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Abstract: The current knowledge of the spatial variability of precipitation in High Mountain Asia is 
based on the remotely-sensed estimates (coarse spatial and temporal resolution) or data from 
sparsely-distributed rain gauges. However, as precipitation is strongly affected by topography in 
mountainous terrain, the spatially varying precipitation and the resulting water balances are cur-
rently poorly understood. To fill this gap in knowledge, we studied the spatial variation of the 
precipitation and its impact on water balance in a small headwater basin located in the foothills of 
the Himalaya, Nepal. We deployed ten rain gauges and climate stations, spanning the whole ele-
vation range 700–4500 m above sea level (masl) for a period of four years. Our results show a 
quadratic polynomial relationship between annual precipitation and station elevation, which are 
used to produce annual precipitation maps. The performance of the elevation-based precipitation 
estimates is adequate in closing the water balance while the performances of average precipitation 
and Thiessen polygon method are poor and inconsistent in closing the water balance. We also 
demonstrate that precipitation estimates from one or two gauges at the lowest basin elevation 
substantially underestimate the water balance. However, the precipitation from one or two rain 
gauges at 2000–3000 masl provide a significantly better estimate of the water balance of a small 
headwater basin. 

Keywords: precipitation; elevation; streamflow 
 

1. Introduction 
High Mountain Asia (HMA) supplies the water for human consumption, power 

generation, and irrigation and supports ~3 billion people in southeast Asia, e.g., [1–3]. As 
the global climate is changing, the global mean air temperatures are forecasted to in-
crease by about 1 °C and precipitation (mountainous landscape) is forecasted to increase 
by 5–25% based on outputs from several general circulation models over the 2046–2065 
period in the HMA region [4]. The glaciers contribute a sizable fraction of the current 
river discharge in HMA, but the glacial meltwater contribution is expected to decrease 
due to regional warming and subsequent shrinking of the snowpack [3]. Both the glacier 
mass balance analyses and the general stream discharge prediction at the headwater 
scale depend on the adequate spatiotemporal representation of precipitation regime. 
However, spatial variability of precipitation at the headwater basin scale in HMA is 
poorly understood. 

The significance of realistic characterization of the spatially distributed precipitation 
regimes is critical as it (i) influences the shape of topography through erosion at sub–
mountain-range scale [5]; (ii) causes spatially variable ecohydrological responses (e.g., 
interception and ET), e.g., [6]); (iii) forces a distributed hydrologic and land surface 
models using spatially variable precipitation surfaces [6]; (iv) triggers extreme hydro-
climatic events such as flooding and drought, e.g., [7,8]; (v) sets initial conditions in 
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global climate models by exerting controls on soil moisture [9]; (vi) controls catastrophic 
surface processes such as landslides, e.g., [10]; and (vii) is useful for investigating both 
ecohydrological and biogeochemical processes such as nutrient exports from watersheds, 
e.g., [11]. However, accurately characterizing the precipitation regimes in HMA is chal-
lenging due to the extreme topography and lack of observational data. 

The spatial variability of precipitation regime and its association with Himalayan 
topography are poorly defined and need a robust quantitative framework to describe 
spatial variability of precipitation with input from direct precipitation measurements and 
watershed characteristics such as topography. In addition, in HMA, precipitation in 
higher elevations falls as snow during winter season resulting in a lag in the stream dis-
charge. 

Our current knowledge of the spatial variability of precipitation in HMA is based on 
the large scale (4 km pixel size or larger) remotely sensed estimates at coarse temporal 
resolution (~every 12 h instantaneous rain rate), e.g., [12–16]. While the availability with 
broad spatial coverage of satellite-borne remotely sensed data (e.g., Tropical Rainfall 
Measuring Mission, TRMM) provides invaluable regional precipitation estimates, par-
ticularly over the complex terrain having high altitudes and relief, the evaluations 
against ground observations are not satisfactory and often systematically biased toward 
topography [7] and seasonality [17]. Over last two decades, extensive accuracy studies of 
remotely sensed precipitation (TRMM) products have been conducted over the different 
continents in the world [7]. In the Himalayan mountains, detailed evaluations of several 
operational precipitation estimates have been conducted by Andermann et al. [16] and 
Bookhagen [13]. In the meantime, other studies [17] tested the performance of satellite 
estimates (TRMM) at the high mountain complex terrains in the Himalaya region in 
southeast Asia and Tibetan Plateau in China. Although significant progress has been 
made over the last few years in the accuracy of satellite products and downscaling algo-
rithms, there are still serious concerns and evidence of a positive bias toward estimating 
winter and high-altitude precipitation [7,17]. 

To date, perhaps the best knowledge of HMA hydrology is based on outlet gauge 
streamflow, which is an integrated response of many hydrological processes. More 
comprehensive hydrologic modeling studies are conducted at the mesoscale or even 
larger continental scale where hydroclimatic responses of headwater basins are often 
ignored or not adequately represented, e.g., [12,18,19]. In addition, in these studies, pre-
cipitation inputs are from remotely sensed data that are characterized by many short-
comings such as coarse spatial and temporal resolution resulting in inaccurate estimates 
of summer monsoon rainfall. Other hydrologic studies, e.g., [20,21], only utilize precipi-
tation data from the limited number of rain gauges. For example, various studies in-
volving hydrologic and climate change and hydrologic modeling [1,22,23] utilized 16 
rainfall gauges to study 8220 km2 of Koshi River Basin (1 rain gauge/516 km2). Note that, 
in these studies, only one gauge is located in higher elevation (>6000 m altitude) while 
others are from mid-to-lower elevation. Authors in [24] used only one rainfall station to 
simulate 4274 km2 watershed (Tamor River Basin) while Nepal et al., (2014) used only 
five stations to simulate 3712 km2 (Dudh Kosi Basin). All five stations are located below 
4000 m elevation, while a substantial portion of the watershed is located above 4000 m 
[25]. We realize that the density of rain gauge networks is often dictated by economic and 
logistical barriers, and share the common sentiment that studies like these would greatly 
benefit of the larger number of distributed rain gauges across the respective watersheds. 

Extreme hydrologic events such as flooding in southeast Asia are often triggered by 
the summer monsoon rainfall at the HMA or the combined response of snowmelt runoff 
and monsoon rain. Currently, there are not enough rain gauges in the area to have a 
representative understanding of the HMA monsoon rainfall, and most of the existing 
gauges are located in the valley bottoms. As mentioned above, remotely sensed precipi-
tation products render high uncertainty and often are unable to capture spatial variability 
within a headwater catchment. Thus, to better understand headwater hydrology in 



Water 2021, 13, 254 3 of 21 
 

 

HMA, there is a need for a comprehensive water balance study using robust data repre-
senting three major fluxes: precipitation, streamflow, and evapotranspiration. Such a 
study requires a high-resolution precipitation gauge network for adequate representa-
tion of spatial variability of precipitation, field-based streamflow observations, and real-
istic estimates of evapotranspiration. 

In this study, we conduct a comprehensive water balance study of a headwater basin 
in HMA using high-resolution precipitation measurements from a dense network of rain 
gauges covering several elevation bands, daily streamflow observations at basin outlet 
and modeled evapotranspiration using daily climatic data from a dense network of 
weather stations at distributed elevation bands. Specifically, we inspect the impacts of 
elevation-based spatially distributed annual precipitation on basin-scale water balance. 
The weather stations were installed and maintained in the field for a limited time period 
as part of a large research campaign [26]. 

To prepare the elevation-based annual precipitation maps, we derive a series of 
equations estimating annual precipitation as a function of elevation. We further investi-
gate how the calculated water balance is affected by the following scenarios: (1) only one 
rain gauge in the watershed, (2) rain gauges only at lower altitude, (3) arithmetic aver-
ages of rain gauges at all elevation bands, and (4) basin-scale rainfall estimate using tra-
ditional Thiessen polygon approach. Such investigations provide useful knowledge on 
the optimum design of rain gauge networks involving the number of rain gauges and 
installation locations and elevations. This study will also provide valuable information 
on potential errors when only a small number of low-altitude rain gauges are used to es-
timate total rainfall of a mountainous headwater basin. 

Our study area is Khudi Khola Watershed (KKW) in central Nepal. The climate, 
topography, and land use and cover of the KKW are representative of numerous water-
sheds along the E–W transect of the mid-altitude elevation band (600–3100 masl) of 
HMA. Thus, we expect the findings of this study to be widely applicable to the greater 
HMA region. Investigating the water balance and its sensitivity to elevation-based pre-
cipitation variability in HMA is of particular hydroclimatic and societal importance since 
these areas are vulnerable to climate change through shifts in temperature and precipi-
tation regimes, heavily cultivated, and increasingly used for hydropower production at 
many scales. Our investigation is expected to illuminate the effects of elevation-based 
annual precipitation variability on water balance in KKW and provide guidance to future 
field-based and process-based studies in this region. 

2. Study Area 
The study area is the KKW (central Nepal) located at the southern fringe of Anna-

purna Mountain Range, spanning an area of 125 km2. The elevation of the KKW ranges 
from 500 to 4500 masl with the mean elevation of 2566 masl (Figure 1b); [10]. The precip-
itation in the watershed exhibits high seasonality with most of the rainfall in monsoon 
season (June–September) and little precipitation during the dry season (November–
May). During the dry season, precipitation primarily occurs as snow in elevations greater 
than 3000 masl, while rainfall during monsoon season across the KKW contributes ~95% 
of annual precipitation [26]. There is no or very little snowfall contribution to annual 
precipitation and 0% glacierized area [10] in KKW. 
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Figure 1. Location map of the study site (Khudi Khola Watershed, KKW) and hydroclimatological observatories: (a) Lo-
cation of the study site in the southeast Asia, (b) topography derived from Shuttle RADAR Topography Mission (SRTM) 
digital elevation model (DEM) and locations of rain gauges and a streamflow gauge. The grey outline shows the KKW 
boundary. 

The summer monsoon is created by warm, humid air originating from the Bay of 
Bengal traveling to the northwest until it encounters the southern edge of the Himalayan 
Mountains. This leads to the uplifting of the air mass, cooling, and precipitation. This 
process is known as orographic precipitation and is the partial cause of the monsoon 
rainfall in the study area. The KKW is located in the heavy rainfall zone with a pro-
nounced precipitation gradient resulting in substantial difference (~4–5 times increase) in 
annual precipitation between lowest and highest points in the basin [26]. The streamflow 
at the KKW outlet is highly seasonal with the largest annual discharge during monsoon 
season due to heavy monsoon rainfall and low base flow due to slow groundwater 
seepage during the dry season [10]. 

The KKW has two primary geological sequences, the Lesser Himalayan Sequence 
and the Greater Himalayan Sequence. The Lesser Himalayan Sequence is composed of 
schist, limestone, and quartzite, while the Greater Himalayan Sequence is composed of 
gneisses [10]. The Khudi River is a non-alluvial (bedrock) channel, with little to no stor-
age of alluvium. The study area is heavily cultivated in elevations below 2000 m and 
livestock graze the slopes in the summer in elevations up to 4500 m. A rhododendron 
forest grows in this region, but not above elevations of 3700 m, above which only grasses 
and small bushes grow [26]. 

Figure 2 shows the cumulative outlet streamflow (mm) and spatially averaged pre-
cipitation (mm) during 2001, 2002, 2003, and 2004 water years. Overall, precipitation 
dynamics are strongly controlled by monsoon rainfall and subsequently generates large 
streamflow volume during monsoon season. During wet years like 2001 and 2003, cu-
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mulative streamflow is substantially higher than cumulative precipitation. This can be 
attributed to orographic precipitation across KKW and illustrates how traditional, mean 
precipitation averaged over all climate stations is unable to capture representative KKW 
precipitation. However, during dry years like 2002 and 2004, the spatially averaged pre-
cipitation is very close to streamflow volume. 

 
Figure 2. Cumulative annual precipitation (mm) and outlet streamflow (mm) during 2001–2004 period in the Khudi 
Khola Watershed (KKW). Note that precipitation is the arithmetic mean of precipitation estimates of all rain gauges in the 
KKW. 

3. Methods 
3.1. Data Collections 

 In this study, we utilize the climatic data such as precipitation at multiple rain 
gauges, streamflow data collected at KKW outlet, and Advanced Spaceborne Thermal 
Emission and Reflection Radiometer (ASTER) digital elevation model (DEM) at 15 m 
resolution (Table S1). While Putkonen [26] and Gabet et al. [10] collected climatic data, 
and streamflow data, respectively, Advanced Spaceborne Thermal Emission and Reflec-
tion Radiometer (ASTER) DEM was procured from NASA’s EARTHEXPLORER web 
viewer. 

3.1.1. Climatic Data Collection 
The site characteristics of these stations are highly variable in terms of elevation (al-

titude above mean sea level), geomorphic locations (e.g., valleys and ridge), and geo-
graphic locations (north and south side of the general Himalayan east–west trending 
crest). The stations located at the north side of the general Himalayan east–west trending 
crest are in the rainshadow zone. Putkonen [26] selected these sites based on even spatial 
and elevation coverage of the watershed. Each climate station includes rain gauge (rain-
fall measurement; Texas Instrument and Hobo), thermometers (air temperature meas-
urement), hygrometers (relative humidity measurement). In addition, some stations also 
included anemometers (wind speed measurement) and snow depth and water content 
instrumentation. All rain gauges were calibrated, inspected, and serviced every six 
months. 
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3.1.2. Streamflow Measurement 
In KKW outlet, a streamflow monitoring station was deployed in 2000 (Figure 1). 

The installation of streamflow gauge comprises the deployment of stage measurement 
gauges and cross-sectional surveys. In addition, Gabet et al. [10] deployed turbidity 
sensors and pressure transducers that recorded measurements to dataloggers every 30 
min. Gabet et al. [10] estimated streamflow velocities along a cross-section using a float-
ing boat method. Here, they dropped a series of small plastic balls partially filled with 
water in the stream and timed starting and endpoints of travel downriver across a known 
distance. The surface velocity of flow for each ball was obtained by multiplying the ball’s 
velocity with 0.8 to obtain the mean cross-sectional velocity [10]. To develop a stage–
discharge relationship, Gabet et al. [10] measured mean flow velocities at a range of dis-
charges at the KKW outlet. 

3.2. Evapotranspiration (ET) Simulation Using the Penman–Monteith Approach 
We simulated daily evapotranspiration using the Penman–Monteith approach for 

each climate station. Monteith [27] demonstrated that the modified Penman [28] equation 
can be used to estimate evapotranspiration (ET) using the following: ܶܧ ൌ .߂ ሺܭ + ሻܮ + ௔௧݁௔∗ሺ1ܥ௔ܿ௔ߩ െ ௔ܹሻߩ௪ߣ௩ሾ߂ + ɣሺ1 + ௖௔௡ሻሿܥ௔௧ܥ 	 (1) 

where K = net shortwave input, L = net longwave radiation, ɣ = psychrometric constant, ߩ௔ = density of air, ߩ௪ = density of water, ܿ௔ = density of air, ܥ௔௧ = atmospheric con-
ductance for water vapor, ܥ௖௔௡ = canopy conductance, ߩ௔= density of air, ݁௔∗ ൌ saturat-
ed vapor pressure, ߣ௩ ൌ latent heat of vaporization, ߂ ൌ	saturated vapor pressure gra-
dient. Most of these parameters are taken from the literature [29], previous scientific 
studies [30] and field and remotely sensed observations. ET is simulated daily for each 
station for each water year using mean daily temperature and relative humidity. Later, 
daily ET is integrated over time during a specific water year (1 October–30 September) 
to estimate the annual ET. 

3.3. Interpolation of Precipitation and ET Flux 
The terrain properties such as elevation, slope, and topographic exposure are found 

to exert strong control on precipitation in a topographically variable terrain, e.g., [26]. 
Therefore, to interpolate our precipitation record between the stations, we initially con-
sidered elevation, slope, and topographic exposure index as input functions for devel-
oping our interpolation equation. Our approach to select an interpolation equation is 
based on statistical metrics and the effectiveness to interpolate the precipitation in 2000–
3000 m elevation band. First, we utilize a best-fit approach using linear and quadratic 
functions (using Minitab software, [31]) to estimate annual precipitation while consider-
ing elevation, slope, and topographic exposure index separately and collectively. 

While the performances of linear equations are poor, the quadratic equations yield 
better R2 for all three input variables (elevation, slope and topographic exposure) (Table 
S2 and Figure S2). However, even when using quadratic equations, the relationships of 
slope and topographic exposure with annual precipitation are weak (Table S2). Table S1 
clearly shows the considerable strength of elevation over the other two terrain variables 
while estimating annual precipitation. In addition, a multivariate quadratic equation by 
incorporating all three terrain variables (elevation, slope, and topographic exposure) 
substantially improves R2 in Table S2. However, we believe that the predictions are less 
accurate at the most critical elevation band (2000–3000 masl) where most of the precipi-
tation falls. In addition, the multivariate quadratic equation results in a numerical insta-
bility by predicting very low and often negative precipitation in the low-altitude, 
low-slope (flatter) areas and the areas that have less topographic exposure. The quadrat-
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ic function using three variables also produced unrealistic annual precipitation values in 
other critical areas of the watershed. We expect the complications with the multivariate 
equation to rise from the following facts: (1) [26] only considered elevation and spatial 
distribution (while deploying rain gauges) and installed the gauges in unobstructed and 
level areas following World Meteorological Organization guidance, (2) the considerable 
topographic complexity of the Himalayan terrain, and (3) the generally low winds in the 
field area [26]. 

As a result of the above-listed reasons and given the high topographic complexity 
of the terrain, and the lack of small scale topographic and wind patterns to support more 
sophisticated analyses, we have chosen to use an interpolation method that is based on 
elevation only. Our approach to derive a precipitation model is based on statistical met-
rics (Table 1) and visual inspection (how effective the model is to capture the precipita-
tion in the 2000–3000 m elevation band). We derived a separate quadratic polynomial 
equation for each water year using precipitation–elevation (Pr−Z) relationship of the sta-
tions inside KKW (Figure 3). Note that black circles in Figure 3 show the stations inside 
the watershed while rec circles represent stations outside or at the periphery of the wa-
tershed. The equations shown in Figure 3 are used to prepare annual precipitation maps 
(Figure 4) for 2001, 2002, 2003, and 2004 water years. These quadratic equations are ef-
fective in estimating the Pr of the 2000–3000 m elevation band as well as other elevation 
bands. Note that R2, NSE, and RMSE for the quadratic polynomial function are also rea-
sonable considering the level of inherent topographic complexity in the KKW (Table 1). 
Putkonen [26] deployed 8 climate stations at the periphery and inside of the KKW and 6 
climate stations at the neighboring watersheds of the KKW (Figure 1b). The data record 
of these gauges spans from 2000 to 2004. However, 4 of these climate stations are very far 
away from the KKW and the data are not available for some climate stations due to 
malfunction of equipment in some years. It is not uncommon to have one or two station’s 
equipment to malfunction and incomplete dataset amid such a large-scale field operation 
like Putkonen [26]. As a result, we utilize 11, 11, 10, and 9 stations in Figure 3 for 2001, 
2002, 2003, and 2004, respectively. 

Table 1. Nash Sutcliff efficiency (NSE), root mean squared error (RMSE), and correlation coefficient 
(R2) for predicted annual precipitation (using quadratic polynomial) and evapotranspiration (ET). 
The statistical metric for predicted ET is shown inside the parenthesis. 

Water year NSE RMSE R2 
2001 0.5 (0.94) 593 (49) 0.64 (0.95) 
2002 0.54 (0.81) 318 (96) 0.62 (0.82) 
2003 0.46 (0.81) 695 (95) 0.56 (0.82) 
2004 0.5 722 0.6 
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Figure 3. Function for interpolation of the precipitation based on the relationship between elevation and annual precipi-
tation during each year of the 2001–2004 period in the study area. The red circles are rain gauges just outside the water-
shed and black circles are within the KKW. Note that equations are shown at the bottom of each subplot and derived 
using the data corresponding to black circles (within the KKW). Figure (a–d) represents the relationship between eleva-
tion and annual precipitation during 2001, 2002, 2003 and 2004 respectively. 

ଶ଴଴ଵݎܲ ൌ െ0.0005ܼଶ +	2.77Z	+	733 ܲݎଶ଴଴ଶ ൌ െ0.0004ܼଶ +	2.01Z	+	1300 

ଶ଴଴ଷݎܲ ൌ െ0.0005ܼଶ +	2.17Z	+	897 ܲݎଶ଴଴ସ ൌ െ0.0007ܼଶ +	3.57Z	-	736 
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Figure 4. Interpolated precipitation surface based on the equations developed and shown in Figure 
3 for each year. 

The elevation (Z) variable in these equations is derived from ASTER DEM. In addi-
tion to the Pr–Z-based precipitation map, we also produced precipitation maps using the 
traditional Thiessen polygon approach [32]. The Thiessen method uses the assumption 
that estimated rainfall amounts at any point can be applied midway to the next point in 
any direction, which indicates that rainfall is equal to the observed rainfall at the closest 
gauge for any point. The weighting factors of the rain gauges in the watershed are de-
termined by their relative areas, that are calculated using the Thiessen polygon network. 

Generally, the polygons are created by the perpendicular bisectors of the lines con-
necting neighboring stations. The precipitation amount is measured in the center of the 
polygon, not estimated by its area. However, in case of missing rainfall data at any sta-
tion, the polygon must be changed. Thiessen Pr estimates are generated with the same 
data used for the Pr–Z model in Figure 3. The number of stations used for 2001, 2002, and 
2003 are 12, 10, and 10, respectively. All the stations are inside or at the periphery of the 
KKW except two stations in adjacent watersheds (Figure S2). 

Figure 5 shows the plots between annual simulated ET and station elevations (Z) in 
the KKW during 2001, 2002, and 2003 water year. Unfortunately, adequate temperature 
and relative humidity data are not available for some climate stations during 2004 water 
year; thus, ET–Z is not possible to derive. Figure 5 shows a robust ET–Z relationship for 
water years with R2 around 0.9 (Table 1). We have utilized the strong ET–Z relationship of 
Figure 5 to produce annual ET maps (Figure 6) for 2001, 2002, and 2003 water years using 
ASTER DEM as the source for elevation data (Z). 
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Figure 5. Plots of annual evapotranspiration (ET) using Pennman-Monteith approach vs. elevation. 
Figure 5a, 5b and 5c represent the relationship between elevation and annual ET during 2001, 2002, 
and 20034 respectively. Note that a complete meteorological dataset was not available for Penn-
man-Monteith approach to calculate ET during 2004. Note that the equations for the best fit lines 
are shown at the bottom of each panel. 

 

Figure 6. Distributed ET as a function of elevation based on the ET-elevation relationships detected 
in Figure 5. 
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3.4. Water Balance 
We estimated the water balance (ΔS) using input (precipitation) and output fluxes 

(streamflow and ET). The comparison between estimated water balances using three 
annual basin-scale precipitation depths is conducted. They are Pr–Z-based precipitation 
depth (ܲݎ௘௟௘௩ሻ, arithmetically averaged precipitation depth overall climatic stations ܲݎ௔௩௚ 
and basin-scale precipitation depth ሺ்ܲݎ ௛௜௘௦௦௘௡ሻ derived interpolated maps using the 
Thiessen polygon method. The purpose of this comparison to investigate how efficient 
Pr–Z-based precipitation interpolation (Pr elev) is to close the water balance of the KKW. 
Equation (2) estimates the water balance (߂Selev) using Pr–Z-based precipitation. Δܵ௘௟௘௩ 	ൌ ௘௟௘௩ݎܲ െ ܶܧ െ  (2) 																	ݓ݋݈݂݉ܽ݁ݎݐܵ

Equation (3) quantifies the water balance using arithmetically averaged precipita-
tion (߂Savg) over all climate stations. Δܵ௔௩௚ 	ൌ ௔௩௚ݎܲ െ ܶܧ െ  (3) 																		ݓ݋݈݂݉ܽ݁ݎݐܵ

We utilize Equation (4) to quantify the water balance (߂SThiessen) using interpolated 
precipitation using the Thiessen polygons approach. Δ்ܵ௛௜௘௦௦௘௡ 	ൌ ݎ்ܲ ௛௜௘௦௦௘௡ െ ܶܧ െ  (4) 																ݓ݋݈݂݉ܽ݁ݎݐܵ

In these equations, streamflows are derived from field-based observation and ET is 
simulated at a daily scale using Equation (1) and integrated over each year. Using ET–Z 
relationship, Figure 6 is constructed and subsequently, we derived basin-scale ET from 
Figure 6. Note that ET for 2004 is calculated using data from only two stations distributed 
across elevation. Since ET is less than 10% of the annual water balance, we believe such 
limited data availability will have a minor influence on the scientific findings of our 
study. 

4. Results and Discussions 
4.1. Interpolated Precipitation Surface 

Figure 3 shows the impacts of Z on Pr for 2001, 2002, 2003, and 2004 water years. 
Clearly, monsoon rainfall is the major contributor to annual precipitation (Figures 2 and 
S3). The stations located at ridges or higher elevations receive substantially more rainfall 
than the stations located at the valley bottom in KKW. Overall, Figure 3 shows inconclu-
sive Pr–Z relationship (both positive and negative correlation). Instead, it exhibits three 
zones of distinct Pr–Z relationships; zone 1 (outlet elevation-2000 m band): the Pr sharply 
increases with Z; zone 2 (2000–3000 m elevation band): the Pr varies slightly and in-
creases sluggishly with Z; zone 3 (Z > 3000 m): the Pr decreases with Z. A maximum of 
~5000 mm Pr at an altitude of 3000 m is observed while the Pr subsides northward to 1100 
mm water/yr at the most northerly station in KKW. Clearly, Figure 3 shows the reversal 
of Pr–Z relationship at the 2000–3000 m elevation band (zone 2); thus, we name this as a 
critical elevation band (Zcr). Such a reversal of Pr–Z relationship around Zcr can be at-
tributed to continued dewatering of the monsoon system via rainfall as the system 
gradually rises to Zcr during their northward migration. During the rise of the monsoon 
system below Zcr the system experiences cooler temperatures which induce condensation 
and subsequent rainfall. However, the rainfall amount decreases with Z above Zcr, possi-
bly due to lack of moisture (because of substantial rainfall below Zcr), and/or lack of 
moisture-holding capacity due to the colder temperature at the higher altitude. 

In order to decipher the impacts of seasonality on the annual Pr–Z relationship, we 
also investigated the Pr–Z relationships during monsoon (Figure S3) and winter (Figure 
S4) seasons. Overall, the Pr–Z relationship for the monsoon season (Figure S3) is similar 
to the annual Pr–Z relationship and shows a strong dependency on the elevation. How-
ever, the Pr–Z relationships for the winter season are highly variable and show little de-
pendency on the elevation (Figure S4). Thus, we believe the annual Pr–Z relationship is 
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highly influenced by the monsoon season's rainfall as the monsoon rain is a significant 
contributor to annual precipitation. 

We believe that the monsoon system loses a significant amount of moisture via 
rainfall as it approaches Zcr resulting in dry conditions in the elevation above Zcr. We have 
experimented with various functional equations (e.g., linear, multi-order polynomial) as 
a function of Z to capture such Pr–Z relationships. Our analyses suggest that such a re-
versal of Pr–Z relationship around Zcr band can be captured by using the quadratic pol-
ynomial equations. Figure 3 shows the quadratic polynomial equations exhibiting strong 
predictive capability based on NSE, R2, and RMSE for each water year (Table 1). The ris-
ing limb of the fitted line shows the rapid increase of Pr with Z in the 820–2000 elevation 
band while the recession limb exhibits inverse Pr–Z relationship in the 3000–4400 eleva-
tion band. The zone between both limbs shows mild convex upward curvature in 2000–
3000 elevation representing areas of heavy Pr in the KKW. 

The quadratic polynomial equations for four years indicate that the Pr–Z relation-
ships vary from year to year due to small scale spatial variability in Pr. Figure 3a shows 
the Pr–Z relationship for the 2001 water year during which the fitted quadratic polyno-
mial equation captures the Pr well for the elevations lower than 3100 m while it overes-
timates Pr in the altitude higher than 3100 m. The R for the Pr–Z relationship below 3000 
m is 0.79 while R2 for the Pr–Z relationship above 3000 m is -0.8, which can be attributed 
to the rainshadow part of Figure 3a [26]. However, the curvature of the quadratic poly-
nomial for the water year 2002 is much smoother than 2001 but still shows Pr−Z rela-
tionship reversal around 3000 m altitude. A strong positive Pr−Z relationship (R = 0.68) is 
below 3000 m elevation band while the Pr−Z relationship is inversely proportional (R = 
−0.72) above 3000 during 2002. Note that the Pr at stations of 820 and 993 m are quite high 
and deviated from the Pr−Z relationship. This can be attributed to heavy localized pre-
cipitation due to early summer convective storm systems. The Pr−Z relationship and fit-
ted line from the quadratic polynomial equation during 2003 water year is very similar to 
that of the 2002 water year. However, the fitted line is unable to capture the maximum 
precipitation at 2900 m altitude and underestimates it by ~1000 mm. Figure 4 shows the 
interpolated precipitation surfaces using quadratic polynomial equations shown in Fig-
ure 3. The Pr increases with Z in the areas between outlet elevation and Zcr elevation band 
while above Zcr band, the Pr gradually declines as the Z increases. Figure 7 shows eleva-
tion distribution across the KKW. The area below Zcr is ~70% of the KKW area while the 
area above Zcr contributes to 30% of the KKW. Overall, during the study period, we have 
detected three zones of low Pr: the flat valleys near the outlet of KKW and the mountains 
located above Zcr. The Pr in valleys (Z < 2100 m) varies between 2000 mm and 3100 mm 
while in high-elevation mountains (Z> Zcr) the Pr fluctuates from 2000 mm to 4000 mm. In 
the flat valleys, low precipitation can be attributed to lack of condensation inside the 
monsoon system due to warmer temperature while lack of precipitation in the high 
mountains is due to lack of moisture as the system experience moisture depletion due to 
heavy rainfall at the lower elevation band (Z< Zcr). The mean Pr values in this elevation 
band (40% area of the KKW) are 4598 (mean KKW Pr = 4167 mm), 3796 (mean KKW Pr = 
3486), 3793 (mean KKW Pr = 3593), and 3769 (mean KKW Pr = 3651) mm for 2001, 2002, 
2003, and 2004 water years, respectively. This elevation contributes 45%, 42%, 41%, and 
41% of Pr for 2001, 2002, 2003, and 2004 water years, respectively. 

The Pr sharply increases with an elevation between outlet elevation (787 m) and 
2000 m altitude. The rapid rise of Pr with Z in this elevation band contributes 29% of the 
KKW area. The Pr in this elevation band also accounts for 26%, 29%, 27%, and 24% for 
2001, 2002, 2003, and 2004 water years, respectively. The elevation over Zcr is 31% of the 
study area and contributes 29%, 29%, 32%, and 35% of Pr for 2001, 2002, 2003, and 2004 
water years, respectively. Our findings on the Pr−Z relationships are not comparable 
with Pr−Z relationships from other mountain ranges such as the Alps. Frei and Schar [33] 
reported a weak and insignificant Pr−Z relationship in the Alps. Several studies [34,35] 
attributed such weak height dependence to other physiographical factors (slope, topo-
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graphic exposure, broad-scale topographic environment). Note that the findings from the 
Alps are based on observations from a dense local network while rain gauges in the 
HMA are sparse. 

 
Figure 7. Histogram of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) digital elevation 
model (DEM) surface. 

Our current knowledge of the spatial variability of KKW Pr is based on coarse res-
olution (~ 4 km pixel size) remotely sensed estimate, e.g., [12,13,36] lacking orographic 
influences. Our findings improve the current understanding of spatial variability of Pr in 
KKW by producing maps and reporting zones of high and low atmospheric accumula-
tion. The interpolations of precipitation at a larger scale are recently conducted using the 
geostatistical approach with elevation variation, e.g., [37], and clustering coefficient, e.g., 
[38]. However, in KKW, we have a unique Pr−Z relationship that transitions from strong 
positive to strong negative around Zcr. Such reversal of the Pr−Z relationship makes it 
difficult to fit any model to semi-variogram. In addition, the number of climate stations is 
not adequate to conduct other interpolation methods. 

In addition to Pr−Z- based elevation, we have interpolated the precipitation based 
on the conventional Thiessen polygon-based method for 2001, 2002, and 2003 water years 
(Figure 8). Due to data availability and the limited number of climate stations, this study 
is unable to derive Thiessen polygons for the 2004 water year. Overall, the results capture 
the wide spatial variability of Pr across KKW. A total of 10 polygons with a mean poly-
gon area of 14 km2 are drawn in this analysis (Figure S2). Like the Pr−Z relation-
ship-based approach, lower precipitation is shown at the outlet and higher elevation area 
while higher precipitation is observed mid-altitude area. The spatial variability shown in 
Figure 8 is very coarse and unable to capture the level of detailed spatial variability de-
tected by the Pr−Z relationship-based approach. Table 2 reports the KKW scale Pr using 
both Thiessen polygon (Prthiessen) and Pr–Z relationship-based approach (Prelev). The com-
parison indicates that Prelev is consistently higher than Prthiessen, suggesting poor estimation 
of by Prthiessen around high precipitation elevation band (in Zcr). 
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Table 2. Water balance (ΔS in mm) to distributed precipitation based on elevation (Prelev), arith-
metically averaged precipitation over rain gauges (Pravg), and precipitation surface using Thiessen 
polygons (PrThiessen) in the Khudi River Basin. Note that the percentage of water balance (ΔS) of total 
water is shown inside the parenthesis. 

Flux 2001 2002 2003 2004 
Prelev (mm) 4127 3486 3593 3651 
Pravg (mm) 3313 3282 3191 3152 

PrThiessen (mm) 3393 3219 3559 NA 
ET (mm) 414 390 322 400 

Streamflow (mm) 3720 2968 3415 3002 
ΔSelev (mm) −7 (−0.2%) 127 (3.7%) −144 (3.8%) 248 (7.2%) 
ΔSavg (mm) −821(−20%) −76 (−2.2%) −546 (14%) −250 (7.3%) 
ΔSThiessen (mm) −741 (−18%) −139 (−4.1%) −178 (4.7%) NA 

 
Figure 8. Interpolated precipitation surface using traditional Thiessen polygons approaches [32]. 
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4.2. Interpolated ET Surface 
Figure 5 shows the impacts of Z on simulated ET using the Penman–Monteith ap-

proach (described in Section 3.2) for 2001, 2002, and 2003 water years. Clearly, the ET in-
creases as the Z decreases, suggesting an inversely proportional ET–Z relationship. An-
nual ET is 414, 319, and 322 mm for 2001, 2002, and 2003 water years, respectively. High 
annual ET (~800 mm) is observed near outlet of KKW while the ET is low (<50 mm) in the 
very high mountains. Our diagnosis of ET simulations suggests that the inverse ET–Z 
relationship emerges from an inverse T–Z (mean annual temperature-elevation) rela-
tionship with a 0.99 R2 for T–Z relationship. At the outlet (Z = 820 m) of KKW, the annual 
Tmean is 20 °C while the Tmean is 6 °C at the high altitude (Z = 3160 m). However, like Pr, the 
relative humidity is low (mean annual is 80%) at the outlet and higher altitude while just 
below Zcr elevation band the relative humidity is quite high (mean annual is 91%). This is 
expectedly consistent with Pr−Z relationship and previous studies [36]. Nevertheless, T 
exerts a firm control on annual ET as it is one of the influential input parameters esti-
mating ρa, ݁௔∗, ߣv, and ߂ for Equation (1), which simulates ET. We believe the detected in-
fluence of T on ET is mainly important in the context of a warming climate as the wa-
tershed like KKW in HMA are highly vulnerable to climate change. Our simulated an-
nual ET values and their variability are consistent with a previous study in mid-altitude 
mountains of Nepal [39] where Baral, [39] sap flow and other modeling approaches to 
estimate the ET. 

The ET maps in Figure 6 are constructed using the inverse linear relationships de-
rived in Figure 5 for 2001, 2002, and 2003 water years. Figure 6 shows the spatial variation 
of ET across the KKW, exhibiting strong controls of Z on ET. The land covers near the 
outlet or elevation band (<2000 m) evapotranspire 43%, 43%, and 45% of KKW ET for 
2001, 2002, and 2003 water year, respectively. Note that this elevation band is only 29% of 
the KKW. The elevation having heavy annual precipitation (zone 2, 40% of KKW) con-
tribute 40%, of the KKW annual ET during 2001, 2002, and 2003 water years. In contrast, 
the high elevation band (>3000 m) contributes only 17% (2001), 17% (2002), and 15% 
(2003) of KKW annual ET despite occupying 31% of the KKW. Note that KKW ET for 
2003 is lower than the ET of 2001 and 2002. This can be attributed cold conditions at high 
altitudes. The Tmean is 20.1, 19.8, and 19.8 for 2001, 2002, and 2003 water years at the low 
altitude station (Z = 820). In contrast, at the high altitude elevation the Tmean during 2001 
and 2002 are 6.6 and 6.7, which are substantially higher than Tmean of 2003 (4.5). The Tmean 
in the mid-altitude station also remains invariable during the study period. 

4.3. Water Balance 
In this section, we examine the impacts of Z-based distributed precipitation on water 

balance. Table 2 shows calculated the KKW water balance using Z-based distributed 
precipitation (Prelev), arithmetically averaged precipitation (Pravg), and interpolated pre-
cipitation using the Thiessen polygons approach (PrThiessen). ΔSelev, ΔSavg, and ΔSThiessen are 
calculated using Equations (2), (3), and (4), respectively. The Prelev derived from Pr–
Z-based approach (Figure 4) is higher than both Pravg and PrThiessen as the Pr–Z based ap-
proach considers Pr−Z variability across the KKW. In contrast, both Pravg and PrThiessen 

calculations are biased by stations having low Pr due to lack of stations in 2000–3000 m 
elevation. Note that the installation of a climate station in this elevation is challenging 
due to steeper slopes, rugged topography and total lack of infrastructure. The maximum 
difference between Prelev and the other two approaches is observed in a wetter year (2001) 
while the difference is small during a dry year (2002). Figure 4 may include some uncer-
tainty in the 2003 Pr estimate as the quadratic equation is unable to capture P at 2100 m 
altitude and underestimates Pr by about 1000 mm (Figure 3). 

Table 2 shows that the performance of Prelev is adequate and consistent (<4% of total 
water budget except 2004) in closing the water balance (ΔSelev) of the KKW during four 
years of the study period. During the 2001 water year, the water balance is closed using 
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Prelev, while the other two approaches show the depletion of 821 mm water from KKW 
storage. It is unlikely that such an amount of depletion is possible via ET as it contributes 
less than 10% of water balance. Both methods (Prelev and Pravg) are not able to close the 
water balance (>15% error) in a very wet year like 2001 (Table 2). However, during a dry 
year like 2002, the water balances using Prelev, Pravg, and PrThiessen are within 5% of the an-
nual water budget. However, during 2003, the Pravg is clearly not able to close the water 
balance. Since, our rain gauges are located in most of the elevation bands; it is anticipated 
that Pravg, and PrThiessen methods can be effective in a dry year like 2002 and a moderately 
wet year like 2003. Both Prelev and Pravg are adequate to close the water balance during 
2004 considering the availability of data from a limited number of climate stations. 

Figure 9 shows the influences on ߂S if we consider precipitation data from the indi-
vidual rain gauge. Note that streamflow and ET are taken from Table 2 while calculating ߂S for Figure 9 during 2001, 2002, 2003, and 2004 water years. The solid red line shows 
the ߂S using Z-based Pr maps from Figure 4. The low elevation (Z < 2000 m) rain gauges 
are not able to close the ߂S during 2001 and 2004, while the failure to close ߂S is promi-
nent using high elevation (Z > 3000 m) rain gauges for all water years. We believe, during 
2002 and 2003, precipitation at low elevation rain gauges are higher due to localized 
convective systems resulting in improved ߂S. The rain gauges located at 2000-3000 m 
elevation band adequately close ߂S with few exceptions. However, our dataset has a 
limited number of rain gauges in this band while there are some around 2000 m and 3000 
m elevation. Clearly, Figure 9 shows the effectiveness of rain gauges around 2000 m and 
3000 m elevation in closing the ߂S for all water years. We believe these zones around 2000 
m and 3000 m elevation band receive representative precipitation for the KKW. Thus, 
populating these zones with rain gauges will be helpful to close ߂S for hydrologic studies 
in similar watersheds in HMA. 

 
Figure 9. Water balance (߂S) of the KKW while considering precipitation input from the individual rain 
gauge. Note that the red lines represent the ߂Selev using elevation-based distributed precipitation 
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Since most of the hydrologic studies in HMA [22,24] utilize only rain gauges from 
lower altitude (due to inaccessibility and thick forest cover at high altitude), in Figure 10, 
we examine the optimum elevation up to which the rain gauges should be installed. This 
provides an interesting perspective in a way that it is useful to install rain gauge up to 
certain elevation to improve ߂S and the installation beyond this critical elevation will not 
improve the ߂S. Figure 10 shows the dynamics of ߂S with the number of rain gauges 
from the lowest altitude. As the elevation increases, we consider the mean of multiple 
rain gauges and at the highest altitude, the mean of all rain gauges is considered to cal-
culate water balance. The ߂S changes clearly show that the ߂S approaches zero as the 
number of rain gauges increases with elevation during 2001, 2003, and 2004 water years. 
However, beyond ~2100 m altitude, the ߂S no longer improves and fluctuates very little 
during 2001, 2003, and 2004 water years, suggesting the importance of deploying rain 
gauges at the 528–2100 m elevation band. Unfortunately, since there is no rain gauge 
between 2100 and 3000 m altitude, we cannot conclusively recommend the upper limit of 
this elevation band. We believe more rain gauge installations at the 2100–3000 m eleva-
tion band in future studies will improve our knowledge and subsequently close ߂S. 

 
Figure 10. Water balance (߂S) of the KKW. Note that mean precipitation ( തܲZ ≤ Z_station) calculated for all the stations located 
at or lower than the respective station. As the plot approach higher elevation, data from more stations are considered for 
mean calculation. 

Our analyses clearly reveal the usefulness of elevation-based Pr interpolation in 
closing water balance in a headwater basin of HMA. Previous hydrologic studies, e.g., 
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[20,23], only used a limited number of gauges from downstream areas. For example, 
Devoka and Gyawali [40] utilized 16 rainfall gauges to simulate hydrology of 8220 km2 (1 
gauge/514 km2) of the Koshi River Basin. In our study, we utilized 11 gauges to capture 
the spatial variability in 125 km2 basin (1 gauge/13 km2). Other studies, e.g., [12], con-
ducted water balance study at broader HMA scale lacking representation of small 
headwater basins like KKW in terms of precipitation and streamflow. Our studies im-
prove the current understanding of the impacts of elevation-based basin-scale precipita-
tion on closing the water balance and provide guidance in designing future observation 
networks. We believe peak Pr elevation varies between mountain ranges or climate re-
gions and that the same Pr−Z relationship may or may not be found elsewhere. However, 
future studies should consider precipitation measurements from all the elevation bands. 

Our study period is limited to four years due to lack of continued funding to sup-
port data collection. Note that we utilized an exceptional dataset which were collected 
during 2001–2004 [26]. The climate stations were deployed in remote areas having very 
rugged topography and thick forest cover. Our study period also includes two relatively 
dry years (2002, 2004) and two wet years (2001,2003). We believe that the availability of 
data for additional years would really bolster our findings and provide more robust un-
derstandings on Pr−Z relationship in the HMA region. It is not uncommon to have lim-
ited dataset (due to lack of support for the operation of the stations) to investigate at-
mospheric processes [6,26,41,42]. In addition, we utilize the Pr–Z relationship to investi-
gate the effectiveness of spatially variable precipitation on closing the water balance. 

5. Conclusions 
We studied the spatial variation of the precipitation in a small (125 km2) headwater 

basin in the KKW, located in the foothills of the Himalaya, Nepal. We deployed ten rain 
gauges in elevations ranging 700–4500 masl for a period of four years, with a density of 1 
rain gauge/13 km2. This density is orders of magnitudes higher than typical water-
shed-level studies in the Himalaya [16]. In addition to precipitation data, we collected 
other climatic variables such as air temperature, wind speed, and relative humidity 
which were used to simulate ET at each station. Using precipitation data, simulated ET 
and outlet gauge streamflow [10], we conducted a detailed basin-scale water balance 
study and investigated the impacts of elevation-based precipitation variability on closing 
water balance in KKW. We further examined how the use of just one rain gauge or a 
combination of multiple rain gauges affects the accuracy of the estimated KKW water 
balance. 

Collectively this research shows that the small mountainous watersheds in the 
Himalaya have highly variable spatial precipitation patterns. Our results show that the 
amount of annual precipitation is strongly dependent on the altitude, revealing maxi-
mum precipitation at middle elevation and lower precipitation both at higher and lower 
elevations. This variation is not captured by space-born satellite products such as 
(TRRM) due to their relatively large pixel size. In addition, the rain gauges employed in 
such areas are sparse and typically found at the lowest elevation of the given basins due 
to logistical limitations. Therefore, even the best precipitation estimates for these water-
sheds based on satellite data or single rain gauge can be offset by a significant fraction. 

Our results show three zones based on distinctive precipitation–elevation relation-
ships; zone 1 (outlet elevation-2000 masl band): the precipitation sharply increases with 
elevation; zone 2 (2000–3000 masl elevation band): the precipitation varies slightly and 
increases minimally with elevation; zone 3 (Z > 3000 m): the precipitation decreases with 
elevation. Due to the variable nature of the elevation–precipitation relationship, the 
quadratic polynomial relationship was found to be the best fit for the precipitation–
elevation plot. Interestingly, zone 2 also represents the basin-scale precipitation and we 
called the critical precipitation zone. In addition, simulated ET at multiple stations also 
shows an inverse and strong correlation with elevation. Putkonen [26] qualitatively de-
scribed the orographic precipitation in the southern flank of the Annapurna range. Our 
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results add new knowledge by detecting a quantitative framework of Pr−Z relationships 
for four water years and provide a useful platform to interpolate precipitation as a func-
tion elevation. Since recent technologies such as LiDAR and RADAR, advance DEM 
construction substantially, our quantitative framework will be a timely contribution to 
analyze annual precipitation for a mid-altitude headwater basin in HMA. 

Our water balance clearly shows that the elevation-based precipitation yields the 
best performance in closing the KKW water balance for all water years. While consider-
ing only one rain gauge for the watershed, the rain gauges at zone 2 (critical zone) per-
form much better than the rain gauges from other altitudes (zone 1 and zone 3). While 
considering average rainfall from the lowest altitude, it is adequate only to deploy rain 
gauges until zone 2. A single low altitude rain gauge leads to underestimations of the 
watershed level precipitation, which make it impossible to close the water balance, or 
calculate other derivatives needed for infrastructure and agriculture (such as stream 
discharge, soil saturation, crop irrigation, water power management, dam operation). 

We recognize that every watershed is unique, and every mountain range is unique 
in terms of precipitation and topography, and how the precipitation is distributed in the 
given watershed. However, based on the existing sparse ground level and satellite data, 
the orographic precipitation effect is well established [43]. It is also a reasonable 
first-order expectation that the peak of the orographic precipitation in adjacent and 
maybe even regional watersheds is found at approximately similar elevations. Therefore, 
we suggest that by making use of these results it will be possible to estimate water-
shed-wide precipitation in mountainous watersheds with higher accuracy even when 
sparse rain gauge data are available. 

Our data clearly show that a single low altitude precipitation gauge will always 
underestimate the total watershed precipitation. We recognize that rain gauge placement 
is usually sparse due to logistical and economic constraints. However, based on our 
analyses (Figures 9 and 10), a remarkable improvement in capturing a representative to-
tal precipitation for a given watershed can be achieved by having two rain gauges instead 
of just one. Our sample case suggests that those gauges should be located at the lowest 
elevation (usually the easiest to access), and a secondary gauge at the elevation of the 
peak precipitation at 2000–3000 masl. Armed with these data and the basin hypsometry, 
a significantly improved estimate of the total basin precipitation can be calculated, by 
assuming a simple parabolic relationship with elevation that intersects the low altitude 
total and the maximum at the 2000–3000 m altitude total, with monotonic decrease with 
the elevation above 3000 masl. 

Supplementary Materials: The following are available online at 
www.mdpi.com/2073-4441/13/3/254/s1, Table S1. Hydro-climatic data and DEM used in this study, 
Table S2. Best fit equation performance in predicting annual precipitation. Note that Table S1 con-
tains the performance of quadratic equations as linear equations yield very poor performance. The 
column elevation shows the R2 of the quadratic equations (only elevation as function) while pre-
dicting annual precipitation. The slope and exposure columns also show their respective quadratic 
equation’s performance, Figure S1. Relationship between slope (degree) and annual precipitation. 
Note that a linear fit would produce R2 of 0.12, 0.07, 0.11, and 0.049 for 2001, 2002, 2003, and 2004, 
respectively, Figure S2. Distribution of Thiessen polygons and rain gauges for the year 2002, Figure 
S3. The plots between elevation and annual monsoon (June-September) precipitation during each 
year of the 2001–2004 period in the study area. The red circles are rain gauges just outside the wa-
tershed and black circles are within the KKW. Note that equations are shown at the bottom of each 
subplot and derived using the data corresponding to black circles (within the KKW), Figure S4. The 
plots between elevation and annual winter (Oct–May) precipitation during each year of 2001–2004 
period in the study area. The red circles are rain gauges just outside the watershed and black circles 
are within the KKW. Note that equations are shown at the bottom of each subplot and derived 
using the data corresponding to black circles (within the KKW). 
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