bat Algorithm

Liming Dong 1, Wenzhi Zeng 1,* , Lifeng Wu 2,*, Guoqing Lei 1, Haorui Chen 3 , Amit Kumar Srivastava 4

and Thomas Gaiser 4

����������
�������

Citation: Dong, L.; Zeng, W.; Wu, L.;

Lei, G.; Chen, H.; Srivastava, A.K.;

Gaiser, T. Estimating the Pan

Evaporation in Northwest China by

Coupling CatBoost with Bat

Algorithm. Water 2021, 13, 256.

https://doi.org/10.3390/w13030256

Received: 9 December 2020

Accepted: 18 January 2021

Published: 21 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University,
Wuhan 430072, China; lmdong1997@whu.edu.cn (L.D.); leiguoqing1001@whu.edu.cn (G.L.)

2 Nanchang Institute of Technology, Nanchang 330099, China
3 State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water

Resources and Hydropower Research, Beijing 100038, China; chenhr@iwhr.com
4 Crop Science Group, Institute of Crop Science and Resource Conservation (INRES), University of Bonn,

Katzenburgweg 5, D-53115 Bonn, Germany; amit.srivastava@uni-bonn.de (A.K.S.);
tgaiser@uni-bonn.de (T.G.)

* Correspondence: zengwenzhi1989@whu.edu.cn (W.Z.); lifengwu@nit.edu.cn (L.W.)

Abstract: Accurate estimation of pan evaporation (Ep) is vital for the development of water resources
and agricultural water management, especially in arid and semi-arid regions where it is restricted to
set up the facilities and measure pan evaporation accurately and consistently. Besides, using pan evap-
oration estimating models and pan coefficient (kp) models is a classic method to assess the reference
evapotranspiration (ET0) which is indispensable to crop growth, irrigation scheduling, and economic
assessment. This study estimated the potential of a novel hybrid machine learning model Coupling
Bat algorithm (Bat) and Gradient boosting with categorical features support (CatBoost) for estimating
daily pan evaporation in arid and semi-arid regions of northwest China. Two other commonly used
algorithms including random forest (RF) and original CatBoost (CB) were also applied for compar-
ison. The daily meteorological data for 12 years (2006–2017) from 45 weather stations in arid and
semi-arid areas of China, including minimum and maximum air temperature (Tmin, Tmax), relative
humidity (RH), wind speed (U), and global solar radiation (Rs), were utilized to feed the three models
for exploring the ability in predicting pan evaporation. The results revealed that the new devel-
oped Bat-CB model (RMSE = 0.859–2.227 mm·d−1; MAE = 0.540–1.328 mm·d−1; NSE = 0.625–0.894;
MAPE = 0.162–0.328) was superior to RF and CB. In addition, CB (RMSE = 0.897–2.754 mm·d−1;
MAE = 0.531–1.77 mm·d−1; NSE = 0.147–0.869; MAPE = 0.161–0.421) slightly outperformed RF
(RMSE = 1.005–3.604 mm·d−1; MAE = 0.644–2.479 mm·d−1; NSE =−1.242–0.894; MAPE = 0.176–0.686)
which had poor ability to operate the erratic changes of pan evaporation. Furthermore, the improve-
ment of Bat-CB was presented more comprehensively and obviously in the seasonal and spatial
performance compared to CB and RF. Overall, Bat-CB has high accuracy, robust stability, and huge
potential for Ep estimation in arid and semi-arid regions of northwest China and the applications of
findings in this study have equal significance for adjacent countries.

Keywords: pan evaporation; machine learning; bat algorithm; CatBoost; random forest

1. Introduction

Evaporation is the significant content for meteorological science, water resources
evaluation, and hydrological cycle [1,2]. Accurate simulation of evaporation contributes
to many aspects including hydrology and water resources management, agricultural ac-
tivities, irrigation scheduling, and water conservation, especially in arid regions [3,4].
However, evaporation is extremely difficult to present effectively due to its complex inter-
actions between land and atmosphere system [5]. Nowadays, the methods for evaporation
measurement are generally divided into estimation by models and direct measurement
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approach. Empirical and semi-empirical models are accessible estimating methods, but
these models require sophisticated and readily available meteorological data which are
not always accessible in many areas. Furthermore, the accuracy of these models is varied
to a different situation, and some of these methods are valid only under specific climatic
and agronomic conditions [6]. In situ direct measurements such as the eddy correlation
system and pan evaporation method can provide relatively reliable results, although these
applications are required for precise and high-quality construction with massive expendi-
ture and greatly restricted by extreme circumstances such as strong winds, heavy rain, and
utmost drought, which are prominent problems in arid and semi-arid areas [7,8]. Thus,
developing an available and suitable method for estimating pan evaporation is significant
to the estimation of evaporation. In addition, utilizing pan evaporation data and pan
coefficient (kp) models is a classic way to assessing the reference evapotranspiration (ET0)
that is indispensable to crop growth, irrigation scheduling, and economic assessment [9].

The evaporation process is characteristically highly non-linear, complex, and unsteady,
which is the reason why it is impossible to develop a mathematical relationship including
all relevant factors [7,10–12]. Due to these peculiarities, in recent years, with the superiority
of unraveling nonlinear relationships, machine learning techniques including artificial
neural network (ANN), support vector machines (SVM), multivariate adaptive regression
splines (MARS), M5 model tree (M5T), random forest (RF), extreme learning machine
(ELM), gradient boosting decision tree (GBDT), gradient boosting with categorical features
support (CatBoost), a kernel-based nonlinear extension of Arps decline (KNEA), Wavelet-
Extreme Learning Machine (WA-ELM), have been broadly employed in hydrological and
environmental models to forecast parameters such as streamflow, groundwater level, soil
moisture, solar radiation and reference evapotranspiration [13–21]. In addition, a plethora
of literature indicates these machine learning algorithms perform excellently in predicting
pan evaporation (Ep) as well. Keskin, M. E., et al., [22] compared the performance of an
ANN model and the empirical Penman model at Lake Eğirdir of Turkey and found the
ANN model with relatively fewer inputs even achieved considerably better agreement
than the Penman model in predicting Ep value. Lu, X., et al. [23] evaluated three tree-based
machine learning approaches (including M5, RF, and GBDT) for estimating daily Ep in the
Poyang Lake Basin. The result showed that the GBDT model exhibited the best stability
and accuracy in the prediction among the three models. Goyal, M. K., et al. [6] investigated
the abilities of ANN model with Bayesian Regularization (BR) and Levenberg–Marquardt
(LM) algorithm, LSSVR model, Fuzzy Logic model, and ANFIS model in the modeling of
daily pan evaporation by accessible inputs (including rainfall, minimum and maximum
temperature, minimum and maximum humidity, and sunshine hours). They found that the
LS-SVR and Fuzzy Logic models performed successfully in sub-tropical climates. Besides,
Kisi, O., et al. [24] attempted using only temperature data as inputs to predict monthly
pan Ep through M5, MARS models and empirical models including CHS, MLR and SS
models. The conclusion was that the MARS model generally had better accuracy than M5
and empirical models, and more test data contributed to its positive impact.

Nevertheless, most machine learning methods are easily struck in drawbacks and it is
difficult to tune the model’s unique parameters manually. Therefore, the novel heuristic
algorithm such as Grey Wolf Optimization (GWO), Whale Optimization Algorithm (WOA),
Flower pollination algorithm (FPA), Salp Swarm Algorithm (SSA) and CatBoost (Cat) has
been applied or coupled with machine learning models successfully in estimating ET0
and Ep recently. For instance, Wang, H., et al. [8] developed a new hybrid model based
on the salp swarm algorithm (SSA) and the kernel-based nonlinear Arps decline (KNEA)
and compared the ability to predict Ep with M5 and MARS models in the arid and semi-
arid regions of northwest China. The new model was superior to both M5 and MARS
models in all input combinations. Wu, L., et al. [18] made a comparison among two new
ELM model coupled with whale optimization algorithm (WOA) and flower pollination
algorithm (FPA) and the differential evolution algorithm-optimized ELM (DEELM), the
improved M5 model tree (M5P) and artificial neural networks (ANN) models for monthly
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Ep prediction in Poyang Lake Basin of southern China. The result showed FPAELM model
was estimated best among these models at all stations. Seifi, A., et al. [25] evaluated the
capability of three novel ANN models hybridized with Genetic Algorithm (GA), Grey Wolf
Optimization (GWO), and Whale Optimization Algorithm (WOA) under five different
climate conditions in Iran for estimating Ep value. They draw conclusions that ANN-GA
model performed better than the other two models in estimating daily Ep and the hybrid
ANN model represented input and output relationships effectively.

Bat algorithm (BA) is a meta-heuristic algorithm based on swarm intelligence for
global optimization [26]. Due to the advantage of high accuracy, effectiveness, and ma-
neuverability in optimizing parameters, the Bat algorithm has been applied in such as
environmental resource scheduling, flood routing, rainfall forecasting, and evapotranspi-
ration estimating [27–31]. Dong, J., et al. [32] conclude that the ELM model coupled with
the Bat algorithm showed the highest accuracy and stability in the estimation of daily dew
point temperature among ten models (including KNEA, GA-ELM, POS-ELM, ANN, ANFIS,
RF, SVM, ELM, MARS). Therefore, the potential of the Bat algorithm in self-improving and
the ability to optimize non-linear parameters is tremendous. To the best of our knowledge,
the application of meta-heuristic algorithms such as the Bat algorithm in the hydrological
field has been minimal, even none in Ep prediction.

Besides, compared with bat algorithm, tree-based ensemble models such as gradi-
ent boosting with categorical features support (CatBoost) have unique advantages and
equivalent potential in predicting ability. CatBoost is a novel gradient boosting technology
proposed by Yandex Company. It has been applied in many fields as a result of good
performance such as weather forecast, media popularity prediction, and reference evapo-
transpiration [33,34]. Huang, G., et al. [35] compared the CatBoost model with SVM and RF
models in estimating reference evapotranspiration in humid regions of China and found
the CatBoost model represents significant superiority not only in accuracy and stability
but also in computing time and memory usage. Zhang, Y., et al. [20] further evaluated the
feasibility of the CatBoost model in estimating ET0 under arid and semi-arid conditions of
Northern China and took the generalized regression neural network (GRNN) and random
forests (RF) models as a contrast. Their findings revealed the CatBoost showed the same
advantage comparing with GRNN and RF and was observed to be the best alternative for
estimating ET0.

Nevertheless, the different random permutations produced in CatBoost may have
a great impact on the results. Besides, there are more parameters for CatBoost to set
compared to other machine learning models, which increases the possibility of falling into
local optima. To overcome this weakness, coupling an efficient searching algorithm with
CatBoost is a workable method. Bat algorithm stands out for its excellent global searching
ability. In addition, there seems to be no literature available utilizing bat algorithms to
optimize the CatBoost, which is a potential application in hydrology, agriculture, and
environmental fields, especially in pan evaporation estimation.

Thus, the objectives of this study were set to (1) investigate capability and usability
of the hybrid model coupled CatBoost with Bat algorithm (Bat-CB) in arid and semi-arid
regions of northwest China for estimating Ep; (2) evaluate the generalization performance
of Bat-CB under seasonal and geographic conditions though weather data from 45 stations,
in comparison with CatBoost and RF models.

2. Material and Methods
2.1. Random Forest (RF)

The random forest has not only striking predicting accuracy and widespread applica-
tion in classification and regression fields but also has a powerful ability to handle features
in a dataset [36]. Besides, random forest is a compatible algorithm. Iwendi, C., et al. [37]
found ensemble random forest had outperformed all the included methods for improving
intrusion detection systems. Therefore, to examine the forecasting capacity of two aforesaid
advanced algorithms, random forest stands out as the standard method. Based on the
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classification and regression tree (CART), random forest utilizes the ensemble strategies
such as bootstrap and bagging to handle high-dimensional regression issues [31,38,39].

For making a group of trees, random forest draws randomly from the original dataset
as the training subsets by a bootstrap method and releases them back after sampling until
the minimum number of nodes is reached. The data not sampled in the original dataset
are called “out of the box” (OOB) and can be used to calculate out-of-bag error that is
an unbiased estimation [38]. Additionally, RF grows trees unpruned and each node is
split using the best predictor of randomly chosen subsets of predictors rather than the
best one among all predictors, which are robust against the overfitting. Eventually, the
ultimate outcome of the forecast is determined through a bagging procedure that assesses
the predictors comprehensively in the integrated trees. More details about Random Forest
can be found in Breiman, L. [38]. The structure of the RF is shown in Figure 1.

Water 2021, 13, x FOR PEER REVIEW 4 of 18 
 

 

2. Material and Methods 

2.1. Random Forest (RF) 

The random forest has not only striking predicting accuracy and widespread appli-

cation in classification and regression fields but also has a powerful ability to handle fea-

tures in a dataset [36]. Besides, random forest is a compatible algorithm. Iwendi, C., et al. 

[37] found ensemble random forest had outperformed all the included methods for im-

proving intrusion detection systems. Therefore, to examine the forecasting capacity of two 

aforesaid advanced algorithms, random forest stands out as the standard method. Based 

on the classification and regression tree (CART), random forest utilizes the ensemble strat-

egies such as bootstrap and bagging to handle high-dimensional regression issues 

[31,38,39]. 

For making a group of trees, random forest draws randomly from the original dataset 

as the training subsets by a bootstrap method and releases them back after sampling until 

the minimum number of nodes is reached. The data not sampled in the original dataset 

are called “out of the box” (OOB) and can be used to calculate out-of-bag error that is an 

unbiased estimation [38]. Additionally, RF grows trees unpruned and each node is split 

using the best predictor of randomly chosen subsets of predictors rather than the best one 

among all predictors, which are robust against the overfitting. Eventually, the ultimate 

outcome of the forecast is determined through a bagging procedure that assesses the pre-

dictors comprehensively in the integrated trees. More details about Random Forest can be 

found in Breiman, L. [38]. The structure of the RF is shown in Figure 1. 

From the algorithm described above, only two parameters needs tuned, the number 

of ensemble trees (ntree) and the number of predictors randomly selected at each node 

(mtry). The ntree should be settled appropriately so that every input gets predicted at enough 

times without increasing calculating time excessively. As for mtry, the default values are 

different for classification. The two optimal parameters vary among different stations but 

will be trained and input until the optimum appears. 

 

Figure 1. The structure of the random forest algorithm. 
Figure 1. The structure of the random forest algorithm.

From the algorithm described above, only two parameters needs tuned, the number of
ensemble trees (ntree) and the number of predictors randomly selected at each node (mtry).
The ntree should be settled appropriately so that every input gets predicted at enough times
without increasing calculating time excessively. As for mtry, the default values are different
for classification. The two optimal parameters vary among different stations but will be
trained and input until the optimum appears.

2.2. Gradient Boosting with Categorical Features Support (CB)

CatBoost, a novel machine-learning algorithm based on gradient boosting decision tree
(GBDT) algorithm, was verified that it surpassed other advanced GBDT algorithms such as
XGBoost and LightGBM in many aspects particularly while dealing with considerable data
and features. The enhancements are majorly reflected in three fields:

First and foremost, traditional GBDT algorithms generally cope with categorical
features by a method named Greedy Target Statistics (Greedy TS) which is quite efficient but
subject to an inherent problem of conditional shift. To avoid this problem, CatBoost applies
an approach that relied on the ordered principle so that it can get over the target leakage.
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Therefore, this approach makes the whole dataset available for the training model to learn
and handles categorical features during training time. Specifically, CatBoost performs a
random permutation of the dataset and select one categorical feature, then calculates an
average label value for the example with the same category value placed before the selected
category in the permutation. According to Prokhorenkova, L., et al. [40], if we sample as a
permutation (θ = [σ1, σ2, . . . , σn]nT) from the given dataset, the permutation is substituted
with (Equation (1)):

xσp,k =
∑

p−1
j=1

[
xσj,k = xσp,k

]
·Yσj + β · P

∑
p−1
j=1

[
xσj,k = xσp,k

]
+ β

(1)

In (Equation (1)), P is a prior value and β is the weight of the prior value. The prior
is usually the average label value in the dataset, and it helps reduce the noise from the
low-frequency category.

Secondly, another pivotal enhancement of CatBoost is the conversion from the tradi-
tional gradient boosting algorithm to the ordered boosting which figures out the inevitable
problem of the gradient bias in the iteration process and increases the generalization ability.
When GBDT substitutes categorical features with numerical values by target statistic, the
conditional distribution for a training example will be not identical with that for the test
example. Training a model without the specific sample, in order to make the residual of
models unshifted, can solve the issue of unbiased gradient boosting. However, it is difficult
to carry out in practice. CatBoost generates random multiple permutations through a
method inspired by the ordering principle to obtain sufficient permutations, which can
reduce the effect of overfitting efficiently and enhance the robustness of models [40].

Thirdly, in the aspect of handling categorical features, CatBoost constructs combi-
nations of categorical features though a greedy way and uses these combinations as the
additional features. Namely, CatBoost combines the categorical features already presented
in built trees with all categorical features in the dataset. This method helps models to more
easily capture the high-order dependencies and further improve the accuracy of estimation.

Another advanced and noticeable specialty is that CatBoost selects oblivious decision
trees as the base predictors. Such trees work out an impartial decision with the same
splitting across the entire level of the tree and speed up the execution, which means they
are less prone to over-fitting and shorten the testing time.

2.3. Bat Algorithm Coupling with CatBoost (Bat-CB)

The bio-inspired bat algorithm is a metaheuristic algorithm originally introduced
by Yang, X. S. [26], which mirrors the foraging behavior of micro bats. In the searching
process, each bat emits high-frequency pulses to search for targets and analyzes the unique
echolocation characteristics (i.e., velocity, loudness, and frequency) which contributes to
locating the target and strengthen searching ability. Mathematically, the bat algorithm can
be implemented as follows:

1. Generating a population of bats for simulations, and assigning each bat the initial
velocity vi, frequency fi, and position xi.

2. From the first iteration to the maximum iteration, the three characters at time t are
updated by (Equations (2)–(4)).

fi = fmin + ( fmax − fmin) · β (2)

vt
i = vt−1

i +
(
xt

i − x∗
)
· fi (3)

xt
i = xt−1

i + vt
i (4)

In (Equations (2)–(4)), β∈[0, 1) is a random vector from a normal distribution, f i
controls the step length of bat movement, xt

i and vt
i are the updated positions and velocities

of bats at time t, respectively, and x∗ is the current best position(solution), namely, a
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bat is located after comparing all the fitness values of solutions among the bats within
the population.

1 Generating a random number (rand) as the criteria for whether the current solution
needs improvement. If the random is higher than At, bats will update their best
positions through the random walk:

xnew = xold + rand · At (5)

where rand∈[−1, 1] and At is the average loudness of all bats at time t.
2 Generating another random number. If rand <Ai and f (xi) < f (x*), then yield the

solution at the last step and updating the emission rates of each bat ri and loudness of
each bat At by:

At+1
i = αAt

i (6)

rt+1
i = r0

i · [1− exp(−γt)] (7)

where α and γ are both constants. Thereby, 0 < α < 1 and γ > 0.

The iterations (from step 2 to step 4) will continue processing until the maximum
number of iterations is reached. Finally, ranking the fitness values of all bats and obtain the
best position. The structure of the bat algorithm is shown in Figure 2.
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In this study, the bat algorithm was integrated with CatBoost models for estimating
pan evaporation. As stated previously, the parameters have a large impact on the final
performance of CatBoost. Choosing appropriate parameters for the CatBoost model will
intensify the gradient boosting function and improves the forecasting ability remarkably in
theory. In Bat-CB, three vital parameters of the CatBoost model, including the number of
trees to grow (n rounds), the learning rate (eta), and the maximum depth of trees (depth),
were optimized by bat algorithm.

2.4. Study Area

The study area, which covers nearly 1/6th area of China, comprises the most area
of Xinjiang and the northwest regions of Gansu, Ningxia, and Inner Mongolia. The
geographical position of the study area is located adjacently in Central Asia where is far
from the seas and less influenced by a summer monsoon and humid ocean air. Therefore,
it belongs to the typical temperate continental climate which is characterized by torridity,
dry, abundant sunshine, and scarce precipitation. The annual precipitation ranges mostly
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from 100 mm to 300 mm while the annual evaporation is higher than 1500 mm, even up to
3000 mm. The multi-years mean relative humidity is about 50.33% and is far below that in
eastern and western regions of China (almost range from 60% to 80%). Another noteworthy
character, the evaporation varies greatly along with seasons while the evaporation in
summer is 10–30 times as much as that in spring and winter.

Due to the above reasons, the water resources shortage is extraordinarily severe in
such arid and semi-arid regions of Northwest China, which is the biggest obstacle in the
socio-economic development of the study area. Solving the water shortage in the study area
is a hotspot with huge potential value and significance. Additionally, the typical temperate
continental climate, occupying a 3/5th area of Asia, is the most widely distributed climate
in Asia. The results of the study may have a universal significance in such an area with a
similar climate.

2.5. Dataset

In this study, a continuous and long-term series of daily meteorological data from
45 weather stations in Northwest China during 2006–2017 was selected for model training
and testing. The five meteorological parameters, including minimum air temperature
(Tmin, ◦C), maximum air temperature (Tmax, ◦C), relative humidity (RH, %), wind speed
(U, ms−1), and sunshine duration (N, h) were considered in the models. The global solar
radiation (Rs, MJ m−2d−1) data are insufficient because of the limitation of stations that
can measure the parameter directly in the study area. Thus, the Rs was calculated by
using a completely clear day (R0) and sunshine duration (N, h) through the empirical
Angström–Prescott model (A-P model) according to Fan, J., et al. [41]. The other four
parameters along with sunshine duration and completely clear day were obtained from
the National Meteorological Information Center (NMIC) with quality control examined
by China Meteorological Administration (CMA) (http://data.cma.cn/). The observed
data as the real values of pan evaporation were obtained easily by the measuring pan
among 45 stations. The data were divided into two groups, of which one group (2006–2013)
was used to develop and train the three artificial intelligence models and the other group
(2014–2017) was used for the model testing. The statistical properties of the daily data at
the selected 45 stations are shown in Table 1.

Table 1. Geographical and meteorological information of the 45 stations selected for this study.

Number Site ID Latitude
◦N

Longitude
◦E

Tave
◦C

Tmax
◦C

Tmin
◦C

RH
%

U
m d−1

Rs
MJ m−2 d−1

E
mm d−1

51053 1 48.03 86.24 −1.87 3.14 −5.99 65.09 3.14 10.44 2.51
51068 2 47.07 87.28 −3.19 2.94 −8.40 67.68 2.22 10.75 2.20
51076 3 47.44 88.05 −2.69 3.64 −7.81 63.78 1.67 10.97 2.07
51087 4 46.68 89.31 −3.80 3.42 −9.33 64.53 1.54 10.83 2.26
51133 5 46.44 83.00 0.76 6.94 −4.08 62.52 1.79 10.16 2.19
51156 6 46.48 85.44 −2.26 3.70 -6.80 58.48 2.48 11.09 2.26
51232 7 45.11 82.34 0.02 4.12 −3.33 66.48 4.13 9.39 3.16
51238 8 44.54 82.04 6.03 12.33 0.74 64.99 1.54 13.75 3.59
51241 9 45.56 83.36 −0.05 5.64 −4.30 61.41 2.18 11.15 2.33
51243 10 45.37 84.51 −0.84 3.44 −4.28 61.98 1.87 9.61 2.46
51334 11 44.35 82.52 −0.46 4.69 −4.79 68.68 1.58 9.52 1.99
51367 12 44.09 86.50 6.75 12.63 1.62 60.50 1.97 14.26 4.64
51470 13 43.53 88.07 1.90 7.89 −2.50 61.41 3.01 13.59 3.35
51477 14 43.21 88.19 −0.94 5.70 −6.33 57.23 3.97 11.57 2.70
51526 15 42.14 88.13 1.24 9.35 −6.30 50.06 2.20 11.62 3.31
51542 16 43.02 84.09 −10.94 −3.36 −16.97 71.36 2.57 12.02 1.61
51567 17 42.05 86.34 0.25 7.21 −5.57 62.70 1.64 11.50 2.19
51573 18 42.56 89.13 5.19 10.35 0.96 42.24 1.37 9.77 2.96
51628 19 41.09 80.17 2.95 9.31 −2.17 58.07 1.56 11.61 2.23
51656 20 41.45 85.88 3.20 9.09 −2.12 53.22 1.98 11.69 2.99

http://data.cma.cn/
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Table 1. Cont.

Number Site ID Latitude
◦N

Longitude
◦E

Tave
◦C

Tmax
◦C

Tmin
◦C

RH
%

U
m d−1

Rs
MJ m−2 d−1

E
mm d−1

51704 21 39.43 76.10 5.95 9.81 0.05 51.34 1.06 10.26 2.62
51709 22 39.28 75.52 4.55 10.10 −0.47 53.59 1.80 11.60 3.11
51720 23 40.30 79.03 2.58 10.00 −3.55 57.13 1.19 11.44 2.06
51730 24 40.33 81.16 1.93 10.18 −4.72 58.85 1.27 12.07 2.08
51765 25 40.38 87.42 2.77 11.28 −4.42 48.57 1.57 12.17 2.86
51810 26 38.55 77.38 11.34 18.92 4.62 52.20 1.26 15.60 4.96
51811 27 38.26 77.16 4.31 11.04 −1.21 52.22 1.20 11.94 2.53
51818 28 37.37 78.17 4.71 11.49 −1.19 45.21 1.42 12.57 3.01
51828 29 37.08 79.56 5.94 11.57 1.32 40.60 1.77 12.39 3.55
51839 30 37.04 82.43 4.38 12.02 −2.15 42.53 1.45 13.18 3.35
51855 31 38.09 85.33 2.61 10.34 −4.04 45.73 1.87 12.50 3.51
51931 32 36.51 81.39 4.62 11.96 −1.43 43.73 1.23 13.60 2.88
52101 33 43.36 93.03 −3.24 4.11 −9.03 55.18 2.34 12.81 2.36
52112 34 43.46 94.86 1.46 8.18 −4.13 41.54 2.89 12.61 4.05
52118 35 43.16 94.42 3.55 10.42 −2.48 43.78 3.08 16.44 5.05
52203 36 42.49 93.31 2.15 10.27 −4.11 47.29 1.36 13.09 2.64
52313 37 41.32 94.40 −0.88 7.33 −7.56 44.09 3.95 13.24 3.85
52323 38 41.48 97.02 −1.56 6.76 −8.50 42.78 4.41 14.50 4.76
52533 39 39.46 98.29 1.92 9.35 −4.09 46.52 2.27 14.06 3.70
52546 40 39.22 99.50 2.45 10.76 −4.10 49.84 2.00 14.02 2.97
52652 41 38.86 100.20 2.04 10.52 −4.71 47.98 2.40 14.59 3.95
52674 42 38.14 101.57 0.53 8.01 −5.25 47.38 2.88 14.60 3.95
52679 43 37.55 102.42 3.43 10.57 −2.66 46.05 1.74 14.02 3.65
52681 44 38.38 103.05 3.19 10.58 −3.12 41.76 2.50 14.51 4.54
52797 45 37.11 104.03 3.96 10.78 −1.29 45.07 1.90 13.33 3.81

2.6. Statistical Analysis

Four statistical evaluation measures were used to comprehensively evaluate the
performance of different methods for pan evaporation estimations. The equations are
as follows:

(i) Root mean square error (RMSE)

RMSE =

√√√√ 1
N

N

∑
i=1

(
YEST,i −YOBS,i

)2

(8)

(ii) Mean absolute error (MAE)

MAE =
1
N

N

∑
i=1

∣∣∣YEST,i −YOBS,i
∣∣∣ (9)

(iii) Nash–Sutcliffe Efficiency (NSE)

NSE = 1−


N
∑

i=1

(
YOBS,i −YEST,i)2

N
∑

i=1

(
YOBS,i −YOBS,i,MEAN

)2

 (10)

(iv) Mean absolute percentage error (MAPE)

MAPE =
1
N

N

∑
i=1

∣∣∣∣∣
(
YEST,i −YOBS,i)

YOBS,i

∣∣∣∣∣ (11)
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In (Equations (8)–(11)), YEST,i, and YOBS,i are estimated and observed pan evaporations
respectively. The YOBS,i,MEAN is the average value of observed pan evaporation.

3. Results and Discussion
3.1. Statistical Performance of the Three Machine Learning Models

In this study, we developed pan evaporation model in each station based on three
different machine learning approaches (RF, CB and Bat-CB) with daily meteorological
variables of Tmax, Tmin, Rs, RH and U, and tested the performance of the model by four
commonly used statistical indicators (MAE [Ideal = 0, (0,+∞)], MAPE [Ideal = 0, (0,+∞)],
RMSE [Ideal = 0, (0,+∞) ], NSE [Ideal = 1, (−∞,1)]). Table 2 shows the overall performance
of the three machine learning methods at the 45 stations during the training and testing
stages. In the training data, three models showed high consistencies among different
statistical indicators and value categories.

Table 2. Statistical indicators of three machine learning models for predicting the pan evaporation in northwest China.

Models Value

Training Testing

RMSE MAE NSE MAPE RMSE MAE NSE MAPE

mm d−1 mm d−1 — — mm d−1 mm d−1 — —

RF

Mean 0.248 0.155 0.989 0.059 1.855 1.151 0.453 0.333
Max 0.528 0.353 0.995 0.081 3.604 2.479 0.894 0.686
Min 0.127 0.077 0.981 0.042 1.005 0.644 −1.242 0.176

Median 0.23 0.146 0.99 0.058 1.787 1.12 0.601 0.301
SD 0.078 0.055 0.003 0.009 0.553 0.362 0.46 0.117

CB

Mean 0.632 0.403 0.934 0.15 1.438 0.911 0.713 0.259
Max 1.322 0.851 0.95 0.181 2.754 1.77 0.869 0.421
Min 0.3 0.18 0.894 0.131 0.897 0.531 0.147 0.161

Median 0.572 0.366 0.936 0.149 1.262 0.848 0.763 0.247
SD 0.231 0.159 0.011 0.012 0.421 0.263 0.164 0.063

Bat-CB

Mean 0.603 0.36 0.945 0.132 1.25 0.792 0.794 0.225
Max 1.125 0.846 0.952 0.167 2.227 1.328 0.894 0.328
Min 0.288 0.166 0.908 0.115 0.859 0.54 0.625 0.162

Median 0.513 0.322 0.941 0.122 1.143 0.727 0.805 0.217
SD 0.204 0.159 0.01 0.011 0.316 0.178 0.074 0.04

The RF models (RMSE = 0.127–0.528 mm·d−1; MAE = 0.077–0.353 mm·d−1;
NSE = 0.981–0.995; MAPE = 0.042–0.081) performed the best in the training period, and their
RMSE, MAE, NSE and MAPE were lower than those of CB and BAT-CB models. Addition-
ally, Bat-CB (RMSE = 0.288–1.125 mm·d−1; MAE = 0.166–0.846 mm·d−1; NSE = 0.908–0.952;
MAPE = 0.115–0.167) was slightly superior to CB (RMSE = 0.300–1.322 mm·d−1;
MAE = 0.180–0.851 mm·d−1; NSE = 0.894–0.950; MAPE = 0.131–0.181) in the training stage
probably because it optimized the parameters previously before the data training of CB.
Nevertheless, both the BAT-CB model and CB model were better than the RF model during
the testing period. Compared with RF model, the RMSE of CB and BAT-CB in 45 stations
decreased by 15.0% and 48.4% on average, and MAE decreased by 15.1% and 45.3% on
average; the median value of RMSE decreased by 10.4% and 56.3%, and the median value
of MAE decreased by 16.8% and 54.2%; the RMSE maximum decreased by 23.6% and
61.9%, while the minimum decreased by 4.3% and 16.9%.Obviously, RF pursues the best
fitting results in training but performs worst in the practical testing, which indicates that RF
model has the most serious over-fitting problem among the three models. This indication
has been in accordance with not only the predictions of ET0 by Zhang, Y., et al. [20] who
declared CatBoost had a less over-fitting problem than RF and GRNN models in all input
combinations but also the estimation of dew point temperature by Dong, J., et al. [32].
In particular, the estimations of some stations by RF have quite large errors without a
limitation for excessive dispersion, while CB and BAT-CB models have better and more
positive effects in the stations with large errors.
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Nevertheless, using an optimization algorithm will not usually have an improvement
on the original models in some studies [6,42,43]. Comparing the hybrid model with the
original model and another commonly used model whose parameter combination is not
sophisticated was indispensable for the validation of the novel model [8]. In this part, the
improvement of Bat-CB model is relatively limited in the stations where the errors of the
three methods are relatively small. Correspondingly, the Bat-CB draws positive results in
the stations and indictors whose values are relatively high. Specifically, in the comparison
with CB, Bat-CB has a more conspicuous improvement of controlling the Max value and
the SD value (decreased by 22.1% and 31.3% on average of RMSE, MAE, and MAPE) in
the testing stage than the other three statistical indicators which are the mean value, the
min value and the median value (decreased by 13.1%, 0.7%, and 12.0% respectively). It is
noteworthy that Bat-CB outperformed CB in both calibration and validation stages, which
is evident as the bat algorithm help CB overcome the overfitting problem and improve the
accuracy of prediction substantially. In general, the above statistical results preliminarily
show that BAT-CB model is superior to CB model and RF model.

Though Table 2 showed the four statistical indicators of estimating outcomes holis-
tically, visualizing the performance of models in every station was indispensable and
convincing. Consequently, Figure 3 presented the authentic estimating results of the three
models through four statistical indices in the 45 stations. The consequences of models
showed an accordant trend of the four different indicators in the stations, which was a
complement of the previous conclusions. Bat-CB performed best in the majority of sta-
tions while RF was relatively dissatisfactory among the three models. Moreover, Bat-CB
had a certain degree of advantages that varied from the different stations. However, the
superiority of the models was not absolute, RF still had considerable predicting ability in
station 51709 and the 51232, and CB performed slightly better than Bat-CB in the station
52546, 52652, and 52674 especially in RMSE and NSE indicators. Further research was still
required to explain the advantages of the three models in various stations. Nevertheless, it
is doubtless that Bat-CB had the best predicting ability and robust stability in most stations
among the three models in general.
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To further observe the performance of the models, we randomly selected six stations
dispersed from the local position in the study region and drew scatter plots of measured
and simulated pan evaporation values (Figure 4). It is conspicuous that the scatter plots
of measured values and simulated values of the three methods during the test period are
significantly different. For better exemplification, the linear fit equation and the coefficient
of determination (R2) were included, which provides a universal approach to measure the
global adequacy of the model.
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Figure 4. Scatterplots of observed (OBS) and forecasted (FOR) pan evaporation generated from the three models applied
at the 6 randomly selected stations in the testing period. Each panel shows the linear regression fit and the coefficient of
determination (R2).

The three different methods evenly have a good performance when the evaporation is
small (<4 mm d−1), but when the evaporation is large than 4 mm d−1, the RF scatter points
diverted from the 1:1 liner form, and all sites showed obvious problems of overestimation or
underestimation. In consideration of the special climate in the study area, the applicability
and accuracy of RF is decreased and unconvinced in such arid and the semi-arid area
where the evaporation is extremely higher than the normal levels with a long period every
year. CB method was slightly better than the RF method in general, which was highly
overestimated when the evaporation capacity of 52203 and 52681 stations was very large.
Compared with CB, Bat-CB has a higher R2 and convergent tendency of 1:1 line without
any exception in all 6 sites as the plots showed (Figure 4). This indicates Bat algorithm
has a positive promotion on the CatBoost almost every site. Although the improvement
evoked from the bat algorithm seems not so conspicuous in minority stations such as the
52203 site, the bat algorithm help CB avoid the overfitting problem obviously in 51704 and
51567 sites.

It is noteworthy that both CB and Bat-CB have underestimated the values generally
(according to the slope <1) which is inverse to the view that the heuristic models over-
estimate the high pan evaporation values in some studies [44]. In terms of the distribution
of points, it is interesting that the forecasted values are distributed evenly to observed
values especially when the values are large. This phenomenon is a signal alerting us to
check over the models in practical application, and we can average the results or shorten
the span of steps to approach the real values efficiently. However, RF mainly has highly
overestimated aggregates of points at high values in 4 stations (51567, 51931, 52203, and
52681 sites) occupied a proportion of 2/3, which even transfer the illusion the results
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seemed convinced. Definitely, there is no use for RF to fix itself by the above methods. As
a whole, Bat-CB avoids the problems that existed in CB and RF with high accuracy and
shows the strongest stability in every station, particularly in large value estimation.

On the other hand, the distribution of AE can be further evaluated the applicability of
the model (Figure 5).
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AE is the absolute error which is computed as AE = |FOR − OBS|; [Ideal value = 0].
Hence, a model that has higher occurrences of AE close to zero is generally better and more
convincing. In the above six stations, the three different machine learning methods all have
about 50% point of AE below 0.4 mm·d−1. From 0 to 2 mm·d−1 of AE, the proportion of
data is gradually decreasing. However, the percentage of points larger than 2 mm·d−1

mainly distributed 10–20%. Especially for the RF model, the error of this method larger
than 2 mm was more than other models. In contrast, the AE larger than 2 mm of Bat-CB
was the most stable proportion in six stations ranged from 0.06 to 0.13 and the lowest
proportion in 51156, 51931, 52681 sites. From the perspective of two groups that AE value
is less <0.4 mm·d−1 and AE value is 0.4–0.8 mm·d−1, the AE of the Bat-CB model had
the highest proportion at 51156, 51567, 51,704, 51931 stations of a total of six stations,
which were significantly higher than CB and RF models. Although the RF model had
a slightly higher percentage of points <0.4 mm·d−1 at station 52203 than the other two
models (higher about 0.02), it also had the highest percentage of points with the AE at
>2 mm·d−1 (higher about 0.19), which is an important reason for the poor performance
of RF models. Generally, RF performed worst far from Bat-CB and CB in 51156, 51931,
52203, 52681 stations. CB is mildly inferior to RF and Bat-CB in 51567 and 51704 stations.
While Bat-CB showed unparalleled stability and high accuracy compared with the two
other models. This outcome is consistent with the results shown in scatter plots (Figure 4).
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Accordingly, the AE histogram also confirmed the main advantage of the Bat-CB model
with higher accuracy is to reduce the proportion of points with large errors.

3.2. Seasonal Effects on the Performance of Machine Learning Models

From the point of view of water resources management, the error at month scale espe-
cially the error of different seasons is also imperative for the application of the models. For
the moment, most machine learning models were vulnerable in operating the sudden dra-
matic changes [8,45]. In this study, the stability and the accuracy of the models are equally
important especially when the data are extremely abnormal like the pan evaporation in
summer of arid regions. The average deviation of three different machine learning models
across all stations for each month is shown in Table 3 and Figure 6 through four statistical
indicators (MAE, MAPE, RMSE, NSE respectively). For brevity, the main reason for the
performance difference of the three different algorithms is that the performance of the three
models is hugely different from April to October, while there is almost indiscrimination
from November to March. The BAT-CB model had the best performance from April to
October on every indicator, followed by the CB model and RF model.

Table 3. Monthly average values of statistical indicators generated from the three machine learning models during the
testing period.

Models Indicators Unit
Month

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

RF

MAE mm·d−1 0.18 0.30 0.65 1.99 2.79 2.85 2.83 2.74 2.45 1.13 0.40 0.23
MAPE — 0.31 0.21 0.16 0.37 0.48 0.47 0.43 0.48 0.54 0.34 0.24 0.33
RMSE mm·d−1 0.24 0.43 0.90 2.27 3.16 3.20 3.20 3.11 2.75 1.36 0.55 0.32
NSE — 0.44 0.66 0.73 −1.90 −3.07 −3.75 −3.67 −4.09 −5.47 −2.27 0.69 0.43

CB

MAE mm·d−1 0.18 0.33 0.79 1.52 1.85 1.93 2.09 1.88 1.59 0.91 0.39 0.22
MAPE — 0.34 0.21 0.19 0.27 0.32 0.31 0.29 0.31 0.34 0.26 0.23 0.33
RMSE mm·d−1 0.24 0.47 1.06 1.84 2.22 2.27 2.47 2.24 1.89 1.15 0.54 0.31
NSE — 0.40 0.66 0.66 −0.32 −0.87 −1.10 −1.22 −1.20 −1.68 −0.67 0.72 0.49

Bat-
CB

MAE mm·d−1 0.19 0.34 0.84 1.55 1.50 1.32 1.48 1.32 1.30 0.88 0.38 0.21
MAPE — 0.35 0.22 0.20 0.27 0.25 0.21 0.21 0.22 0.27 0.25 0.23 0.33
RMSE mm·d−1 0.25 0.49 1.12 1.89 1.90 1.68 1.85 1.73 1.58 1.13 0.54 0.31
NSE — 0.34 0.64 0.61 0.00 0.00 0.09 −0.09 −0.06 −0.47 −0.16 0.72 0.47

In addition, since the study area is located in the northern hemisphere, the absolute
errors RMSE and MAE in summer are significantly higher than those in winter (December
to February). RF’s poor ability to operate in the non-stationary environment and adapt to
erratic changes makes it easy to stuck in the abrupt malfunction caused by seasonal varia-
tions of pan evaporation. RF had the extreme worst NSE and MAPE value in September
and it performed unstably among months, which confirmed the foresaid disadvantage.
Additionally, using relative forecasting errors such as MAPE and NSE to assess the capacity
of models among different conditions is necessary [45,46]. From the perspective of relative
errors (MAPE), the errors of the Bat-CB model are not significantly different among months.
This indicates that the Bat-CB model has better equilibrium and exhibits excellently and
robustly in different seasons. Thus, Bat-CB may be a suitable and recommended hybrid
model to overcome the long-lasting problem that most models cannot work effectively in
suddenly changed conditions.



Water 2021, 13, 256 14 of 17

Water 2021, 13, x FOR PEER REVIEW 14 of 18 
 

 

Additionally, using relative forecasting errors such as MAPE and NSE to assess the capac-

ity of models among different conditions is necessary [45,46]. From the perspective of rel-

ative errors (MAPE), the errors of the Bat-CB model are not significantly different among 

months. This indicates that the Bat-CB model has better equilibrium and exhibits excel-

lently and robustly in different seasons. Thus, Bat-CB may be a suitable and recommended 

hybrid model to overcome the long-lasting problem that most models cannot work effec-

tively in suddenly changed conditions. 

 

Figure 6. Polar plots showing the monthly average values of the four statistical indicators generated from the three models 

in forecasting pan evaporation. 

Table 3. Monthly average values of statistical indicators generated from the three machine learn-

ing models during the testing period. 

Models Indicators Unit 

Month 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

RF 

MAE mm·d−1 0.18  0.30  0.65  1.99  2.79  2.85  2.83  2.74  2.45  1.13  0.40  0.23  

MAPE — 0.31  0.21  0.16  0.37  0.48  0.47  0.43  0.48  0.54  0.34  0.24  0.33  

RMSE mm·d−1 0.24  0.43  0.90  2.27  3.16  3.20  3.20  3.11  2.75  1.36  0.55  0.32  
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from the three models in forecasting pan evaporation.

3.3. Spatial Effects on the Performance of Machine Learning Models

Equal to seasonal data changes, the spatial performance of machine learning models
is the other far-reaching factor mirroring the generalization ability of models. The perfor-
mance of machine learning models for estimating pan evaporation was visibly distinct to
different weather stations [20,23,42,47]. Marking the position of 45 stations in the map and
reflecting the value of RMSE to the color is an efficient visualization method to explore the
spatial generalization ability of the three models (Figure 7). It was evident in Figure 7 that
Bat-CB had the lowest RMSE among most stations while RF performed worst as a whole.
This result and the condition of sufficient weather stations guarantee the high accuracy
prediction, robust stability, and reliable generalization of Bat-CB once again.
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However, some individual stations did not reach satisfactory results in overall three
models such as station 51855 and 51573, which probably because the stations suffered from
the complicated terrain and labile climate. Thus, the application of models varied a lot in
such spatial individual stations and further study was necessary for this field. Additionally,
it is noteworthy that the several stations located in the Turpan Depression which are the
mid area of Xinjiang province performed worst may be due to its extremely large values of
pan evaporation. In contrast, the stations in the western and northern regions of the study
area can be forecasted by Bat-CB with minuscule error, which indicated Bat-CB may have
potential application in the extension of the boundary regions and adjacent countries like
Russia, Kazakhstan, Iron, Kyrgyzstan, etc.

4. Conclusions

The study established a novel hybrid machine learning model (Bat-CB) and evaluated
its application of accurately estimating the pan evaporation in the arid and semi-arid zones
of northwest China. The CatBoost coupled with Bat algorithm (Bat-CB) model, along with
original CatBoost and a commonly used tree-based RF algorithm, were fed with meteoro-
logical data (including Tmax, Tmin, Rs, RH, U) from abundant 45 stations during 2006–2017
and were investigated through four statistical indicators (RMSE, MAE, MAPE, NSE). The
results showed the Bat-CB exhibited suitable accuracy and stability in arid and semi-arid
regions and are superior to CB and RF conspicuously. CB has a slight preponderance
compared with RF which presents poor ability to operate huge erratic changes for instance
the pan evaporation in arid regions. The improvement brought from the Bat algorithm
were conspicuous and expressed comprehensively in almost every indicator and field
compared to the original CatBoost. In seasonal performance analysis, Bat-CB had better
equilibrium in different months and exhibited more accuracy and robustness from April to
October in comparison with RF and CatBoost. In spatial performance analysis, the result
confirmed the strongest predicting ability of the Bat-CB for pan evaporation once again
and indicated that further spatial generalization study was still essential. Nevertheless,
the variable combinations of meteorological inputs and more types of climate were not
contained in this study. Further research exploring the application in other climates and
the condition of missing or limited meteorological data is significant. Overall, Bat-CB had
a powerful ability for pan evaporation forecasting and obviously outperformed CatBoost
and RF among sufficient fields, especially in arid and semi-arid areas.
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