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Abstract: Current conventional and optimal reservoir flood control operation methods insufficiently
utilize historical reservoir operation data, which include rainfall, runoff generation, and inflow from
the watershed, as well as the operational experience of decision makers over many years. Therefore,
this study proposed and evaluated a new method for extracting reservoir flood control operation
rules from historical operation data using the C4.5 algorithm. Thus, in this paper, the C4.5 algorithm
is first introduced; then, the generation of the flood control operation dataset, the construction of
decision tree-based (DT-based) rules, and the subsequent design of a real-time operating scheme
are detailed. A case study of the Rizhao Reservoir is then employed to demonstrate the feasibility
and even superiority of the operating scheme formulated using DT-based rules. Compared with
previously proposed conventional and optimal reservoir operation methods, the DT-based method
has the advantages of strong and convenient adaptability, enabling decision makers to effectively
guide real-time reservoir operation.

Keywords: flood control operation; C4.5 algorithm; DT-based rules; nodes; discharge

1. Introduction

Flood disasters are currently among the major global problems faced by human society.
From 1989 to 2018, 3945 major flood disasters occurred around the world, with China,
India, the United States, and Indonesia experiencing the largest number: about 1200 in
total [1]. There were 109 flood disasters worldwide in 2018, causing 1995 deaths, affecting
12.62 million people, and resulting in $4.5 billion in direct economic losses [2]. Although
global flood deaths and affected populations have shown a continuous downward trend
over the past 30 years, economic losses have shown an upward trend. Owing to the fre-
quency of and significant economic losses associated with flood disasters, a considerable
number of water conservation projects have been undertaken to reduce the adverse ef-
fects of floods. Among these, reservoirs are created by constructing a dam across a river.
However, with ongoing socioeconomic development, the purpose of the reservoir has
expanded from guaranteeing flood control safety of the river to including the provision
of power generation, water supply, irrigation, ecological environment maintenance, nav-
igation, sediment control, recreation, fisheries, etc. As of April 2020, 58,713 large dams
have been constructed worldwide [3]. According to a report by the World Commission on
Dams, the improvement in operation and maintenance of existing dams offers opportuni-
ties to address local or regional development and to minimize social and environmental
impacts [4]. To do so, it is necessary to implement a scientific and reasonable reservoir
flood control operation strategy. Thus, the goal of reservoir flood control operation studies
is to define an optimal operation policy for a given reservoir that balances its various
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purposes [5]. This policy represents a powerful tool for the guidance of reservoir operation,
serving as not only a decision-making reference during the planning and design of a water
conservancy project but also a key to realizing the comprehensive benefits of the reservoir
during its operation.

Existing reservoir flood control operation methods can be roughly divided into two
groups: conventional operation methods and algorithmically optimized operation methods.
Conventional reservoir operation methods are semi-empirical and semi-theoretical and are
presented in the form of flood control operation graphs or tables. During real-time flood
control operation, operational decisions (e.g., reservoir discharge or hydroelectric power
generation) during each period are specified as a function of the appropriate available
information (e.g., the current or previous reservoir water level, current or previous reservoir
inflow, and time of year) [6]. Such conventional methods have been widely used in reservoir
operations owing to their intuitive and practical structure; however, they often fail to
consider the latest operational data or to address the complex nonlinearity that exists
between the relevant dependent and independent variables [7]. Thus, as the complexity
and interdependency of the systems considered in reservoir management increase, it
becomes more difficult to obtain an optimal operating scheme using conventional methods.

Optimization algorithms have therefore been increasingly applied to formulate reser-
voir flood control operation strategies, effectively addressing the shortcomings of conven-
tional methods [8]. In the past decades, a wide range of optimization algorithms have
been proposed that can generally be classified into conventional optimization algorithms
and heuristic intelligent algorithms. Conventional optimization algorithms include lin-
ear programming [9–11], nonlinear programming, dynamic programming (DP) [12–14],
and progressive optimality algorithm (POA) [15,16] approaches as well as various im-
provements thereof, such as the multi-stage DP [17,18], incremental DP [19,20], stochastic
DP [21], parallel DP [22], and DP combined with POA (DP–POA) method [23]. How-
ever, when faced with a sufficiently complex flood control system composed of multiple
reservoirs, flood storage and detention areas, lakes, and other infrastructure, conven-
tional optimization algorithms have obvious limitations, including a low convergence
efficiency and the “curse of dimensionality”. For example, as the number of reservoirs
increases, the computational scale of DP increases exponentially. To address such issues,
modern computing technology has enabled the development of heuristic intelligent al-
gorithms based on artificial intelligence, resulting in general-purpose stochastic search
methods that simulate natural selection and biological evolution. As they can be directly
applied to address complex problems with nonlinear, discontinuous, non-differentiable,
and multi-dimensional characteristics, they have been widely used to optimize flood con-
trol operations. At present, the most common heuristic intelligent algorithms include the
genetic algorithm [24,25], non-dominated sorting genetic algorithm [26–28], particle swarm
optimization [29,30], ant colony optimization [31,32], artificial neural network [33,34], sup-
port vector machine [35], simulated annealing [36], immune-inspired optimization [37],
evolutionary algorithm [38,39], cultured evolutionary algorithm [40,41], and honey-bee
mating optimization algorithm [42]. However, although heuristic intelligent algorithms
can determine an optimal operating policy, there remain many problems in their practical
application. The flaws intrinsic to most heuristic intelligent algorithms include prema-
ture convergence owing to local fast convergence, poor local search capability owing to a
large number of global searches, and long iteration time [43]. Furthermore, the solutions
provided by most algorithms are limited by the available calculation time as well as the
constraints associated with certain optimizations [44].

At present, both flood control operation methods insufficiently utilize historical reser-
voir operation data. Importantly, these data contain not only the characteristics of and
laws describing runoff generation and inflow from the watershed but also the vast experi-
ence of reservoir managers, which provides information supporting operating decisions
according to different inflow scenarios. As a considerable body of reservoir operation
data has been accumulated by water conservation departments, the use of data mining
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technology to extract flood control operation rules from these data offers a new method
for real-time reservoir flood control operation. The decision tree (DT) algorithm is the
most commonly used data mining model, as it creates decision rules and classification
results following a tree structure [45]. The DT algorithm has the advantages of being
easier to understand, being easier to implement, and requiring relatively less workload
than other approaches. Therefore, it has been widely used to address water conservation
problems such as flood forecasting [46,47], flood or drought risk assessment [48–53], flood
or drought classification [54,55], water quality prediction [56,57], inter-basin water transfer
dispatching [58], water level prediction [59,60], and hydropower station power generation
dispatching [61]. Noymanee and Theeramunkong [46] adopted the boosted decision tree re-
gression to forecast flood water levels in a real-time manner and achieved high forecasting
accuracy. Nafari et al. [49] confirmed that the tree-based models were more accurate than
the stage-damage function from Australia in a flood risk assessment. Sikorska et al. [54]
presented a flood classification for identifying flood patterns at a catchment scale by means
of a fuzzy decision tree, and the results showed that this method bore additional potential
for analyses of flood patterns. Xi et al. [58] used the decision tree method to determine
the diversion amount according to the inter-basin water transfer rules. Parvez et al. [61]
proved that the C4.5 algorithm was more feasible for rapidly generating the schedules of
cascaded hydropower plants. However, it has rarely been used in reservoir flood control
operations. This study aims to formulate reservoir flood control operation rules using the
DT algorithm.

The remainder of this paper is organized as follows: Section 2.1 describes the DT
algorithm, Section 2.2 presents the construction of flood control operation rules using the
DT algorithm (DT-based rules), and Section 2.3 designs a real-time operation procedure
using these DT-based rules; Section 3 then introduces and discusses the results of a case
study application of the proposed DT algorithm; and Section 4 provides a summary of
the conclusions.

2. Proposed Method
2.1. DT Algorithm

The DT algorithm, first proposed in the 1960s, is a greedy local search algorithm that
first analyzes and processes historical data to construct a DT through top-down induction
and then uses the DT to analyze new data [45]. The DT algorithm is usually constructed
beginning at the top of the tree and proceeding down into the branches, each of which
represents a decision, and then into the leaves (or nodes), each of which is assigned a
classifier value. Typical DT algorithms include the iterative dichotomiser 3 (ID3) [62],
C4.5 [63], and classification and regression tree (CART) [64].

The ID3 algorithm uses the information gain as the splitting criterion for the DT to
realize the induction and classification of the data. This has the advantages of providing
a concise and clear basic theory as well as a strong learning ability. However, the ID3
algorithm has several drawbacks: it does not consider numerical attributes, missing at-
tribute values are not taken into account, no pruning process is included, and it does not
handle data with high dimensionality [65]. The C4.5 algorithm is an enhanced version
of the ID3 algorithm that applies the information gain ratio rather than information gain
itself as the standard for attribute selection. This addresses several of the shortcomings
of the ID3 algorithm by realizing numerical attribute treatment, working with missing
values, and introducing a pruning process [65]. The CART algorithm employs a binary
induction method; that is, the DT generated by this algorithm is in the form of a binary tree.
However, the C4.5 algorithm can handle continuous attributes more effectively than the
CART algorithm. Therefore, the C4.5 algorithm was used to construct the DT-based flood
control operation rules in this study. The specific steps of this algorithm are as follows.
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Suppose that p is the number of samples in the set S; the class label attribute Pi has c
different values, where Pi (i = 1, 2, . . . , c); and pi is the number of samples in class Pi. The
information entropy of S is thus given by

I(S) = −∑c
i=1(pi/p) log2(pi/p) (1)

Suppose that the set attribute A has m different values {a1, a2, . . . , am}. Set S can thus
be divided into m subsets {U1, U2, . . . , Um}, where Uj contains a number of values from S
in the sample and it has a value of aj in A. Uj assumes that pij is a subset of the samples of
class Pi. Thus, the entropy or expected information of the subsets divided by A is

E(A) = ∑m
j=1

[ p1j + p2j + · · ·+ pcj

p
I(S)

]
(2)

where
(

p1j + p2j + · · ·+ pcj
)
/p is the weight of the jth subset. The smaller the entropy

value, the higher the purity of the subset.
To determine whether the selected attribute A can effectively reduce the overall

entropy, the information gain of attribute A can be defined as follows:

Gain(A) = I(S) − E(A) (3)

in which a higher Gain(A) indicates a larger reduction in entropy and therefore a better
attribute. Suppose that R(A) is the information gain ratio, defined as the ratio of Gain(A) to

the split information Spliti(A) = −
m
∑

j=1

(
pij/

∣∣pj
∣∣) log2

(
pij/

∣∣pj
∣∣), namely,

R(A) = Gain(A)/Spliti(A) (4)

Calculating the R(A) of each attribute and attribute dataset using Equation (4), the
attribute with the largest R(A) is taken as the split attribute to create nodes and to divide
branch samples until all samples under a given node belong to the same category or the
attribute can no longer be divided. Finally, reservoir flood control operation rules are
constructed based on the derived DT (DT-based rules) by considering the various factors
influencing reservoir discharge.

2.2. Construction of DT-Based Flood Control Operation Rules
2.2.1. Generation of Reservoir Flood Control Operation Dataset

The main factors affecting reservoir discharge include flood occurrence time, rainfall,
net rainfall, reservoir water level, rate of inflow, and volume of inflow. In regions with
an uneven distribution of rainfall throughout the year, the rainfall volume and intensity
in the flood season are usually high, resulting in large discharges, whereas there is little
rain in the non-flood season, resulting in small discharges. Therefore, the occurrence of
flooding is related to reservoir discharge. The water level reflects the water stored by the
reservoir; the higher the water level, the greater the discharge required during flooding
to ensure the safety of the dam. The total rainfall, net rainfall, rate of inflow, and volume
of inflow reflect the amount and intensity of inflow into the reservoir and are directly
proportional to required discharge; that is, the larger these parameters, the greater the
required discharge, and vice versa. This analysis indicates that a reservoir flood control
operation dataset includes many attributes, among which the discharge in each period is
the decision attribute, whereas the others are conditional attributes.

2.2.2. Construction of DT-Based Rules

To construct the reservoir operation rules using the C4.5 algorithm, all floods in the
dataset are first divided into training and verification samples. Then, the attribute values
for each training sample period are calculated to construct the flood control operation
dataset. Finally, the C4.5 algorithm is used to extract operation rules from this dataset.
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2.3. Real-Time Operation Procedure

Given a certain verification sample, the procedure for real-time operation is as follows:
Step 1: Let i = 1.
Step 2: Use the conditional attributes in flood period i as inputs to the DT-based rules

to solve the discharge qi in period i, and calculate the water level zi in period i using the
water balance equation.

Step 3: To ensure downstream safety, confirm that qi is less than q*, the maximum
discharge of the verification sample as regulated by conventional operation rules. If this is
true, proceed to Step 4; otherwise, set qi = q*.

Step 4: If qi is less than q(zi), which is the reservoir discharge capacity when the water
level is zi, proceed to Step 5; otherwise, set qi = q(zi).

Step 5: Let i = i + 1. If i < T, where T is the verification sample period count, return to
Step 2; otherwise, end the operation.

The real-time operation procedure is illustrated in Figure 1.
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3. Case Study
3.1. Study Area

The Rizhao Reservoir was used as a case study for the application of the proposed
DT-based rule in this study. This reservoir is located 16 km west of Donggang District,
Rizhao City in Shandong Province, China, and belongs to the upper and middle reaches
of the Futuan River. Construction of the Rizhao Reservoir began in October 1958 and
was completed in June 1959. It is a large type-II reservoir with multi-year regulation
used mainly to provide flood control and irrigation in combination with aquaculture,
power generation, water supply, and other secondary objectives. The climate of the Rizhao
Reservoir basin generally exhibits the characteristics of humid and semi-humid regions.
Other basic parameters of the reservoir are shown in Table 1.
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Table 1. Basic parameters of the Rizhao Reservoir.

Items Unit Reservoir

Catchment area km2 548
Total storage 108 m3 3.1805

Active storage 108 m3 1.8232
Design standard % 1
Check standard % 0.02

Checked flood level m 46.51
Designed flood level m 44.02
Normal water level m 42.5

Flood limited water level m 42

To ensure safety downstream of the Rizhao Reservoir, two control discharges and two
high-volume discharge states have been established: when the water level Z ≤ 43.46 m,
the control discharge is 1000 m3/s; when 43.46 m < Z ≤ 43.79 m, the control discharge is
1900 m3/s; when 43.79 m < Z ≤ 44.02 m, the spillway sluices are completely opened; and
when Z > 44.02 m, the spillway sluices and the north water release tunnel are completely
opened together.

3.2. Flood Control Operation Dataset for the Rizhao Reservoir

Based on the historical operation data, 44 floods in 1970, 1974, 1975, 1976, 1998, and
2001–2021 were used as operation data, all of which required discharge by the spillway
sluices. As the Rizhao Reservoir has high regulation performance and ensures downstream
safety, the flood volume plays a major role in flood operation. In contrast, according to the
climate characteristics of the reservoir basin, precipitation is unevenly distributed through-
out the year. The flood season lasts from June to September, during which approximately
80% of annual precipitation is received; approximately 60% of annual precipitation is
received in July and August alone. The non-flood season lasts from November to April
of the following year, during which little precipitation is received. Considering the above
characteristics, the flood occurrence time, reservoir water level, cumulative net rainfall,
and discharge were taken as the attributes in the flood control operation dataset; the first
three of these attributes were defined as conditional attributes and the last attribute was
defined as the decision attribute.

3.3. Construction of DT-Based Rules for the Rizhao Reservoir

Forty floods occurring in 1970, 1974, 1975, 1976, 1998, and 2001–2018 were included
in the training sample while four floods occurring in 2019–2021 were used as verification
samples. First, the flood occurrence times, initial water levels, cumulative net rainfall, and
discharges in the 40 floods constituting the training sample were sorted and classified
for use as the flood control operation dataset. When the information gain rate was at its
maximum, the classification of flood occurrence time, initial water level, cumulative net
rainfall, and discharge were as shown in Tables 2 and 3. Owing to the uneven distribution
of precipitation in the Rizhao Reservoir basin, its hydrological year was divided into three
stages: June and September, July to August, and October to May of the following year,
as shown in Table 2. Finally, the flood control operation dataset was input into the C4.5
algorithm to generate the DT-based rules for Rizhao Reservoir operation, as shown in
Figure 2. It can be seen in Figure 2 that, (1) in the case of the same initial water level
and cumulative net rainfall, the discharge in the flood season is greater than that in the
non-flood season and, (2) the higher the initial water level and cumulative net rainfall, the
greater the discharge.
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Table 2. Classification of cumulative net rainfall.

Flood Occurrence Time
Classification/mm

Grade 1 Grade 2 Grade 3 Grade 4

June and September [0,170) [170,275) [275,340) ≥340
July to August [0,153) [153,248) [248,306) ≥306

October to May of the next year [0,191) [191,310) [310,382) ≥382

Table 3. Classification of all attributes.

Grade Flood Occurrence Time Initial Water
Level/m

Cumulative Net
Rainfall/mm Discharge/m3/s

Grade 1 June and September ≤Zlimit

As show in
Table 2

≤100
Grade 2 July to August (Zlimit,42.91] (100,1000]

Grade 3 October to May of the
next year >42.91 (1000,2000]

Grade 4 (2000,2500]
Grade 5 >2500

Note: Zlimit represents the flood limited water level.
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3.4. Results and Discussion

The discharges and water levels of the four verification samples were obtained ac-
cording to the real-time operation procedure depicted in Figure 1 and are plotted together
with the measured inflows, discharges, and water levels in Figures 3–6. The maximum
discharge and water level are listed in Table 4, in which 1© represents flood regulation
results obtained using the DT-based rules, 2© represents the measured values, and 3©
represents the flood regulation results based on the conventional operation rules. The
relative errors of the maximum discharge and maximum water level reported in Table 4
were determined, respectively, by the following:

rq =
|qmaxDT − qmax|

qmaxDT
× 100% (5)

zq =
|zmaxDT − zmax|

zmaxDT
× 100% (6)

where qmaxDT is the maximum discharge according to DT-based rules; zmaxDT is the maxi-
mum water level according to DT-based rules; qmax is the measured maximum discharge
or the maximum discharge determined by the conventional operation rules; and zmax
is the measured maximum water level or the maximum water level determined by the
conventional operation rules.
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Figure 6. Operation hydrographs for 26 Aug 2021.

Table 4. Maximum discharges and water levels according to operating schemes.

Items Flood Number
1© DT-Based

Rules
2© Measured

Data
3© Conventional

Operation Rules

Relative Error
between 1© and

2© (%)

Relative Error
between 1© and

3© (%)

Maximum
discharge (m3/s)

12 Aug 2019 1200 1140 1900 5.0 58.33
22 July 2020 421 523 1000 24.23 137.53
13 Aug 2021 580 605 1000 4.34 72.41
26 Aug 2021 314 315 1000 0.32 218.46

Maximum water
level (m)

12 Aug 2019 43.69 43.82 43.48 0.3 0.48
22 July 2020 42.19 42.34 42.22 0.36 0.07
13 Aug 2021 42.75 42.74 42.51 0.02 0.56
26 Aug 2021 42.86 42.90 42.8 0.09 0.14

Note: 12 Aug 2019 is the flood number, which represents that the rainfall of the flood began on 12 August 2019.

The results shown in Table 4 are discussed below for each verification sample.

(1) For the 12 Aug 2019 flood, the maximum discharge of the operating scheme for-
mulated using the conventional operation rules was the largest, followed by that
of the operating scheme formulated using the DT-based rules, while the measured
maximum discharge was the smallest; the relative error between 1© and 2© was small
(5.0%), whereas the relative error between 1© and 3© was large, reaching 58.33%. The
measured maximum water level was the largest, followed by the maximum water
level of the operating scheme formulated using the DT-based rules, while that of
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the operating scheme formulated using the conventional operation rules was the
smallest; the relative errors between 1© and 2© and between 1© and 3© were both
small (0.3% and 0.48%, respectively). It can be observed that the operating scheme
formulated using the conventional operation rules was the best in terms of reservoir
safety because its maximum water level was the smallest. However, this condition
was the most unsafe downstream because the corresponding maximum discharge
was the largest. The measured operating scheme was the best in terms of downstream
safety because its maximum discharge was the smallest. However, this condition
exhibited the highest maximum water level, indicating that it was the worst operating
scheme in terms of reservoir safety. The maximum discharge and maximum water
level provided by the operating scheme formulated using the DT-based rules were
between those of the measured values and the operating scheme formulated using the
conventional operation rules. At the same time, the maximum discharge of 1200 m3/s
provided by the operating scheme formulated using the DT-based rules remained
below the controlled discharge of 1900 m3/s, indicating that it realized a suitable
compromise and is therefore feasible.

(2) For the 22 July 2020 flood, the maximum discharge of the operating scheme formu-
lated using the conventional operation rules was the largest, followed by the measured
maximum discharge, while the maximum discharge of the operating scheme formu-
lated using the DT-based rules was the smallest; the relative error between 1© and
2© was small (24.23%) whereas the relative error between 1© and 3© was large, reach-

ing 137.53%. The measured maximum water level was the largest, followed by the
maximum water level of the operating scheme formulated using the conventional
operation rules, while that of the operating scheme formulated using DT-based rules
was the smallest; the relative errors between 1© and 2© and between 1© and 3©were
both small (0.36% and 0.07%, respectively). It can be observed that the operating
scheme formulated using the DT-based rules was the best in terms of both reservoir
safety and downstream safety because its water level and discharge were simulta-
neously the smallest. At the same time, the discharge of 421 m3/s dictated by the
operating scheme formulated using the DT-based rules was less than the control
discharge of 1000 m3/s, confirming that this operating scheme was indeed the best
among the three evaluated for this flood.

(3) For the 13 Aug 2021 flood, the maximum discharge of the operating scheme formu-
lated using the conventional operation rules was the largest, followed by the measured
maximum discharge, while the maximum discharge of the operating scheme formu-
lated using the DT-based rules was the smallest; the relative error between 1© and 2©
was small (4.34%), whereas the relative error between 1© and 3©was large, reaching
72.41%. The maximum water level of the operating scheme formulated using the
DT-based rules was the largest, followed by the measured maximum water level,
while that of the operating scheme formulated using the conventional operation rules
was the smallest; the relative errors between 1© and 2© and between 1© and 3©were
both small (0.02% and 0.56%, respectively). It can be observed that the operating
scheme formulated using the conventional operation rules was the best in terms of
reservoir safety because its maximum water level was the smallest. However, this
condition was the most unsafe downstream because the corresponding maximum
discharge was the largest. The operating scheme formulated using the DT-based
rules was the best in terms of downstream safety because its maximum discharge
was the smallest. However, this condition exhibited the highest maximum water
level, indicating that it was the worst operating scheme in terms of reservoir safety.
The difference between the maximum water level provided by the operating scheme
formulated using the DT-based rules and the measured maximum water level is very
small, that is 0.01 m, and the maximum discharge of 580 m3/s is below the controlled
discharge of 1000 m3/s, indicating that it is a feasible scheme.
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(4) For the 26 Aug 2021 flood, the maximum discharge of the operating scheme formu-
lated using the conventional operation rules was the largest, followed by the measured
maximum discharge, while the maximum discharge of the operating scheme formu-
lated using the DT-based rules was the smallest; the relative error between 1© and 2©
was small (0.32%), whereas the relative error between 1© and 3©was large, reaching
218.46%. The measured maximum water level was the largest, followed by the maxi-
mum water level of the operating scheme formulated using the DT-based rules, while
that of the operating scheme formulated using the conventional operation rules was
the smallest; the relative errors between 1© and 2© and between 1© and 3©were both
small (0.09% and 0.14%, respectively). It can be observed that the operating scheme
formulated using the conventional operation rules was the best in terms of reservoir
safety because its maximum water level was the smallest. However, this condition
was the most unsafe downstream because the corresponding maximum discharge
was the largest. The operating scheme formulated using the DT-based rules was the
best in terms of downstream safety because its maximum discharge was the smallest.
The maximum water level provided by the operating scheme formulated using the
DT-based rules were between those of the measured values and the operating scheme
formulated using the conventional operation rules. At the same time, the maximum
discharge of 314 m3/s provided by the operating scheme formulated using the DT-
based rules remained below the controlled discharge of 1000 m3/s, indicating that it
is a feasible scheme.

In summary, the operating scheme formulated using DT-based rules was shown to
be feasible and, in some cases, better than the actual operating scheme and a scheme
formulated using conventional operation rules.

4. Conclusions

In this paper, the DT algorithm was applied to formulate reservoir flood control
operation rules that fully consider the influence of reservoir management experience,
climate factors, and subsurface conditions of the watershed on discharge, realizing a fast
and effective operating scheme that responds to various inflow scenarios under different
hydrological periods. The following conclusions were obtained from this study:

(1) The C4.5 algorithm was used to construct DT-based flood control operation rules for
a reservoir. This algorithm has the advantages of easy implementation and strong
operability and fully considers the influence of the climate and underlying surface
conditions of the watershed as well as the operating experience of management in the
process of constructing an operating scheme.

(2) As can be seen from the results of the four verification samples, the maximum dis-
charges of the operating schemes formulated using the DT-based rules with the flood
number 22 July 2020, 13 Aug 2021, and 26 Aug 2021 are the smallest; the maximum
discharge with the flood number 12 Aug 2019 is smaller than that of the operating
scheme formulated using the conventional operation rules and only 5% larger than the
measured maximum discharge. The maximum water levels of the operating schemes
formulated using the DT-based rules with the flood numbers 12 Aug 2019 and 26 Aug
2021 are between those of the measured values and the operating scheme formulated
using the conventional operation rules; the maximum water level with the flood
number 22 July 2020 is the smallest; the maximum water level with the flood number
13 Aug 2021 is only 0.02% larger than the measured maximum value. To sum up,
the operating scheme formulated using the DT-based rules was feasible and, in some
cases, superior to the actual operating scheme and an operating scheme based on
conventional operation rules. Among optimization algorithms, DT-based rules have
the advantages of strong and convenient adaptability, allowing decision makers to
guide real-time reservoir operation. Therefore, the DT-based method for constructing
reservoir flood control operation rules proposed in this paper can provide practical
guidance for the real-time operation of reservoirs.
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(3) In this paper, only one reservoir is taken as an example, and future research should
be popularized and applied in more reservoirs and reservoir group systems to verify
the feasibility and effectiveness of this method.

Author Contributions: Conceptualization, Y.D. and Y.L.; methodology, Y.D. and H.W.; investigation,
Y.D. and C.W.; data curation, C.W.; writing—original draft preparation, Y.D. and H.W.; writing—
review and editing, Y.L.; funding acquisition, Y.D. and Y.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Key Technology Research and Development Program of
Shandong Province, grant number 2019GSF111043; the National Key Research and Development
Program of China, grant number 2018YFC1508104; the National Natural Science Foundation of
China, grant number 52079079; and the Natural Science Foundation of Jiangsu Province, grant
number BK20191129.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets used and/or analyzed during the current study are
available from the corresponding author upon reasonable request.

Acknowledgments: We express our deepest gratitude to the Rizhao Reservoir Management and
Operation Center for their help in data support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Typical Cases Dataset of Global Major Flood Disasters in 1989–2018. Available online: https://blog.csdn.net/Galaxyhx/article/

details/115579737 (accessed on 15 November 2021).
2. Jiang, Z.; Jiang, W.; Wu, J.; Zhou, H. Typical Case Dataset of Major Global Flood Disasters (2018.01–2018.12); National Tibetan

Plateau Data Center: Beijing, China, 2018; Available online: https://doi.org/10.11888/Disas.tpdc.270209 (accessed on 15
November 2021).

3. Commission Internationale des Grands Barrages. Number of Dams by Country Members; CIGB: Paris, France, 2021; Available online:
https://www.icold-cigb.org/article/GB/world_register/general_synthesis/number-of-dams-by-country-members (accessed
on 14 December 2021).

4. World Commission on Large Dams. Dams and Development; World Commission on Large Dams: London, UK, November 2000.
5. Iosvany, R.V.; Jose, B.M.R.; Jose, L.M.; Jose-Luis, M.; Julio, C.P.T. Multiobjective optimization modeling approach for multipurpose

single reservoir operation. Water 2018, 10, 427.
6. Jiang, W.Q. Graphic method for flood control operation of small and medium reservoirs. Water Conserv. Manag. Technol. 1996, 1,

53–55.
7. Wang, Y.; Guo, S.L.; Yang, G.; Hong, X.J.; Ting, H.U. Optimal early refill rules for Danjiangkou Reservoir. Water Sci. Eng. 2014, 7,

403–419.
8. Ma, L.J.; Wang, H.; Lu, B.H.; Qi, C.J. Application of strongly constrained space particle swarm optimization to optimal operation

of a reservoir system. Sustainability 2018, 10, 4445. [CrossRef]
9. Windsor, J.S. Optimization model for the operation of flood control systems. Water Resour. Res. 1973, 9, 1219–1226. [CrossRef]
10. Wang, J.M. Brief introduction of optimal food control operation model of Danjiangkou reservoir. Water Resour. Hydropower Eng.

1985, 8, 17–23.
11. Needham, J.T.; Watkins, D.W.; Lund, J.R.; Nanda, S.K. Linear programming for flood control in the Iowa and Des Moines Rivers.

J. Water Resour. Plan. Manag. 2000, 126, 118–127. [CrossRef]
12. Young, J.K. Finding reservoir operating rules. J. Hydraul. Div. Am. Soc. Civ. Eng. 1993, 6, 297–321. [CrossRef]
13. Becker, L.; Yeh, W.W.G. Optimization of real time operation of a multiple-reservoir system. Water Resour. Res. 1974, 10, 1107–1112.

[CrossRef]
14. Sckultz, G.A.; Plate, E.J. Developing operating rules for flood protection reservoirs. J. Hydrol. 1976, 28, 245–264. [CrossRef]
15. Howson, H.R.; Sancho, N.G.F. A new algorithm for the solution of multi-state dynamic programming problems. Math. Program.

1975, 8, 114–116. [CrossRef]
16. Fu, X.; Ji, C.M. Optimal operation model of flood control system and its application. J. Hydraul. Eng. 1998, 5, 49–53.
17. Hu, Z.P.; Feng, S.Y. Dynamic programming model and forward rolling decision-making method for real-time operation of flood

control system in the middle and lower reaches of Hanjiang River. Water Resour. Hydropower Eng. 1988, 1, 2–10.
18. Ji, C.; Li, C.; Wang, B.; Liu, M.; Wang, L. Multi-stage dynamic programming method for short-term cascade reservoirs optimal

operation with flow attenuation. Water Resour. Manag. 2017, 31, 4571–4586. [CrossRef]

https://blog.csdn.net/Galaxyhx/article/details/115579737
https://blog.csdn.net/Galaxyhx/article/details/115579737
https://doi.org/10.11888/Disas.tpdc.270209
https://www.icold-cigb.org/article/GB/world_register/general_synthesis/number-of-dams-by-country-members
http://doi.org/10.3390/su10124445
http://doi.org/10.1029/WR009i005p01219
http://doi.org/10.1061/(ASCE)0733-9496(2000)126:3(118)
http://doi.org/10.1061/JYCEAJ.0001714
http://doi.org/10.1029/WR010i006p01107
http://doi.org/10.1016/0022-1694(76)90070-6
http://doi.org/10.1007/BF01580431
http://doi.org/10.1007/s11269-017-1766-7


Water 2021, 13, 3654 13 of 14

19. Larson, R.E. State Incremental Dynamic Programming; Elsevier: New York, NY, USA, 1968.
20. Yeh, W.W.G.; Becker, L.; Chu, W.S. Real-time hourly reservoir operation. J. Water Resour. Plan. Manag. Div. Am. Soc. Civ. Eng.

1979, 105, 187–203. [CrossRef]
21. Cervellera, C.; Chen, V.C.P.; Wen, A. Optimization of a large-scale water reservoir network by stochastic dynamic programming

with efficient state space discretization. Eur. J. Oper. Res. 2006, 171, 1139–1151. [CrossRef]
22. Li, X.; Wei, J.; Li, T.; Wang, G.; William, W.G. A parallel dynamic programming algorithm for multi-reservoir system optimization.

Adv. Water Resour. 2014, 67, 1–15. [CrossRef]
23. Zhu, D.; Mei, Y.; Xu, X.; Chen, J.; Ben, Y. Optimal operation of complex flood control system composed of cascade reservoirs,

navigation-power junctions, and flood storage areas. Water 2020, 12, 1883. [CrossRef]
24. Momtahen, S.; Dariane, A.B. Direct search approaches using genetic algorithms for optimization of water reservoir operating

policies. J. Water Resour. Plan. Manag. 2007, 133, 202–209. [CrossRef]
25. Albo-Salih, H.; Mays, L. Testing of an optimization-simulation model for real-time flood operation of river-reservoir systems.

Water 2021, 13, 1207. [CrossRef]
26. Ahmadi, M.; Bozorg, H.O.; Marino, M.A. Extraction of flexible multi-objective real-time reservoir operation rules. Water Resour.

Manag. 2014, 28, 131–147. [CrossRef]
27. Lin, N.M.; Tian, X.; Rutten, M.; Abraham, E. Multi-objective model predictive control for real-time operation of a multi-reservoir

system. Water 2020, 12, 1898. [CrossRef]
28. Liu, D.; Huang, Q.; Yang, Y.; Liu, D.; Wei, X. Bi-Objective algorithm based on NSGA-II framework to optimize reservoirs operation.

J. Hydrol. 2020, 585, 124830. [CrossRef]
29. Reddy, M.J.; Nagesh Kumar, D. Multi-objective particle swarm optimization for generating optimal trade-offs in reservoir

operation. Hydrol. Process. 2010, 21, 2897–2909. [CrossRef]
30. Xie, W.; Ji, C.; Wu, Y.; Li, X. Particle swarm optimization based on cultural algorithm for flood optimal scheduling of hydropower

reservoir. J. Hydraul. Eng. 2010, 41, 452–457.
31. Kumar, D.N.; Reddy, M.J. Ant colony optimization for multi-purpose reservoir operation. Water Resour. Manag. 2020, 6, 879–898.

[CrossRef]
32. Afshar, A.; Sharifi, F.; Jalali, M.R. Applying the non-dominated archiving multi-colony ant algorithm for multi-objective

optimization: Application to multi-purpose reservoir operation. Engng. Optim. 2009, 41, 313–325. [CrossRef]
33. Chaves, P.; Chang, F.J. Intelligent reservoir operation system based on evolving artificial neural networks. Adv. Water Resour.

2008, 31, 926–936. [CrossRef]
34. Deka, P.C.; Chandramouli, V. Fuzzy Neural Network Modeling of Reservoir Operation. J. Water Resour. Plan. Manag. 2009, 135,

5–12. [CrossRef]
35. Khalil, A.; McKee, M.; Kemblowski, M.; Asefa, T. Sparse Bayesian learning machine for real-time management of reservoir

releases. Water Resour. Res. 2005, 41, 4844–4847. [CrossRef]
36. Teegavarapu, R.S.V.; Simonovic, S.P. Optimal operation of reservoir systems using simulated annealing. Water Resour. Manag.

2002, 16, 401–428. [CrossRef]
37. Luo, J.; Chen, C.; Xie, J. Multi-objective immune algorithm with preference-based selection for reservoir flood control operation.

Water Resour. Manag. 2014, 29, 1447–1466. [CrossRef]
38. Qi, Y.; Bao, L.; Ma, X.; Miao, Q.; Li, X. Self-adaptive multi-objective evolutionary algorithm based on decomposition for large-scale

problems: A case study on reservoir flood control operation. Inf. Sci. 2016, 367–368, 529–549. [CrossRef]
39. Zhang, X.; Luo, J.; Sun, X.; Xie, J. Optimal reservoir flood operation using a decomposition-based multi-objective evolutionary

algorithm. Eng. Optim. 2019, 51, 42–62. [CrossRef]
40. Qin, H.; Zhou, J.; Lu, Y.; Li, Y.; Zhang, Y. Multi-objective cultured differential evolution for generating optimal trade-offs in

reservoir flood control operation. Water Resour. Manag. 2010, 24, 2611–2632. [CrossRef]
41. Liu, Y.; Qin, H.; Mo, L.; Wang, Y.; Chen, D.; Pang, S.; Yin, X. Hierarchical flood operation rules optimization using multi-objective

cultured evolutionary algorithm based on decomposition. Water Resour. Manag. 2019, 33, 337–354. [CrossRef]
42. Afshar, A.; Bozorg-Haddad, O.; Mario, M.A.; Adams, B. Honey-bee mating optimization (HBMO) algorithm for optimal reservoir

operation—ScienceDirect. J. Frankl. Inst. 2007, 344, 452–462. [CrossRef]
43. Wen, X.H.; Zhou, J.Z.; He, Z.Z.; Wang, C. Long-term scheduling of large-scale cascade hydropower stations using improved

differential evolution algorithm. Water 2018, 10, 383. [CrossRef]
44. Hormwichian, R.; Kangrang, A.; Lamom, A. A conditional genetic algorithm model for searching optimal reservoir rule curves. J.

Appl. Sci. 2009, 9, 3575–3580. [CrossRef]
45. Sreerama, K.M. Automatic construction of decision trees from data: A multidisciplinary survey. Data Min. Knowl. Discov. 1998, 2,

245–389.
46. Noymanee, J.; Theeramunkong, T. Flood forecasting with machine learning technique on hydrological modeling. Procedia Comput.

Sci. 2019, 156, 377–386. [CrossRef]
47. Pham, B.T.; Jaafari, A.; Phong, T.V.; Yen, H.P.H.; Tuyen, T.T.; Luong, V.V.; Nguyen, H.D.; Le, H.V.; Foong, L.K. Improved flood

susceptibility mapping using a best first decision tree integrated with ensemble learning techniques. Geosci. Front. 2020, 12,
101105. [CrossRef]

http://doi.org/10.1061/JWRDDC.0000102
http://doi.org/10.1016/j.ejor.2005.01.022
http://doi.org/10.1016/j.advwatres.2014.01.002
http://doi.org/10.3390/w12071883
http://doi.org/10.1061/(ASCE)0733-9496(2007)133:3(202)
http://doi.org/10.3390/w13091207
http://doi.org/10.1007/s11269-013-0476-z
http://doi.org/10.3390/w12071898
http://doi.org/10.1016/j.jhydrol.2020.124830
http://doi.org/10.1002/hyp.6507
http://doi.org/10.1007/s11269-005-9012-0
http://doi.org/10.1080/03052150802460414
http://doi.org/10.1016/j.advwatres.2008.03.002
http://doi.org/10.1061/(ASCE)0733-9496(2009)135:1(5)
http://doi.org/10.1029/2004WR003891
http://doi.org/10.1023/A:1021993222371
http://doi.org/10.1007/s11269-014-0886-6
http://doi.org/10.1016/j.ins.2016.06.005
http://doi.org/10.1080/0305215X.2018.1439942
http://doi.org/10.1007/s11269-009-9570-7
http://doi.org/10.1007/s11269-018-2105-3
http://doi.org/10.1016/j.jfranklin.2006.06.001
http://doi.org/10.3390/w10040383
http://doi.org/10.3923/jas.2009.3575.3580
http://doi.org/10.1016/j.procs.2019.08.214
http://doi.org/10.1016/j.gsf.2020.11.003


Water 2021, 13, 3654 14 of 14

48. Merz, B.; Kreibich, H.; Lall, U. Multi-variate flood damage assessment: A tree-based data-mining approach. Nat. Hazards Earth
Syst. Sci. 2013, 13, 53–64. [CrossRef]

49. Nafari, R.H.; Ngo, T.; Mendis, P. An assessment of the effectiveness of tree-based models for multi-variate flood damage
assessment in Australia. Water 2016, 8, 282. [CrossRef]

50. Kind, J.M.; Baayen, J.H.; Botzen, W.W.J. Benefits and limitations of real options analysis for the practice of river flood risk
management. Water Resour. Res. 2018, 54, 3018–3036. [CrossRef]

51. Collet, L.; Beevers, L.; Stewart, M.D. Decision-making and flood risk uncertainty: Statistical data set analysis for flood risk
assessment. Water Resour. Res. 2018, 54, 7291–7308. [CrossRef]

52. Chen, J.L.; Huang, G.R.; Chen, W.J. Towards better flood risk management: Assessing flood risk and investigating the potential
mechanism based on machine learning models. J. Environ. Manag. 2021, 293, 112810. [CrossRef]

53. Gao, Y.Y.; Zhang, X.M.; Zhang, X.Y.; Li, D.; Yang, M.; Tian, J. Application of NSGA-II and improved risk decision method for
integrated water resources management of Malian River Basin. Water 2019, 11, 1650. [CrossRef]

54. Sikorska, A.E.; Viviroli, D.; Seibert, J. Flood-type classification in mountainous catchments using crisp and fuzzy decision trees.
Water Resour. Res. 2015, 51, 7959–7976. [CrossRef]

55. Mehr, A.D. Drought classification using gradient boosting decision tree. Acta Geophys. 2021, 69, 909–918. [CrossRef]
56. Lee, S.; Ji, H.W. Proactive management of water quality in aquifer storage transfer and recovery. Proc. Eng. Technol. Innov. 2016, 4,

25–27.
57. Oz, N.; Topal, B.; Uzun, H.I. Prediction of water quality in Riva River Watershed. Ecol. Chem. Eng. 2019, 26, 727–742. [CrossRef]
58. Xi, S.F.; Wang, B.D.; Liang, G.H.; Li, X.S.; Lou, L.L. Inter-basin water transfer-supply model and risk analysis with consideration

of rainfall forecast information. Sci. China Technol. Sci. 2010, 12, 3316–3323. [CrossRef]
59. Zhang, Z.B.; Zhang, S.H.; Geng, S.M.; Jiang, Y.Z.; Li, H.; Zhang, D.W. Application of decision trees to the determination of the

year-end level of a carryover storage reservoir based on the iterative dichotomizer. Int. J. Elec. Power 2015, 64, 375–383. [CrossRef]
60. Vaheddoost, B.; Aksoy, H.; Abghari, H. Prediction of water level using monthly lagged data in Lake Urmia, Iran. Water Resour.

Manag. 2016, 30, 4951–4967. [CrossRef]
61. Parvez, I.; Shen, J.S.; Hassan, I. Generation of hydro energy by using data mining algorithm for cascaded hydropower plant.

Energies 2021, 14, 298. [CrossRef]
62. Quinlan, J.R. Induction of decision trees. Mach. Learn. 1989, 1, 81–106. [CrossRef]
63. Quinlan, J.R. C4.5: Programs for Machine Learning; Morgan Kaufmann Publishers: San Mateo, CA, USA, 1993.
64. Chang, H.; Hu, X.L.; Zhang, Y.Y. Strategy of selecting original configuration for satellite constellation using CART algorithm. J.

Huazhong Univ. Sci. Technol. 2011, 39, 1–5.
65. Benkercha, R.; Moulahoum, S. Fault detection and diagnosis based on C4.5 decision tree algorithm for grid connected PV system.

Sol. Energy 2018, 173, 610–634. [CrossRef]

http://doi.org/10.5194/nhess-13-53-2013
http://doi.org/10.3390/w8070282
http://doi.org/10.1002/2017WR022402
http://doi.org/10.1029/2017WR022024
http://doi.org/10.1016/j.jenvman.2021.112810
http://doi.org/10.3390/w11081650
http://doi.org/10.1002/2015WR017326
http://doi.org/10.1007/s11600-021-00584-8
http://doi.org/10.1515/eces-2019-0051
http://doi.org/10.1007/s11431-010-4170-6
http://doi.org/10.1016/j.ijepes.2014.06.073
http://doi.org/10.1007/s11269-016-1463-y
http://doi.org/10.3390/en14020298
http://doi.org/10.1007/BF00116251
http://doi.org/10.1016/j.solener.2018.07.089

	Introduction 
	Proposed Method 
	DT Algorithm 
	Construction of DT-Based Flood Control Operation Rules 
	Generation of Reservoir Flood Control Operation Dataset 
	Construction of DT-Based Rules 

	Real-Time Operation Procedure 

	Case Study 
	Study Area 
	Flood Control Operation Dataset for the Rizhao Reservoir 
	Construction of DT-Based Rules for the Rizhao Reservoir 
	Results and Discussion 

	Conclusions 
	References

