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Abstract: Water levels in three adjacent water wells in the Yarmouk Gorge area have all responded
to the 2020 Elazığ Mw 6.8 teleseismic earthquake. Water levels in two aquifers exhibited reciprocal
behavior: during the first eight days after the earthquake, water level decreased by 40 cm in the deeper
highly confined aquifer, and increased by 90 cm in the shallower less confined aquifer. The recovery of
the water levels in both aquifers continued for at least three months. We interpret these observations
as reflecting the increase in damage along the fault at the Yarmouk Gorge. Ground shaking increased
the damage and permeability of this fault, temporarily connecting the two aquifers, allowing flow
from the deep aquifer to the shallow one. Model results showing decreased permeability suggest
that the fault healed by one order of magnitude within three days. This is the first documentation of
decrease in permeability in a fault zone within such short time scales.

Keywords: water level; remote triggering; fault zone

1. Introduction

Hydraulic and mechanical properties of rocks change during and after remote earth-
quakes due to damage and healing/sealing processes [1]. When the fault is active during
seismic-induced shaking, the permeability of the fault increases due to fracture damage
enhancement while the mechanical properties decrease [2]. Upward migration of fluids
from an aquifer with higher pressure to another one through activated faults is expected
at this stage [3]. Over time, faults recover their mechanical properties through fracture
healing/sealing and the permeability decreases as a result of a combination of chemical
and mechanical processes [4–6].

Aquifer permeability has been observed to be enhanced by transient stresses induced
by distant earthquakes [7–9]. Other studies show the co-seismic effects of earthquakes
on fault permeability [10,11] or long time permeability variations [12]. Wang et al. [13]
showed that a large earthquake creates vertical permeability in groundwater systems by
breaching the interlayered aquitards. They hypothesized that breaching of aquitards by
large earthquakes is achieved by the formation of many hydraulically conductive cracks
across the aquitards.

Groundwater near active faults is affected by stress accumulation associated with tec-
tonic loading, which implies strong feedback between fault strength and permeability [14].
The processes responsible for changes in the strength and permeability of faults include
healing and sealing [15] whereby healing involves closure of microscale cracks driven
by surface energy [16], and sealing of cracks is carried out by precipitation of minerals
transported from distant or local sources [17]. Subsurface fluid flow is expected along
faults, whenever earthquakes create pathways (by increasing the permeability). In reactive
systems, narrow channels are quickly blocked by mineral precipitation and the permeabil-
ity is reduced [18]. Mineralized fluids with elevated temperatures accelerate both healing
and sealing processes reducing the permeability and terminating the flow.
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Dieterich [19,20] performed frictional experiments with different values of normal
stress and hold times up to 105 s, and obtained a time-dependent logarithmic increase of the
static coefficient of friction, during several hours. The results were interpreted as reflecting
enlargement of the real contact area with time, as a result of indentation creep around
geometrical asperities [21,22]. Recent laboratory studies have shown that micro-cracks can
last for hours to months under a range of hydrothermal conditions [16,23–26]. Geophysical
evidence for various durations of post-seismic healing processes, has been observed in
Landers [27], Parkfield [4], Tokai region, Japan [28], and Loma Prieta [29] earthquakes.
The recovery of P and S wave velocities (healing) following the 1992 Landers earthquake
was recorded to last for years [27]. Cochran et al. [30] documented reduced elastic moduli
along the Calico fault using seismic travel times, trapped waves, and InSAR observations
that represent the cumulative mechanical damage from past earthquake ruptures. They
inferred that the long-living fault damage persisted for hundreds or thousands of years
with no significant healing.

The various healing mechanisms cannot be fully isolated from each other in recovery
experiments on natural rock samples, and the recovery of damaged rocks in nature is
a complex interplay between various healing mechanisms [15]. Therefore, we will not
attempt to distinguish between the mechanisms and refer to the healing/sealing as a whole.
While fracture, damage and permeability can heal relatively quickly in the experiments,
in real fault zones, fast healing/sealing has yet to be documented [31]. This might be due
to the fact that the tools used to monitor healing/sealing process in the field do not have
the resolution for time scales smaller than weeks. In this paper, we show evidence for the
remote earthquake-induced (24 January 2020, Elazığ Mw 6.8) sudden permeability increase
of a fault zone, connecting two sub-aquifers followed by the gradual healing/sealing
within a few days.

2. Hydrological Setup

The Yarmouk River and the groundwater resources in its watershed are a strategic
transboundary freshwater resource of Syria, Jordan, and Israel. The scattered springs of
Hammat Gader (Figure 1) discharge hot pressurized groundwater (45.5 MCM/year up to
50 ◦C) through extensive deep faulting. Groundwater emerges with different hydraulic
heads, chemical compositions, and temperatures [32]. Recent studies attempted to explain
the mechanisms responsible for the outflow of hot springs and high-pressure groundwater.
Siebert et al. [32] distinguished the source of the springs and wells in the area. Groundwater
originates at three different sources: groundwater flows from Golan Heights (north) and
Ajloun-Plateau (south) towards the Yarmouk Gorge, where both flows are hydraulically
separated by a major fault. Some of the springs and wells in the lowermost Yarmouk Gorge
recharge at the Syrian Hauran Plateau (east).

Groundwater pressure data from three wells (Table 1) is analyzed in this work (see
Figure 1 for location). The Meizar 1 and 2 deep wells represent water from the upper
Cretaceous Judea group and the shallow Meizar 3 well represent water from the Senonian
Ghareb-Mishash formations. Meizar 2 and 3 are located 20 m apart and Meizar 1 is located
three km to the North of Meizar 2 and 3 (Figure 2). Meizar 2 and 3 are artesian wells with
an over-pressure of ~1.7 and ~0.7 bar, respectively. Meizar 1 is not an artesian well due to
its high elevation (160 m higher than Meizar 2 and 3).
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Figure 1. Location mapshowing the Meizar 1, 2, and 3 wells, providing water level data, and GLHS seismic station, provid-
ing seismic data; all for the remote 24.1.2020 Elazığ Mw 6.8 earthquake (red star), including co-seismic and post seismic 
changes. Blue arrows mark regional groundwater flow directions. The black lines and dashed lines represent faults and 
suggested fault locations, respectively. The gray box represents the numerical model area that also extends 30 km to the 
north. 

 
Figure 2. Cross section between the Meizar wells. Both Mishash-Ghareb and Judea aquifers are con-
fined. Meizar 2 and 3 wells are artesian. Meizar 1 is not an artesian well due to its higher elevation. 

Table 1. Basic data of the three wells. 

Well Name Depth (m) 
Casing Length 

(m) 
Diameter of Well 

(m) 
Diameter of Bare Hole 

(m) Aquifer Lithology 

Meizar 1 1250 954 0.34–0.71 0.31 dolomite 
Meizar 2 807 448 0.34–0.51 0.31 dolomite 
Meizar 3 336 80 0.38–0.51 0.35 chalk, marl 

3. Pumping Tests 
Meizar 2 and 3 wells are artesian and pumping tests were performed by opening the 

valves and measuring the discharge and pressure. The hydraulic connection between the 
Judea and Mishash-Ghareb aquifers was very limited as observed during pumping tests 
(Figure 3). However, the aquifers were elastically connected and pumping from Meizar 2 

Figure 1. Location mapshowing the Meizar 1, 2, and 3 wells, providing water level data, and GLHS seismic station,
providing seismic data; all for the remote 24.1.2020 Elazığ Mw 6.8 earthquake (red star), including co-seismic and post
seismic changes. Blue arrows mark regional groundwater flow directions. The black lines and dashed lines represent faults
and suggested fault locations, respectively. The gray box represents the numerical model area that also extends 30 km to
the north.
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Figure 2. Cross section between the Meizar wells. Both Mishash-Ghareb and Judea aquifers are
confined. Meizar 2 and 3 wells are artesian. Meizar 1 is not an artesian well due to its higher elevation.

Table 1. Basic data of the three wells.

Well Name Depth (m) Casing Length
(m)

Diameter of Well
(m)

Diameter of Bare Hole
(m) Aquifer Lithology

Meizar 1 1250 954 0.34–0.71 0.31 dolomite
Meizar 2 807 448 0.34–0.51 0.31 dolomite
Meizar 3 336 80 0.38–0.51 0.35 chalk, marl

3. Pumping Tests

Meizar 2 and 3 wells are artesian and pumping tests were performed by opening
the valves and measuring the discharge and pressure. The hydraulic connection between
the Judea and Mishash-Ghareb aquifers was very limited as observed during pumping
tests (Figure 3). However, the aquifers were elastically connected and pumping from
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Meizar 2 well caused a temporary small increase in the water pressure in Meizar 3. This
phenomenon is called the reverse water-level effect [33,34] and it emphasizes the lack of
hydrological connection between two aquifers. Water in the wellbore was hot after the
pumping (42 ◦C) and cools down with time to 20 ◦C, decreasing the pressure after the
valves are closed.

It has been observed in many field tests that when groundwater is pumped from an
aquifer, the water level may momentarily increase in adjacent aquifers and aquitards [34–38].
This reverse water-level response was first observed in Noordbergum, The Netherlands,
where the phenomenon earned its name for a special case where the water-level rise occurs
in an aquifer separated by a confining unit from the pumped aquifer [35].
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Figure 3. Pumping tests in Meizar 2 and 3 wells. (a) Both pumping tests; (b) pumping in Meizar 2 
and the corresponding water pressure in Meizar 3; (c) pumping in Meizar 3 and the water pressure 

Figure 3. Pumping tests in Meizar 2 and 3 wells. (a) Both pumping tests; (b) pumping in Meizar 2
and the corresponding water pressure in Meizar 3; (c) pumping in Meizar 3 and the water pressure
in Meizar 2. The wells are not hydraulically affected by pumping in the other well. Meizar 3 is
elastically responding to the unloading caused by the withdrawal of water from Meizar 2 (“reverse
water level effect”). The recovery of the level in Meizar 2 is higher than the original water level
because of thermal effects. Water in the wellbore is hot after the pumping and cools down with time
and thereby decreasing the pressure.
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The loss of water due to pumping involves a decrease of volume, producing radial
solid displacements towards the well. The displacement field (loading) compensates for
the loss of water. For deeper layers, this displacement field causes compression, and hence
an increase of pore pressure [35]. This loading information is transferred immediately
throughout the elastic medium because of stress compatibility, while water flow and
re-distribution of the pore pressure due to pumping, requires time.

4. Hydrological and Seismological Data

Water pressure is monitored using PA 33X in the artesian wells and PA 36XW in the
non-artesian wells pressure transmitters (Keller-Druck, Winterthur, Switzerland), config-
ured to a range of 0–0.1 MPa and 0–0.3 MPa, respectively. The accuracy and precision
of these transmitters are 50–150 Pa and 2–6 Pa, respectively, depending on the pressure
transmitter measuring range. Temperature dependencies and nonlinearities of the pres-
sure transmitters are compensated by the transmitters’ microprocessor. Water pressure is
recorded at 40 samples per second. We do not record temperature or electrical conductivity
measurements because lowering sensors to the uncased section of the wells is very difficult
due to the artesian conditions. Seismic data are obtained from station GLHS (Figure 1), of
the recently upgraded Israel Seismic Network [39]. GLHS is a station with collocated sen-
sors, recording ground accelerations, velocities, and displacements. The velocity data used
in this study was measured by a Trillium 120 PH broadband seismometer (Nanometrics), lo-
cated within a posthole, at a depth of 5.5 m below the surface, and recorded by a 6-channel
Centaur (Nanometrics), at 200 samples per second, and 40 V peak to peak sensitivity.

The seismic waves generated by the remote 2020 Elazığ Mw 6.8 earthquake [40,41]
are clearly seen in the seismic and hydrological data (Figure 4). During the passage of
the waves, there was an average water pressure increase in Meizar 1 well. This sustained
increase was also observed in previous cases [42,43]. The highest amplitudes occur after
the arrival of the S waves; in Meizar 2 and 3 wells, the amplitudes are 3 m and 1.2 m,
respectively; the amplitudes in Meizar 1 are relatively small (5.5 cm), due to its non-artesian
nature. The attenuation in the high-frequency range in non-artesian wells is an effect of
wellbore storage, where water is actually displaced during oscillations; in closed artesian
wells, the attenuation is much smaller [44]. Similar trends are observed in the seismic data
and in Meizar 2 and 3 wells, emphasized for specific bandwidths. Such data obtained by
applying a Butterworth low-pass filter (with four poles at a cutoff frequency of 0.02 Hz)
are provided in Figure 5.

Immediately after the passage of the seismic waves, pressure started to change in all
wells. The pressure in Judea aquifer started to decrease and the pressure in the Ghareb-
Mishash aquifer started to increase (Figure 6). Unfortunately, industrial pumping in Meizar
2 began soon after the event. Therefore, we discuss here only the water pressure changes in
Meizar 1 and 3 wells. During the first 10 days, the water level in Meizar 1 well decreased
by 40 cm and then recovered towards its pre-event value. In Meizar 3 well, the water
level increased by 90 cm and then started to decay back to its pre-event value (Figure 6).
We interpret these changes as fault activation and damage increase in a relatively narrow
zone connecting two aquifers, followed by gradual healing/sealing of this zone. Several
floods in the nearby Yarmouk River, that recharged the shallower Mishash-Ghareb aquifer
without affecting the deeper Judea aquifer, illustrate the separation between the aquifers.
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Figure 4. Seismograms and hydro-seismograms of the remote 2020 Elazığ Mw 6.8 earthquake in the
Lower Yarmouk Gorge. Upper 3 channels are for stations GLHS, rotating the velocities measured
by the Broadband sensor to RTZ orientation. P, S, Love (L) and Rayleigh (R), arrivals are marked.
Below are the Meizar wells. While Meizar 2 and 3 wells show similar wave packets, as seen in the
GLHS channels, Meizar 1 well shows a significant long-period signal. This signal masks the higher
frequencies of the earthquake.
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Figure 5. Filtering the waveforms, using the Butterworth low-pass filter with 4 poles at 0.02 Hz,
shows that the low frequency signals that Meizar 1 reacts to, is part of the signal reaching both the
borehole and station, and is a low frequency component of the seismic energy of the event.
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5. Groundwater Modeling
5.1. Model Formulation

Fault activation and damage heeling is incorporated into the groundwater modeling.
The results of Dieterich’s [19,20] healing experiments demonstrate the logarithmic increase
of the static coefficient of friction fs:

fs = f0 + A log10(1 + Bt) (1)

where t is the duration of the hold time in seconds, f 0 ≈ 0.6–0.8, A ≈ (1–3)10−2 and
B ≈ 1–2 s−1. The non-dimensional A-coefficient defines the magnitude of the static friction
change with time and the attribute of B provides a time scale for the evolution of the static
friction coefficient. The relation of the rate and state dependent friction model [22] connects
the steady-state value of the friction coefficient, fss, with the sliding velocity at slip distances
larger than a certain critical value:

fss = f0 + (a− b) ln
(

V
V0

)
. (2)

The a and b non-dimensional values control the transient stage, while a defines the
direct effect to the instantaneous slip velocity change and b defines the recovery to a new
steady-state friction value corresponding to the slip velocity V normalized to the reference
velocity V0. The difference (a − b) defines the overall change in the steady-state friction
value. Numerous experimental studies demonstrated that both the a and b parameters are
of the order of 10−1 to 10−2 and the sign of the (a − b) defines the stability of the sliding
contact [22]. Elevated values of a, b ~0.15 have been reported for wet frictional experiments
in hydrothermal conditions [45,46]. By comparing laboratory results and microphysical
models Van den Ende et al. [47] suggested that the b parameter increases with depth
(temperature and pressure) approaching b~0.2. Larger values of b up to 0.35 were reported
for gouge-bearing faults [48], and in general agreement with recent micromechanical
models [23]. These elevated values were also used in dynamic rupture modeling [49,50].
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Motivated by the observed logarithmic increase of the static coefficient of friction,
Lyakhovsky et al. [51] used a damage-dependent function for the kinetics of healing and
suggested the rate of healing under constant compaction strain, εcmp, to be of the form:

dα

dt
= −C1 ε2

cmp exp
(

α

C2

)
. (3)

where α is the damage parameter, and C1, C2, are two positive coefficients. Under static
load conditions, the damage healing Equation (3) predicts logarithmic-in-time healing:

α(t) = α0 − C2 ln
[

1 +
C1

C2
ε2

cmp exp
(

α0

C2

)
t
]

, (4)

with the same structure as of Equation (1). Lyakhovsky et al. [52] also demonstrated that
the model with exponential healing (Equation (3)) reproduces the main features of the rate
and state friction and connected the parameters C1 and C2 to the static and steady-state
friction coefficients. According to their derivations, C2 ∼ b/ fss is between 10−1 and 10−2.
The value of the coefficient C1 ∼ B C2 exp

(
α0
C2

)
/ε2

cmp strongly depends on the value of
the coefficient C2 and varies within several orders of magnitude. For two different values
of C2 = 0.03, 0.05, and B~1 s−1, εcmp ~10−2, the coefficient C1 is ~10−12 s−1, ~10−6 s−1,
respectively. Fault healing at seismogenic depth of 5–10 km and pressure of about 200 MPa
is very fast with these parameters during the initial few hours after an earthquake and the
rate of healing significantly decreases with time [53]. With healing, the value of damage
(α) decreases, leading to permeability reduction. Experimental studies [54–56] confirm the
correlation between the log-scale permeability variation and micro-crack density. In this
model, the damage is a measure for the micro-crack density and thus the enhanced fluid
flow and poro-elastic coupling is incorporated using the exponential permeability–damage
relation [55]:

κ(α) = κ0 exp(Dα), (5)

To account for the several orders of magnitude change in the permeability κ(α) be-
tween intact rock (κ(0) = κ0) and heavily damaged fault zone ( α→ 1), the exponential
factor D should vary between 10 and 20 [57].

5.2. Numerical Results

Modeling of the response of the hydrological system to the remote earthquake was done
by using a two-dimensional, vertical cross-section, implemented into FeFlow [58]—a finite-
element simulator that solves the coupled variable density groundwater flow and solute
transport equations. Layers’ properties were obtained from the pumping tests analysis, and
the marl and chalk layer separating the two aquifers were assigned with lower hydraulic
conductivity. The length of the numerical cross-section was set to 30 km to avoid the
influence of the right boundary, and a mesh of 228,090 elements and 114,752 nodes was
used to capture the geometrical boundaries of the model. Flow boundary conditions are
hydraulic heads at the right boundary and no flow at the top, bottom, and left boundaries
(Figure 7). The fault is set to 300 m away from Meizar 3 well. The increased damage of the
fault by the passage of seismic waves is simulated by an abrupt increase of the hydraulic
conductivity of the fault from 0.1 to 1 m/d. Healing and sealing of the fault reduces the
hydraulic conductivity back towards its original value. The amount of time required for
healing/sealing processes was evaluated according to this setup. We used different C1,
C2 values (Equation (4)) and D = 15 (Equation (5)) as a representative value and run the
groundwater modeling. The model was run for 100 days to represent the monitoring data
between 24 January and 1 May (Figure 6).
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Figure 7. Hydrological model setup.

Figure 8 shows the expected damage decrease under εcmp = 3 × 10−4 corresponding
to 15 MPa confining pressure (~600 m depth) for 50 GPa bulk modulus, C2 = 0.1, 0.25,
0.5, and C1 = 0.05, 0.3, 0.4 1/s. The time scale of healing with these parameters is days.
Equation (5) predicts the permeability reduction with time (Figure 3b), with these damage-
rate parameters. The permeability reduction of one order of magnitude occurs within 0.75,
5, or 13 days depending on the healing parameters (C1 and C2).
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The groundwater flow simulations, using these time-dependent fault zone permeabil-
ity profiles, predict water level variations (Figure 9). Results of the numerical simulations
show that the hydraulic head in the deeper and pressurized aquifer decreased due to the
drainage of the groundwater through the fault while the hydraulic head at the shallower
and less pressurized shallower aquifer increased. Simulated water levels are sensitive to
the time required for healing/sealing of the fault. The fault healing parameters that best fit
the observed water levels are C1 = 0.3 s−1 and C2 = 0.25 (Figure 9). It is possible to estimate
rate and state friction parameter—b with these damage-healing parameters. Using the
obtained C2 ~0.25 and fss = 0.6–0.8 results with b ∼ C2 × fss ~0.15–0.2. This value of the
rate and state friction model parameter falls slightly above most of the reported values
for hard rocks, but still meets the laboratory-based values in gouge-bearing faults. This is
compatible with the hydro-geological settings, suggesting hot water flow from the deep
aquifer through the activated fault zone.
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6. Discussion

Fault zone permeability can be used as a proxy for fracturing and healing. Groundwa-
ter observations and modeling presented in this study demonstrate significant permeability
increase (above two orders of magnitude) induced by remote Elazığ earthquake, and rel-
atively fast recovery, with a duration of several days (Figure 9). There are many reports
of permeability changes of regional aquifer following earthquakes that cause water level
changes and increased spring discharge [59–61]. To the best of our knowledge, there is
no field documentation of fault zones, showing rates of post-seismic permeability change
at time-scale of hours to days. Contrary to the present study, previous observations re-
ported relatively small permeability variations, representing the time window well after
the earthquake (Figure 10). For example, Xue et al. [62] used the tidal response of water
level in a deep borehole drilled into a ruptured fault zone to track permeability. They
observed healing rates that reduced the permeability by a factor of 1.5 during a few months.
Similar results were also reported by Shi and Wang, [63,64]. Injection experiments showed
a decrease of 50% of the permeability in three years following the Kobe earthquake [65].
In Nojima fault, the permeability stabilized eight years after the occurrence of the earth-
quake [66]. Tidal analysis requires that the length of the recorded observations should be
at least a few days for meaningful property monitoring. Pumping tests cannot be carried
out continuously because, depending on the hydraulic properties, relatively long periods
are required for recovery. Neither of the methods (tidal analysis and pumping tests) can
monitor permeability at a frequency greater than days.
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The gradual material recovery in laboratory experiments and the reported post-
seismic velocity changes after strong earthquakes are often modeled with a logarithmic
fit [19,20,67–71]. The logarithmic function predicts relatively fast healing rate immediately
after the event with a gradual decrease in its rate. As noted by Qiu et al. [72], the logarithmic
function suffers from an overshooting issue in curve fitting over long periods. Strong
healing is not consistent with long-living wide fault zone damage persisted for hundreds
or thousands of years with no significant healing. In order to resolve this contradiction,
Hobiger et al. [73] suggested using an exponential function to fit the velocity variation
curves. Qiu et al. [72] noted that the post-seismic recovery process could be described by
either an exponential or logarithmic function.

Here we suggest that relatively short-term healing might be described by a Dieterich
type logarithmic relation (Equation (1)) or damage decrease according to the damage-
dependent kinetics (Equation (3)). Neglecting any time-dependent stress variations, the
damage healing equation (Equation (3)) predicts logarithmic-in-time healing (Equation (4))
similar to the Dieterich equation (Equation (1)). Such constant stress conditions are typical
for laboratory experiments and could be utilized for relatively short periods of time in
field observations. The complete damage kinetic equation considers three-dimensional
structure of the stress or strain tensor and includes the condition for the transition between
damage growth and recovery [51]. Even under constant confining pressure, shear stress
significantly decreases the rate of material recovery and may even lead to its repeated
accumulation when the onset of damage condition is satisfied. Such a decrease in the
healing rate leads to the damage stabilization schematically shown in Figure 10. In this
case, we start with almost constant load during the initial stage leading to logarithmic
healing and reduce the strain function leading to damage stabilization at the level between
0.2 and 0.3, which are values reported for the study area [43].

7. Conclusions

The water level in water wells in the Lower Yarmouk Gorge responded to the remote
2020 Elazığ Mw 6.8 earthquake. The response included a sustain change during the passage
of the seismic waves and a post-seismic diffusive response to an activation of a nearby
fault. Immediately after the passage of the seismic waves, pressure started to change in
all wells. The high pressure in the deep Judea aquifer started to decrease and the lower
pressure in the shallower Ghareb-Mishash aquifer started to increase. During the first
10 days, the water level in Meizar 1 well decreased by 40 cm and then recovered towards
its pre-event value. In Meizar 3 well, the water level increased by 90 cm and then started to
decay back to its pre-event value. The increased damage of the fault allowed for water flow
from the deep-pressurized aquifer to the shallow aquifer. As a result, water level decreased
in the deep aquifer and increased in the shallow aquifer. Numerical modeling suggest
that the hydraulic conductivity of the fault decreased by an order of magnitude within
three days. To the best of our knowledge, such fast healing/sealing was never observed by
hydrological processes in the field.
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