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Abstract: Widely used conservative approaches for risk-based assessments of the subsurface trans-
port processes have been calculated using simple analytical equations or general default values.
Higher-tier risk assessment of contaminated sites requires the numerical models or additional
site-specific values for input parameters. Previous studies have focused on the development of so-
phisticated models fit into risk-based frameworks. Our study mainly aims to explore the applicability
of site-specific parameters and to modify the risk-based fate and transport model according to the
types of the site-specific parameters. To apply the modified fate and transport equation and the
site-specific default infiltration range, this study assessed the source depletion, leachate concentra-
tions, and exposure concentration of benzene, which is a representative organic contaminant. The
numerical models consist of two continuous processes, the fate and transport of contaminants from
(1) the soil to the groundwater table in the vadose zone and subsequently (2) from the groundwater
table to exposure wells in the saturated zone. Spatially varied Korean domestic recharge data were
successfully incorporated into site-specific infiltration parameters in the models. The numerical sim-
ulation results were expressed as transient time series of concentrations over time. Results presented
the narrow range of predicted concentrations at the groundwater table when site-specific infiltration
was applied, and the dilution–attenuation factors for the unsaturated zone (DAFunsat) were derived
based on the prediction. When a contaminant travels to the longest path length of 10 m with a source
depth of 1 m in the vadoze zone, the simulated DAFunsat ranged from 3 to 4. The highest DAFunsat

simulation results are close to 1 when contaminants travel to a source depth of 5 m and the shortest
path length of 1 m. In the saturated aquifer below the contaminated sites, the variation in exposure
concentration with time at monitoring wells is detected differently depending on the depth of the
saturated zone.

Keywords: high-tiered risk assessment; fate and transport; source depletion; site-specific parameter;
dilution-attenuation factor

1. Introduction

The Soil Screening Guidance for risk-based soil screening levels (SSLs) of the United
States Environmental Protection Agency (USEPA) provides a framework for screening
contaminated soils [1]. For instance, the EPA selected a default dilution and attenuation
factor (DAF), which is defined as the ratio of the source zone concentration to the receptor
point concentration, of 20 for U.S. alluvial aquifers based on the EPACMTP model [2]. The
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standard DAF value of 20 can be used to assess risk at contaminated sites when site-specific
pathways through the subsurface cannot be identified. Risk-based corrective action (RBCA)
has been developed as specific guidelines by the American Society for Testing and Materials
(ASTM) for the remediation of contaminated sites within a systematic framework for risk
assessment [3]. The RBCA selection guidance states that fate and transport modeling
can be used in the RBCA processes to predict and quantify migrations of chemicals (or
constituents) in the environment. The guidelines recommend a tiered approach toward
establishing cleanup and management measures based on site-specific characteristics [3].

Based on RBCA selection guidance for tiered approaches, the fate and transport
processes consist of advection, dispersion, degradation, and partitioning between solid
and fluid as a result of sorption/solubility/chemical reactions, biodegradation, and phase
separation of immiscible liquids [3]. In general, numerical models are limited to Tier 3
analyses, which is the highest tier among tiered approaches. Lower-tier models consider
steady-state infiltration without biodegradation processes. The conservative approach to
calculating the exposure concentration assumes that dissolved contaminants move from the
soil to the groundwater-saturated zone without dilution or reduction during transport [2].
Higher-tier analysis may require the use of more sophisticated analytical models to describe
the fate and transport or the use of rather simplified models with additional site-specific
values for input parameters [3]. These data include the characteristics and monitoring
data of each contaminated site, conservative forecasts of potential pollution levels, and
pollutant movement after treatment and reasonable maximum exposure scenarios.

To evaluate the behaviors of contaminants in such an environment, contaminant
transport has been experimentally investigated [4,5], and sophisticated analytical or nu-
merical studies were conducted using vadose zone modeling software such as Pearl [6],
Hydrus [6], and VLEACH [7]. In addition, precise analytical solutions, such as those
proposed by the Korea Environmental Institute (KEI), use the two-dimensional subsur-
face flow, fate, and transport of microbes and chemicals (2DFATMIC) model based on
Lagrangian–Eulerian adaptive zooming and peak capturing algorithm for numerical sim-
ulation [8]. Jang and Aral [9] simulated density-driven flow to describe the vertical flow
of trichloroethylene (TCE), which is a representative contaminant of dense non-aqueous
phase liquids (DNAPLs). Site-specific parameters including geological and hydrological
factors can be considered to affect fate and transport from soil to groundwater. Several
site-specific factors can be used for the estimation of risk [10], such as the heterogeneity of
the soil structure [11], interference of perched water with vertical flow [12], non-equilibrium
transport and preferential flow [13], the existence of a non-aqueous phase liquid (NAPL)
source [14–18], water table fluctuation (WTF) [19–21], and capillary fringe [22,23].

The numerical modeling of pathways for contaminants in the subsurface in risk
assessment frameworks has been attempted in recent studies [24–27]. An appropriate
mathematical model must be selected to simulate the transport, dilution, and reduction of
pollutants in the subsurface environment. Complex evaluation processes were conceptual-
ized, and representative (conservative) input parameter values were selected to describe
the site characteristics [24,26,27]. Ryu [25] analyzed the behaviors of contaminants such as
benzene, toluene, ethylbenzene, and xylenes (BTEX) as well as total petroleum hydrocar-
bons (TPHs) in the unsaturated zone and modified the behaviors in the conceptualized
saturated aquifer implemented by numerical simulation. Based on the dilution reduction
model presented by the ASTM, Verginelli and Baciocchi [24] simulated the depletion of
BTEX in the unsaturated zone and the effect of dilution reduction on the migration path.
They verified their model by comparing the concentrations of pollutants at the actual site
and considering source depletion, adsorption, and biodegradation. Recently, Mazzieri
et al. [27] tested steady-state and transient models to estimate the change in exposure
concentration and to established a tier-2-based analysis. Among these different tools, the
ASTM-type evaluation of the pathways in the unsaturated zone has recently been adopted
in other studies [24,27,28]. For example, Stoppiello [28] evaluated the fate and transport of
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five organic contaminants in the unsaturated zone in various soil conditions using several
analytical solutions.

One of the general assumptions in the lower-tiered approach is infinite sources without
losses over a period. This assumption may be oversimplified or too conservative for easily
volatile and degradable chemicals, such as benzene and naphthalene [25,29]. During field
studies, it is also important to characterize the source zone [20,30]. Feenstra et al. [31]
described a method for calculating the pore water concentration of soil using residual
NAPL. Garg et al. [32] showed that the reduction of contaminants via biodegradation
differs depending on the composition of hydrocarbons. Mackay et al. [33] showed that the
depletion of sources based on decomposition in the unsaturated zone is relatively higher
than that decomposition caused by transport from the groundwater at oil leak sites.

Default values are used for the chemical and physical properties of contaminants
and some properties of hydrogeological factors [2]. Site-specific input variables consider
hydraulic conductivity values reflecting soil characteristics, the soil pH, various biological
mechanisms, and seasonal changes from the unsaturated zone to the groundwater. In
Korea, the groundwater flow model in the unsaturated zone is actively used to understand
groundwater level fluctuations and predict the amount of groundwater recharge [34].

Infiltration rate is a parameter that affects the fate and transport of contaminants in
the unsaturated zone [24,25,35]. Verginelli and Baciocchi [24] considered infiltration factors
when simulating source depletion, and the leaching concentration eventually approaches
zero. Ryu [25] analytically conducted a sensitivity test by varying the infiltration rate from
10−6 to 1 m. As a result, the concentration of benzene at the water table of the unsaturated
zone was diluted and attenuated by 104 to 10. Chang et al. [35] considered the range of
infiltration from 0.05 to 1 m/year.

The determination process of the groundwater exposure concentration and the fol-
lowing input default values illustrated in the Korean soil risk assessment guidelines [36] is
mostly based on the Soil Screening Guidance for risk-based SSLs of the USEPA [1] based
on RBCA’s Tier 1 approaches [3]. The specific objectives of this study are to apply Korean
site-specific parameters to a risk-based framework. Based on previous studies that have
attempted to quantify the exposure concentration of the subsurface pathway in the risk
assessment framework [24,25,27,37], we explore high-tiered approaches of determination
of the benzene pathway in the subsurface at the contaminated sites by applying site-specific
parameters, especially infiltration data. The method considers (1) sophisticated temporal
evaluation in the numerical model and (2) site-specific input parameters using the Korean
domestic hydrological database. In the numerical simulations, two site-specific factors
in the governing equation were considered: (1) a leaching process considering source
depletion in the vadose zone at the contaminated sites and (2) the temporally varying
infiltration rate.

2. Method
2.1. Conceptualized Numerical Model to Simulate Pathways in the Unsaturated and Saturated
Zone

The key parameters for model input, simulation process, and expected output are
summarized in Figure 1. The simulation was conducted using a simplified conceptual
model with minimal input variables and various assumptions. Hydrogeological and chem-
ical input variables are selected for the flow and transport equations. As presented in
Figure 1, infiltration rate, source geometry (source depth and width), source mass and
concentration, soil physical properties (porosity, volumetric water contents, volumetric
air contents, fraction of organic carbon), and chemical properties (distribution coefficient,
Henry’s law constant) are selected as the key parameters in the unsaturated zone. The
model is simulated using a one-dimensional finite-difference model, and results are ex-
pressed in the concentration at water level in Darcy flux. As a next step, modeling of the
saturated aquifer is performed. Since the saturated model is a two-dimensional crosscut,
the width and depth of the model are required. The temporal concentration profile obtained
from the unsaturated zone is used as an input for the recharge in the saturated model.
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Then, assuming there is a monitoring well is installed, the concentration at the exposure
point can be observed. Biodegradation was not considered in this analysis.
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Figure 1. Flowchart for risk-based fate and transport simulations at contaminated sites.

Figure 2 displays the conceptual model for the unsaturated zone and the saturated
aquifer. The conceptual model has been developed by previous studies [2,27]. We simulated
the pathways of the dissolved concentration of benzene from the source to the groundwater
table and then the groundwater table to the exposure point. The saturated aquifer below the
contaminated site is often defined as a mixing zone because some conservative approaches
assume a mixed process in this area. We did not consider further migration out of the
mixing zone because geometry and complex boundary conditions in the flow system with
additional site investigation should be considered. Mazzieri et al. [27] also evaluated
the transport of contaminants from soil to the mixing zone to analyze the dilution of the
contaminants.
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saturated aquifer underneath the source zone.
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Model 1 was applied for evaluating the unsaturated zone, and it assumes the occur-
rence of one-dimensional fate and transport processes. In the model, the z-direction was
defined as the direction of gravity and the flow direction for a one-dimensional finite-
difference model. The model assumed unit length for the x-direction and y-direction of the
grids. The grid size of the z-direction was set to 0.1 m. The depth of the model was varied
from 1 to 10 m for the estimation of the DAF of the unsaturated zone. When the case study
was simulated, the length was then set to 1 m and 5 m, respectively.

In model 2, we simulated transport using a two-dimensional model for the saturated
aquifer that does not consider the horizontal geometry of the contaminant source. The
length of the contaminant source parallel to the groundwater was 50 m, and the depth
of the aquifer was 10 m. Therefore, the model domain was set to 50 m horizontally and
10 m vertically. A grid of ∆x = 5 m, ∆y = 1 m, and ∆z = 1 was built in 11 rows: 1 column
and 10 layers. Using the unit width of the column, the model can describe the crosscut of
the contaminated site shown in two-dimensional system. We assumed that groundwater
flowing in two directions flows through the model area and is discharged to the right
boundary, and the change in concentrations over time was monitored at the right boundary.
The left and right boundary conditions were fixed as head values and are 10.5 m and 10 m,
respectively. Recharge was set on the top of model 2 using the calculated concentration
from model 1. The transient model was run for 80 years with 80 stress periods. The length
of each stress period was set to 1 year. Migration out of the well (point of exposure) was
not considered in this study.

(1) Leaching from source

Analytical Equations (1)–(5) were used to calculate the concentration at the water
table. Verginelli and Baciocchi [24] established an integrated method to determine the
entire pathway of the contaminants from leaching to entering the groundwater as follows:

CL(0) =
Ct(

Kd +
θw+θa H′

ρb

) , (1)

where Ct is the soil exposure concentration (M/M), ρb (M/L3) is the volume density of the
soil, H′ is the dimensionless Henry’s constant, Kd (L3/M) is the soil distribution coefficient,
θw is the soil moisture content, and θa is the soil air content. If the calculated CL(0) value
exceeds the saturation concentration, it is replaced with the saturation concentration CL(0)
or the solubility value. The calculation for the soil distribution coefficient of organic contam-
inants is described below. The equation corresponding to the denominator of Equation (1)
is called the soil–water partition coefficient, KSW . Assuming an environment without
NAPL, the change in the concentration over time due to infiltration and biodegradation
can be expressed by the following equation:

CL(t) = CL(0)exp(−µt) (2)

µ =
I

(RdsρbKSW)
+

λsourceθw

(ρbKSW)
(3)

where ds is the thickness of the contaminant source [L], R is the retardation coefficient [L/M],
and λsource is the first-order biodegradation rate constant in the source [T−1]. The first term
in Equation (3) reflects the source depletion due to leaching. The second term expresses the
source depletion due to biodegradation, and µ is the source depletion coefficient expressed
as the sum of the two values.

If CL(0) calculated by Equation (1) exceeds the saturation concentration and is replaced
by the solubility value, Equation (2) can be rewritten as follows:

CL(t) = S i f t ≤ t∗ = S exp(−µ(t− t∗)) i f t > t∗, (4)
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where S is the solubility of the contaminant (M/L3) and t* (T) is the point at which the soil
discharge concentration decreases below the solubility due to the depletion of the source.

As Equations (3) and (4) reflect the average infiltration rate, we modified the equation
to incorporate the temporal change in infiltration:

CL(t) = CL(0)exp

(
−

n

∑
i

µi∆t

)
(5)

where µi is the decomposition constant calculated on the precipitation in the ith term among
stress periods of number n. In this study, the ith stress period refers to the ith year in the
simulation time.

(2) Fate and transport in the unsaturated zone (Model 1)—Soil to groundwater pathway

Models related to solute movement and behavior were used to predict advection,
dispersion, and diffusion adsorption and are expressed as a one-dimensional partial differ-
ential equation as shown in the following equation. The model assumes that the vertical
flow is dominant in the unsaturated subsurface. The equation is mainly based on the
transport–diffusion equation with linear sorption.

R
∂C
∂t

= −Vz
∂C
∂z

+
∂

∂z

(
Dz

∂C
∂z

)
(6)

where R [dimensionless] is the retardation factor in the unsaturated zone, Vz [LT−1] is
the vertical flow velocity of groundwater in the unsaturated zone, C [ML−3] is the solute
concentration, and Dz [L2T−1] is the hydraulic dispersion of the flow direction. The velocity
is calculated by dividing the infiltration rate by the porosity.

The boundary condition and the initial condition of the saturated model is shown
below:

at t = 0, C = 0 at all nodes;
at z = 0, C = CLexp(−µt);
at z = L, ∂C

∂z = 0.

(3) Fate and transport in the saturated aquifer (Model 2)—Groundwater transport path-
way

The contaminant pathways in the saturated zones are calculated based on the assump-
tion of groundwater saturation flow in a homogeneous medium. The governing equation
for flow in the saturated zone can be expressed as a partial differential equation as follows.

Ss
∂h
∂t

=
∂

∂x

(
K

∂h
∂x

)
+

∂

∂y

(
K

∂h
∂y

)
+

∂

∂x

(
K

∂h
∂z

)
+ W (7)

where h [L] is the groundwater head, K [LT−1] is the hydraulic conductivity, Ss [M−1LT2] is
the specific storage coefficient, t [T] is the time, W [LT−1] is the flow rate per unit volume
flowing into or out of the groundwater system, [T−1] is the source/sink, and x, y, and z are
Cartesian coordinates in which x and y are horizontal and z is vertical. D is the dispersion
coefficient [L2 T−1].

The left and boundary heads are fixed so that the head slope remains at 0.01. The
concentration and flux discharged from model 1 were used as input to areal recharge.

The governing equation for transport in the saturated zone can be expressed as a
partial differential equation as follows. The equation is based mainly on the transport-
diffusion equation with linear sorption. Decay is considered only in a case study.

R
∂C
∂t

= −Vx
∂C
∂x
−Vy

∂C
∂y
−Vz

∂C
∂z

+
∂

∂x

(
Dx

∂C
∂x

)
+

∂

∂y

(
Dy

∂C
∂y

)
+

∂

∂z

(
Dz

∂C
∂z

)
− λC (8)
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The boundary condition and the initial condition of the saturated model is shown
below:

at t = 0, C = 0 at all nodes;
at x = 0, C = 0;
at x = L, ∂C

∂x = 0.
The code used the hydrogeological default values presented in Table 1 as default

input variable values, which are based on the Korean soil risk assessment guideline [34].
The distance between the bottom of the source and water table, L, varies from 1 to 10
m, and the thickness of the contaminant source, D, varies 1 to 5 m in this study. The
first-order decay coefficient is set to zero. The guideline recommends a fraction of organic
carbon content, foc of 0.002, representing sandy soil types. The Korean Guideline by the
Ministry of Environment (MOE) [36] follows the guideline by EPA [2] for a dimensionless
Henry constant and distribution of coefficient values. The infiltration rate was applied by
calculating the range of the domestic areal-recharge rate that was nationally investigated.

Table 1. Summary of the model input parameters and default values.

Input Parameter Symbol Unit Default Values Reference

Distance between the bottom of the
source and water table L m

Thickness of the contaminant source D m
Effective infiltration i

Total porosity θ - 0.396 MOE [36]
Volumetric water content θw 0.16 MOE [36]

Volumetric air content θa 0.236 MOE [36]
Soil bulk density ρb g/cm3 1.57 MOE [36]

Fraction of organic carbon in soil foc - 0.002 MOE [36]
Distribution coefficient of benzene KOC L/kg 62 EPA [2]

Henry’s law constant H 0.228 EPA [2]
First-order decay (reaction)

coefficient λ 0

Groundwater hydraulic gradient ∂h
∂x 0.01

2.2. National Infiltration Data Acquisition for Model Input

To determine the range of effective infiltration rates that we can find in Korea, we
used the recharge data from the Korean groundwater survey conducted by the Ministry
of Land, Infrastructure, and Transport (MOLIT) and the MOE. This survey has been
conducted for 100 areas since 1997 to investigate the aquifer characteristics and assess
the water budget of groundwater resources by region. It also provides basic data on the
groundwater flow direction, groundwater recharge rate, groundwater vulnerability map,
and sustainable development [38]. In the processes related to the surveys, The Korea
Water Resources Corporation, Korea Institute of Geoscience and Mineral Resources, Korea
Institute of Construction Technology, Korea Groundwater, and the Geothermal Association
calculated the recharge amount introduced into the groundwater to evaluate the potential
groundwater development for each administrative district at the city and county levels.
Multiple analysis methods, such as water budget analysis, Natural Resources Conservation
Service (NRCS)-Curve Number (CN) [39], Water-Table Fluctuation (WTF) method [40],
Hybrid WTF [34,41], and Soil and Water Assessment (SWAT) [42] were selected depending
on the case.

Figure 3 shows the spatial distribution of precipitation, recharge, and recharge rate
surveyed since 1997 on the Korean peninsula. The graph shows data from basic surveys of
100 cities and counties conducted since 1997 that were collected by the Integrated Ground
Water Information Service [38]. In the survey, the region’s annual precipitation is described
as the average value for the last 30 years from the investigation. The map shows that
the spatial distribution of annual precipitation varies by region. The highest precipitation
occurred on the southern coast, whereas the dry region had annual precipitation of 1100 mm
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or less and was formed around the middle-eastern area. The recharge values and recharge
rate follow a pattern similar to the spatial distribution of precipitation by region. The white
color represents the areas that have not been investigated yet.
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Figure 3. Spatial map of the (a) precipitation, (b) recharge, and (c) recharge rate estimated based on Korean surveys
conducted from 1997 to 2020.

Figure 4 shows the histogram for the range of recharge values. The annual recharge
amount ranges from 96 to 384 mm, with a slightly right-skewed distribution. The values
mostly fall between 132 and 276 mm, with an average value of 23 areas with 174 mm and a
standard deviation of 55 mm.
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Figure 4. Histogram of the (a) precipitation, (b) recharge, and (c) recharge rate estimated surveyed in
Korea, conducted from 1997 to 2020.
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Chang et al. [35] conducted sensitivity tests by varying the hypothetical infiltration
value from 0.1 to 1 m/year. This study used a range of infiltration that reflected actual soil
conditions in Korea. We explored the distribution of the concentration at water level, Cw,
by varying the value within the range of 96–384 mm for the annual infiltration rate that
was obtained from the statistical analysis shown in Figure 4, 1–10 m for the distance of the
groundwater table from the source, and 1–5 m for the thickness of the contaminant source.

3. Results and Discussion
3.1. Estimation of the Probability Distribution of DAFunsat

Figure 5 shows maximum concentrations and their arrival times at the water table
along the unsaturated path when finite-difference one-dimensional transport was simu-
lated. The spread of data points is illustrated when we conducted multiple calculations by
varying the value within the range of 96–384 mm for the annual infiltration rate, 1–10 m for
traveling distance, and 1–5 m for the source thickness. The rest of the input parameters
used the default values shown in Table 1. This CW/CL at y-axis was also designated as
the leachate attenuation factor by Verginelli and Baciocchi [24]. The results show that the
maximum concentration is inversely proportional to the arrival time, given the combination
of all input variables.
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Figure 5. Maximum concentrations to reach the groundwater level using source depths from 1 to
5 m and distances from 1 to 10 m for the soil-to-groundwater pathway.

To express the reduction in contaminant concentration, DAFunsat has been adopted as
an indicator from the Ryu [25] defined as the ratio of the concentration of the source to the
concentration at the water table. Since we deal with time-varying concentrations in this
study, we redefined DAFunsat as the ratio of the initial source concentration to the highest
concentration at the water level. Therefore, the y-axis of Figure 5 is equal to 1/DAFunsat.

Figure 6 shows that the estimated range of concentrations became relatively narrow
and converged to a specific value, indicating that the prediction for the possible concen-
tration at the water level may be indicated as a function of the thickness of the source
and the distance to the water table from the source. All DAFunsat values for all cases were
greater than 1, indicating that the leaching concentration from the source was diluted and
attenuated.
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Figure 6. Probability distribution of DAFunsat for a function of source depth, D, and distance from the top to the groundwater
level, L.

The distribution graph at the top left of Figure 6 is the simulated result for the case of
the distance of the water table from the source of 1 m with a source thickness of 1 m. The
DAF ranged between 1.6 and 2, meaning that the water level concentration is diluted and
attenuated 1.6 to 2 times compared to the soil exposure concentration. Each plot pattern
shows a gradual decrease in concentration as the contaminant travel distance increases to
2, 5, and 10 m. In addition, they show a gradual increase in concentration as the source
depth increases to 2 and 5 m. When a contaminant travels to the longest path length of
10 m with a source depth of 1 m, the simulated DAFunsat ranged from 3 to 4. The highest
DAFunsat simulation results are close to 1 when contaminants travel to a source depth of
5 m and the shortest path length of 1 m.

3.2. Case Study: Site Description and Simulation of the Benzene Pathway Using Hydrological
Assessment

This study introduced the time-dependent varying infiltration rate to consider site-
specific infiltration. The time-series pattern of site-specific infiltration rate was determined
using the groundwater content of the area, and the method for calculating source deple-
tion was explored. The study adopted the infiltration data from the previous study that
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investigated a test bed of Cheongju area, where the groundwater cultivation area was
precisely calculated. Figure 7a shows the monthly temporal variation of precipitation and
infiltration assessed by Chang and Chung [43] from January 2011 to January 2014 using
a hydrological analysis tool, the SWAT model [42] developed by the USDA Agricultural
Research Service (ARS), to simulate the groundwater stasis state. As input data for the
SWAT model, meteorological data such as precipitation, temperature, wind speed, insola-
tion, and relative humidity were used at the Cheongju Meteorological Observatory located
in the Musimcheon Basin. The average amount of groundwater recharge in this area was
estimated to be ≈13.9% of precipitation.
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Figure 7. Comparison between estimated recharge (red line) and precipitation (blue line) for (a) vali-
dated daily recharge data (modified from Chang and Chung [43]) and (b) future annual precipitation
and recharge scenario based on RCP 4.5.

Figure 7b shows that precipitation from the Representative Concentration Pathway
4.5 (RCP 4.5) scenario, which is based on the Intergovernmental Panel on Climate Change
(IPCC)’s Fifth Assessment Report (AR5), was applied as an 80-years future precipitation
scenario from 2021 to 2100 (http://www.climate.go.kr/home/CCS/contents_new/33_2
_areapoint_basic.php, accessed on 17 September 2021). Figure 7b also shows that the
future effective infiltration was calculated by multiplying an 80-years RCP 4.5 precipitation
scenario by the recharge rate, 13.9%. The impacts of climate change are not discussed, as
they are beyond the scope of this study.

To examine the temporal change in concentrations at the exposure point through the
pathways, Equations (4) and (5) were applied, assuming that the initial leachate concentra-
tion, CL(0), is below the saturation concentration or solubility of the contaminant. Based
on Equation (4), we expected that the leachate concentration may exponentially decrease
over time. Therefore, the four periods were regarded as representative measurement points
of the decay curve considering the log scale.

http://www.climate.go.kr/home/CCS/contents_new/33_2_areapoint_basic.php
http://www.climate.go.kr/home/CCS/contents_new/33_2_areapoint_basic.php
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Figure 8 shows the model predicted results that simulated the plume of the contami-
nant in the saturation zone after reaching the water table through the unsaturated zone.
The blue color indicates the concentration of contaminants as 0 and is shown in red when
the relative concentration is 1. The graph shows the concentration distribution in the
saturated zone after 5, 15, and 30 years of simulation. We observed that the plume moves
to the right in the direction of the groundwater flow and simultaneously spreads vertically.
The plume is in the form of a curved surface. It also shows a concentration level almost
similar to the inflow concentration at the upper right boundary. In contrast, almost no
solute concentration is present at the left and bottom sections, where the groundwater
flows through the hydraulic gradient. The color near the bottom was blue, indicating that
the concentration was maintained at a remarkably low level. Figure 8b shows a relatively
smaller concentration when a higher depth of source and a longer distance of unsaturated
zone are applied.
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Figure 8. Model simulated results for the fate and transport of benzene in the saturated aquifer for (a) L = 1 m and D = 5 m,
(b) L = 5 m and D = 1 m.

At the end of the simulation, the bottom indicates a relatively high concentration
because benzene concentration from recharge through the vadose zone decreases over
time.

Figure 9 shows the temporal profiles of source concentration, the concentration at the
water table, and exposure point concentrations at different depths. The graph shows that
the breakthrough curves are not smooth because of the seasonally varied infiltration that
vertically flows toward the groundwater level. The top layer (layer 1) is most affected by
precipitation fluctuation, and the curves get smoother approaching the bottom of the model.
Source depletion decreases exponentially, and the concentration of the water table reaches
its highest concentration about 10 years after leaching from the source. Contaminants
introduced into saturated aquifer show a lower concentration while mixing with the
existing freshwater, and the lower it goes, the lower the concentration. After 16 years,
the concentration of layer 2 exceeds that of layer 1. After 20 years, layer 3 will exceed
the concentrations of the upper layer. As observed in the plume movement of the model
crosscut shown in Figure 8, the contaminant gradually moves down, and the recharge
was introduced on the top layer at a low concentration after a certain time has elapsed.
However, the lower layers after layer 6 show a gradually decreasing pattern as a whole
because they are areas not affected by the contaminant’s travel path. Figure 9b is the
expected concentration when the mass of the initial source was assumed to be 1 mg/kg.

Figure 10 showed that the delayed time and lower concentration after the contaminant
traveled a longer distance from the top of the source to the water table in the unsaturated
zone.
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Figure 9. Temporal profile of source depletion, BTC at groundwater level and exposure concentration (L = 1 m, D = 5 m)
expressed in (a) relative concentration compared to leaching concentration from source and (b) concentration for 1 mg/kg
of initial source mass considered.
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Figure 10. Temporal profile of source depletion, breakthrough curves (BTCs) at groundwater level, and exposure concen-
tration (L = 5 m, D = 1 m) expressed in (a) relative concentration compared to leaching concentration from source and
(b) concentration for 1 mg/kg of initial source mass considered.

4. Conclusions

Risk-based management and assessment of contaminated sites is a way to evaluate
the potential hazards of contaminants based on considering linkages between pollution
sources, pathways, and receptors (i.e., human body or ecosystem) though measuring the
probability of adverse events [44]. In addition, it makes the decisions for the cleanup of
contaminated soil and sediment.

Sophisticated computational methods and site-specific data are important for in-
creasing the reliability of risk assessment results and reducing uncertainty. Site-specific
databases can be used as a basis for new site development, enabling mid to long-term risk
prediction using existing remediation strategies without large-scale investments, providing
a quantitative evaluation tool for long-term monitoring management.

This study emphasizes the importance of on-site investigation and site-specific risk
assessment of contaminated sites. Risk-based analysis of numerical simulations of con-
taminants through the soil to groundwater determined the DAFs based on the geometry
of contaminated sites. Conservative models, proposed in the ASTM-RBCA framework,
assume steady-state leaching in the unsaturated zone, a constant leaching rate without
reduction of the source, and mixing based on a mass-balance approach underneath the
contaminated sites. The method established in this study considered temporal changes for
leaching in the unsaturated zone, source depletion, and numerical model simulation with
sophisticated boundary conditions underneath the contaminated sites. We considered the
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data that estimated 20 years recharge by SWAT in a sub-basin in Korea as an infiltration in-
put of the numerical model. In addition, the reported recharge rate data collected from the
national survey for the entire Korean peninsula were selected for the risk-based estimation
of groundwater flow and transport. This approach enabled the narrowing of the possible
range of uncertainty for the predicted spatial and temporal contaminant concentration
profiles at the groundwater level. This study identified the approximate distribution of the
infiltration rate in Korea. The case study also confirmed that this computing method we
applied could be suitable for regional-scale investigation.

The current guidelines for risk assessment are sometimes believed to overestimate
the risk of contaminants due to the conservative and safe assumptions adopted. However,
as observed in the simulation results, different from the conservative assumption to be
entirely mixed and diluted in the aquifer, the expected concentration from the saturated
models showed time-dependent varying concentration at each depth.

This study illustrated the application of numerical analysis considering high-tiered
risk-based assessment. The proposed application is simple, and only the distribution of
the Korean infiltration values was identified. The distribution characteristics for other
indicators should be identified. In particular, the distribution characteristics of the source
depth and the distance between the groundwater level and the water source need to be
further investigated in future studies. Additionally, the approximate theoretical results
derived from this study should be validated against extensive field data with other organic
contaminants. These proposed additional studies, as USEPA used algorithms to implement
Monte Carlo simulations, can determine DAFs for unsaturated regions in Korea based on
the development of appropriate and reasonable statistical analysis methods.
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