
water

Article

Hybrid Approach for Excess Stormwater Management:
Combining Decentralized and Centralized Strategies for the
Enhancement of Urban Flooding Resilience

Roberta D’Ambrosio 1,* , Antonia Longobardi 1 , Alessandro Balbo 2 and Anacleto Rizzo 3

����������
�������

Citation: D’Ambrosio, R.;

Longobardi, A.; Balbo, A.; Rizzo, A.

Hybrid Approach for Excess

Stormwater Management:

Combining Decentralized and

Centralized Strategies for the

Enhancement of Urban Flooding

Resilience. Water 2021, 13, 3635.

https://doi.org/10.3390/w13243635

Academic Editor: Jose G. Vasconcelos

Received: 11 November 2021

Accepted: 10 December 2021

Published: 17 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy; alongobardi@unisa.it
2 WISE Engineering S.r.l., 20017 Rho, Italy; balbo@wisebenefit.it
3 IRIDRA S.r.l., 50121 Firenze, Italy; rizzo@iridra.com
* Correspondence: robdambrosio@unisa.it

Abstract: Urban sprawl and soil sealing has gradually led to an impervious surface increase with
consequences on the enhancement of flooding risk. During the last decades, a hybrid approach
involving both traditional storm water detention tanks (SWDTs) and low-impact development (LID)
has resulted in the best solution to manage urban flooding and to improve city resilience. This
research aimed at a modeling comparison between drainage scenarios involving the mentioned
hybrid approach (H-SM), with (de)centralized LID supporting SWDTs, and a scenario representative
of the centralized approach only involving SWDTs (C-SM). Results highlighted that the implemen-
tation of H-SM approaches could be a great opportunity to reduce SWDTs volumes. However, the
performances varied according to the typology of implemented LID, their parameterization with
specific reference to the draining time, and the rainfall severity. Overall, with the increase of rainfall
severity and the decrease of draining time, a decrease of retention performances can be observed with
SWDTs volume reductions moving from 100% to 28%. In addition, without expecting to implement
multicriteria techniques, a preliminary cost analysis pointed out that the larger investment effort of
the (de)centralized LID could be, in specific cases, overtaken by the cost advantages resulting from
the reduction of the SWDTs volumes.

Keywords: stormwater detention tanks; low-impact development; flood resilience

1. Introduction

In the last decades, urban sprawl and soil sealing have led to an impervious surface
increase and, consequently, to the enhancement of urban flooding risk [1–3]. Additionally,
drainage networks actually seem undersized, and critical rainfall events make them re-
sponsible for natural disasters and widespread water pollution [4,5]. Structural measures
such as drainage facilities systems, including pump stations and detention reservoirs,
are usually adopted to prevent and mitigate urban stormwater runoff excess [6]. When
stormwater overflows reduction finally became a concern, several international strategies
on environmental pollution with specific reference to urban stormwater discharges were
established [7–10]. Throughout Europe and North America, stormwater detention tanks
(SWDTs) are of particular importance in controlling the negative impact of stormwater
discharges. In Italy, for example, several studies were conducted to understand the hy-
draulic and environmental behavior of SWDTs [11,12]. However, design configurations
and operating conditions significantly affect the extent of the ecological benefit, investment
and maintenance costs, and functionality of the urban drainage system and the wastewater
treatment plant. In particular, during the last years, major projects focused on constructing
the right-sized tank in the right location. Several studies focused on the identification of
SWDTs volumes distribution, mainly aiming at cost-effective solutions able to minimize
flood, pollutant load, and storage cost [13–15]. According to [16,17], private/residential
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allotment SWDTs, directly connected with roofs, can also potentially reduce runoff peaks
to downstream stormwater drainage systems during rare, long-duration storms, especially
if implemented using smart systems approaches that enable rainwater tanks to be emptied,
maximizing available retention storage.

However, because of restrictions in the availability of spaces in urban areas and due
to the environmental impact, suitable storage sites may be difficult to find [13].

Traditional stormwater management that relies on central infrastructures cannot
face, on its own, the upcoming challenges related to climate change and the rapid city
growth. Water infrastructure needs to be more flexible, adaptable, and sustainable [18,19].
For this reason, during the last decades, many countries began to implement nature-based
solutions (NBS), inspired and supported by nature-based design concepts, able to manage
sustainably stormwater, making the cities more resilient towards climate change and hy-
drological risks [20–22]. Such technological solutions are known in different parts of the
world by different acronyms (sustainable drainage systems, low-impact development, best
management practices, and water-sensitive urban design) [23]. In the following, reference is
made to low-impact development (LID). LID infrastructures, able to retain, delay, and filter
stormwater, cannot completely manage the problem of urban runoff on their own [24–28].
Nevertheless, if used in combination with traditional drainage systems, they are able to
support the preexisting drainage network and contribute to the generation of numerous
additional benefits for human beings and the environment [29–32]. For these reasons, a
hybrid approach (SWDTs + LID) could be the best solution to manage urban flooding
in large urban areas and to improve city resilience [33]. Scientific literature agrees that
both traditional (grey/hard technology) and sustainable (green/LID) infrastructures could
improve urban resilience, but green ones are characterized by a higher adaptability to deal
with an uncertain future [12,15,33]. In fact, climate change seems to have potential effects
on the design and performance of sewer storage tanks. Research conducted in 2007 on a
case study in London registered a 35% increase in the number of storm events that caused
filling of the tank and a 57% increase in the average volume of storage required [34]. Recent
studies focused on the identification of the most suitable blending of traditional drainage
infrastructures and LID [35–38].

The common feature of these hybrid approaches is the idea of moving from a central
to a decentralized urban water management. Scenario-based analysis carried out so far,
and focusing on the efficiency assessment of decentralized technologies, revealed that the
adoption of an integrated approach could increase city resilience to urban flooding [39].
Moreover, complex studies such as [40], using a blend of scenario-based modeling analysis
and multicriteria techniques, aimed to quantify the effects of decentralized strategies, both
nature-based and hard technology, on the existing sewer network. However, these findings
only rely on single case studies, and their results can hardly be generalized.

An alternative approach was presented and applied by [18], based on the stochastic
generation of virtual case studies with the aim of assessing the transition from central to
decentralized urban water systems. Unfortunately, this approach, while interesting for a
preliminary and general assessment of decentralized stormwater management, is not able
to substitute for in-depth studies aware of the peculiarities of the urban context.

Consequently, although research conducted so far has proved the ability of decen-
tralized approaches in reducing flooding risk and increasing city resilience, there are still
several doubts. For example, according to runoff volume discharging limits required
by local regulations, if any, it could be interesting to investigate if the implementation
of a hybrid and decentralized approach could somehow reduce excess stormwater and
therefore minimize the need for invasive and unsustainable SWDTs.

Decentralized solutions, especially those involving nature-based infrastructures, are
also able to redevelop the context in which they exist, bringing numerous benefits of
a different nature. However, in order to be effective, their implementation should be
widespread, and, for this reason, such projects usually involve a significant financial
investment by local and regional authorities.
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It is therefore necessary to carry out, together with design assumptions, an economic
analysis that can allow quantifying and comparing the costs for the realization of decen-
tralized and centralized solutions. Moreover, with a view to a broader evaluation of the
multiple benefits of widespread sustainable drainage infrastructures, several studies have
carried out multicriteria approaches for the evaluation and quantification of the technical,
socioeconomic, ecological, and political benefits of LIDs [38,41].

The rich existing literature on hybrid solutions for excess stormwater management
enables us to understand that this topic is of great relevance. However, the absence of
generally valid methodologies and results, together with the strong influence of structural
characteristics of the case study areas in the scenario-based analyses, ensure that the
research in this field is still particularly stimulating and there a still a wide range of
questions to be answered. Which are the hydrological benefits of hybrid solutions in the
management of excess stormwater runoff? Are these approaches also able to reduce the
volume needed for SWDTs? What about their cost-effectiveness with specific reference to
hydraulic and hydrological aspects?

In particular, this research strove to assess the effectiveness of hybrid approaches (H-
SM) as solutions for a sustainable mitigation of excess stormwater runoff, supporting the
research in this field with a new case study implementation. Specifically, due to the absence
of runoff measurements, this study was conceived as a model-based experimentation in
which several H-SM scenarios were compared with a centralized scenario (C-SM), involving
just SWDTs and chosen as the benchmark scenario. This scenario-based analysis involved
two different H-SM approaches: FLOODurb, mainly seeking to improve stormwater
detention, and GREENurb, aimed also at increasing the retention processes. The reported
research, without any intention of estimating the economic feasibility of the investment
in detail or implementing complex and exhaustive multicriteria techniques, further aims
at providing a quantitative and comparative assessment of the various cost items of each
scenario.

The study started from an analysis of the critical issues related to the stormwater
quantitative management arising in the Sesto Ulteriano urban catchment, located in the
suburbs of Milan, Northern Italy, that experiences flooding events also under less-severe
rainfalls (2-year return period) [37]. A drainage network model with traditional storage
tanks downstream was developed for the urban catchment by several Italian firms, funded
by PoliS-Lombardia, a regional institute for policy purpose. A detailed design and localiza-
tion of low-impact development (LID) in the case study area was developed with the aim
of implementing a hybrid approach for excess stormwater management (H-SM).

2. Materials and Methods
2.1. The Case Study

Sesto Ulteriano (45◦23′45” N 9◦15′13” E) is a small village of about 1100 ha and
3500 inhabitants in the municipality of San Giuliano Milanese, belonging to the Metropoli-
tan Borough of Milan, Lombardy Region (Italy). The study area covers only a part of it,
about 227.28 ha, characterized mainly by industrial settlements and subdivided for study
purposes into three different macro-catchments: A, B, and C (Figure 1a).

The study area experienced a remarkable impervious surfaces increase (+15% from
2000 to 2015) from the second half of the twentieth century, which significantly increased the
vulnerability of the territory and gave way to the ongoing stormwater-related criticalities
which also occur under less-severe rainfall (2-year return period) [37].

The drainage network of Sesto Ulteriano is mainly a combined network, delivering
both stormwater and wastewater. The sewer system proceeds roughly from the north
to the south of the catchment, reaching the wastewater treatment plant of “San Giuliano
Milanese Ovest” (Figure 1b). Specifically, it is a continuous-cycle wastewater treatment
plant, biological and active sludge type, with simultaneous oxidation/nitrification and
anaerobic digestion of sludge.
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Figure 1. Identification of the case study area with its subdivision into three macro-catchments (a)
and drainage network (b).

Stormwater is discharged into irrigation ditches through several combined sewer
overflows (CSOs) placed along the network. For this reason, together with the impervious
surface increase, the limited capacity of the artificial channels and the strong interconnection
between the hydrographic network and the sewer system are the causes of water quantity
and quality issues.

2.2. Centralized Approach for the Management of Excess Stormwater (C-SM)

The centralized approach for the excess stormwater management simply consists
of SWDTs located downstream each of the subcatchments (A, B, and C), as shown in
Figure 2. Each one of them collects runoff discharged from one or more CSOs. In total,
the case study network involves eight CSOs. One of them discharges excess stormwater
directly into SWDT A, five into SWDT B, and two into SWDT C.
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Local legislative regulations were taken into account in order to assess the volume
of the SWDTs. In particular, the Regional Regulation n.7 of 23 November 2017 of Lombar-
dia [42] identified 40 L/s per hectare of impervious surface as the maximum flow rate to
be discharged into the receiver by SWDTs.

The U.S. Environmental Protection Agency software Storm Water Management Model
(SWMM5) was used to understand the performance of the drainage network of the case
study area. EPA SWMM5 is an open-source hydrological model developed for urban runoff
management purposes and is very popular among scientists for its greatest acceptance
and highest suitability in research studies. Once the drainage system and a certain rainfall
condition is given as input, the model is able to predict the stormwater runoff generated
according to hydrological and hydraulic characteristics of the investigated scenarios. In
this work, SWMM5 simulations were carried out to assess the maximum flows (Qmax)
and total volumes (Vtot) discharged from each CSOs under 2 years, 5 years, and 10 years
rainfall events with 9 h duration. In particular, this value represents the critical duration of
the urban catchment, identified as the duration able to maximize the CSOs peak flow [37].

2.3. Hybrid Approach for the Management of Excess Stormwater (H-SM)

The hybrid approach (H-SM) also implements, along with the SWDTs expected in
the C-SM approach, (de)centralized infrastructures for the stormwater management (LID).
Two different scenarios were investigated: FLOODurb and GREENurb.

2.3.1. FLOODurb Hybrid Approach

The idea behind the FLOODurb hybrid approach is to implement controlled flooding
areas with a maximum floodable height of 10 cm. Specifically, industrial yards and back
roads were selected within the case study catchment according to a detailed feasibility
project (Figure 3), covering altogether about 35% of the study area (74 ha).

Figure 3. Localization of floodable streets and squares in the diffuse-storage approach.

With the ambitious objective of temporarily detaining stormwater and reducing
volumes discharged into SWDTs, the identified surfaces were modeled in SWMM5 with
the rain barrel LID control module.

Conceptually, a rain barrel is modeled in SWMM5 as just an empty storage layer able
to collect stormwater runoff with a drain valve placed above an impermeable bottom. The
barrel height characterizes the storage layer, while the flow coefficient and flow exponent
define the drain [43].

SWMM5 uses a simple empirical power law to model underdrain outflow (q3), de-
scribed as follows:

q3 = C3D · (h3)η3D [mm/h], (1)

where
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h3 represents the hydraulic head seen by underdrain (mm);
C3D represents the underdrain discharge coefficient (mm−(η

3D
−1)/h);

η3D represents the underdrain discharge exponent.

The flow rate computed with Equation (1) should be considered a maximum potential
value. There is no underdrain flow until the depth of water in the storage layer reaches
the drain-offset height. Choosing a value of 0.5 for η3D makes the drain flow formula
equivalent to the standard orifice equation, where C3D incorporates both the normal orifice
discharge coefficient and available flow area. If the goal is to drain a fully saturated unit in
a specific amount of time, SWMM5 suggests setting the drain exponent to 0.5 (to represent
the orifice flow) and to calculate C3D as follows:

C3D = (2 · D0.5)/T [mm/h], (2)

where

D represents the distance from the drain to the surface plus any berm height (mm);
T represents the draining time (h).

Specifically, with the increase of the barrel height (reduction of flow coefficient), a
significant reduction of the peak flow and total volume is usually observed, as well as an
increase of the delay time. In this study, the barrel height was set equal to 100 mm. It should
be noted that this value is not representative of a technological limit of the system, but it was
chosen as a compromise between the effectiveness of stormwater management performance
and the maintenance of the road network functioning. Greater heights would lead to an
alteration of the traffic patterns, causing inconvenience to the people who live and work
in the districts concerned, making it necessary to provide alternative routes. Moreover, a
barrel height of 100 mm would enable taking advantage of the actual configuration of the
other road elements, both for confinement needs and to allow the circulation of pedestrians
(sidewalks, for example, are usually 10 cm higher than the roadway).

Considering that, with the increase of the draining time, both a peak flow and a total
volume reduction is achieved (enhanced flood lamination), 10 h and 50 h draining times
were investigated. These values, again, do not have policy relevance in Italy and are not
representative of the drainage system’s technological limit, but of a choice able to balance
performance and functionality. Particularly, values lower than 10 h were discarded because
they were considered unrealistic if compared with the critical duration of the case study
catchment. A maximum draining time of 50 h was set to reestablish the condition of street
and squares before flooding occurrence in a reasonable time interval of about two days.

Specifically, the FLOODurb hybrid approach includes two different scenarios: “RB_10”
and “RB_50” scenarios, in which floodable street and squares were modeled using rain
barrels LID control module with, respectively, 10 h and 50 h draining time. Table 1
collects SWMM5 parameters chosen for the rain barrel LID control in the mentioned hybrid
scenarios. All parameters were selected according to the mentioned design choices.

Table 1. Floodable streets and industrial squares simulated as rain barrel LID control: input parame-
ters.

Storage LAYER Parameters RB_10 RB_50

Barrel height (mm) 100 100

Drain Parameters

Flow coefficient 1 0.2
Flow exponent 0.5 0.5

2.3.2. GREENurb Hybrid Approach

The GREENurb scenario is the result of a detailed study undertaken in the framework
of the PoliS-Lombardia study, designed by a number of professionals with different ex-
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pertise. Engineers from Majone & Partners designed and tested the model of the actual
drainage network of Sesto Ulteriano, demonstrating its hydraulic and hydrological critical-
ities. Moreover, engineers from IRIDRA chose and designed sustainable drainage systems,
and the architects from Studio Gioia Gibelli studied the urban context and identified the ar-
eas suitable for retrofitting. Researchers from the Environmental and Maritime Hydraulics
Laboratory of the University of Salerno started working on this project in 2018, focusing
on the modeling implementation and assessment of the proposed sustainable drainage
systems in the case study area [37].

It was considered appropriate to act on a series of public green areas with multisize
rain gardens. Where possible, draining trenches (vegetated or not) or permeable parking
lots were inserted at the edges of the roadway. The scenario provided for about 9.2 ha of
SuDS retrofitting surface for catchment A (8.8% of the catchment area), 7.6 ha for catchment
B (11.94% of the catchment area), and 6.8 ha for catchment C (11.62% of the catchment area)
for an overall retrofitting percentage of about 10.41% (Table 2).

Table 2. SuDS percentages and distribution.

Catch. Area (ha) Area (m2) SuDS Type SuDS (m2) SuDS (%) *

A 104.82 1,048,200
Bior. Cells 15,179.17 1.448118069

Perv. Pavements 25,469.48 2.429829838
Rain Gardens 51,601.94 4.922909794

Total 92,250.59 8.80
Catch. Area (ha) Area (m2) SuDS Type SuDS (m2) SuDS (%) *

B 63.62 636,200
Bior. Cells 8250.11 1.296779315

Perv. Pavements 16,980.01 2.668973593
Rain Gardens 50,754.78 7.977802578

Total 75,984.90 11.94

Catch. Area (ha) Area (m2) SuDS Type SuDS (m2) SuDS (%) *

C 58.84 588,400
Bior. Cells 5473.44 0.930224337

Perv. Pavements 23,210.29 3.944644799
Rain Gardens 39,672.32 6.742406526

Total 68,356.05 11.62
Total Area (ha) Total Area (m2) SuDS (m2) SuDS (%) **

A + B + C 227.28 2,272,800 - 236,591.54 10.41

Note(s): * SuDS percentages were computed as the ratio between SuDS area and the catchment area (Catch. = catchments; Bior. Cells =
bioretention cells; Perv. Pavements = permeable pavements). ** Total SuDS percentages were computed as the ratio between total SuDS
area and the total area.

The key strength of this scenario is that it derives from the study of the characteristics
of the urban context, aiming at a detailed identification of impervious areas suitable for
SuDS retrofitting. Therefore, the proper location for each of the selected SuDS typologies
are identified. Differently to the infrastructure implemented in the FLOODurb scenario,
these are able to mime the drainage pattern of natural soils, favoring the stormwater runoff
detention and infiltration.

The SuDS were modeled in SWMM5 using two main objects (bioretention cells and
permeable pavements) and varying parameters related to surface, soil and drainage layers,
and drain (Table 3). Parameters of each infrastructure were chosen according to the
project, literature review, and EPA SWMM5 user’s manual ranges [29,43–48]. Moreover,
bioretention cell conductivity, which is known to gradually reduce in time, was defined
considering an operating value (about 100 mm/h) instead of an initial one.
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Table 3. Bioretention cell and permeable pavement LID control input parameters.

Bioretention Cell Perm. Pavement

Surface LAYER parameters

Berm height (mm) 100–700 * 0
Vegetation volume fraction 0.2
Surface roughness (Manning’s n) 0.011
Surface slope (%) 1
Pavement LAYER parameters

Thickness (mm) 30
Void ratio (voids/solids) 0.25
Permeability (mm/h) 1968.5
Soil LAYER parameters

Thickness (mm) 250–450 40
Porosity (volume fraction) 0.35 0.3
Field capacity (volume fraction) 0.11 0.2
Wilting point (volume fraction) 0.1 0.08
Conductivity (mm/h) 108 444.5
Conductivity Slope - -
Suction Head (mm) 50 76.2
Storage LAYER parameters

Thickness (mm) 250–450 100
Void Ratio (voids/solids) 0.35 0.25
Seepage Rate (mm/h) 32 20
Clogging Factor - -

Note(s): * Higher berm heights were used to simulate lamination effects of the larger rain gardens.

SWMM5 allows implementing sustainable drainage infrastructure as a fraction of
impervious or pervious surfaces in each subcatchment modeled. Therefore, since the
software is not able to consider the effective localization of sustainable drainage systems,
a wide range of subcatchments (almost one for each node of the network) was designed
within each macro-catchment considered (Figure 4), so that the localization of the SuDS
could be, with a good approximation, representative of the reality.
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Moreover, other assumptions of the SWMM5 hydrological model concern the percent-
ages of subcatchment area treated by each SuDS and the runoff rerouting options. The
sustainable drainage infrastructures implemented in the GREENurb model are conceived
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as systems directly connected with the urban context. For this reason, they are able to treat
the runoff generated by the surrounding impervious and pervious areas, along with the
rainfall directly falling on them. As a hypothesis, in the case study model, the SuDS are
meant to treat the entire runoff generated by the pervious and impervious areas of the
subcatchment in which they are located. Only afterword is the excess runoff rerouted to
the pervious areas and then to the sewer system.

2.4. Output Assessment
2.4.1. Centralized Approach Output Analysis

According to the maximum threshold of 40 L/s per hectare of impervious surface [10],
the maximum allowed discharge was calculated (Qlaw) by multiplying the mentioned
value by the impervious surface treated (Aimp) by each CSO, as follows:

Qlawx, T = 40 · Aimpx [L/s], (3)

where

• x represents the specific CSO.
• T represents the return period of the specific rainfall input (2, 5, 10 years).
• Qlawx, T represents the eligible flow by law for the specific CSO under varying return

period events (T = 2, 5, 10 years) (L/s).
• Aimpx represents the impervious surface treated by the specific CSO (ha).

Once the threshold was identified, the maximum allowed runoff volume and, conse-
quently, the volume to be detained by SWDTs (Vlamx, T) were identified for each CSO from
the difference between Qmax and Qlaw, as follows:

Vlamx, T = (Qmaxx, T − Qlawx, T) · t [m3], (4)

where

• x represents the specific CSO.
• T represents the return period of the specific rainfall input (2, 5, 10 years).
• Vlamx, T represents the volume to be treated by SWDTs for the specific CSO under

varying return period events (T = 2, 5, 10 years) (m3).
• Qmaxx, T represents the maximum flow discharged by the specific CSO under varying

return period events (T = 2, 5, 10 years) (m3/s).
• Qlawx, T represents the eligible flow by law for the specific CSO under varying return

period events (T = 2, 5, 10 years) (m3/s).
• t represents the runoff observation time (s).

2.4.2. Hybrid Approach Output Analysis

Once Equations (3) and (4) were applied to assess the volume of the SWDTs in both
the FLOODurb and GREENurb hybrid scenarios, these results were compared with those
obtained in the C-SM reference scenario. The reduction in terms of total volumes discharged
into SWDTs (Dn(x, T)) was evaluated as in the following for each CSO (x) and under varying
rainfall events (T = 2, 5, 10):

Dn(x, T) = {[(Vlamx, T)c − (Vlamx, T)n]/(Vlamx, T)c} · 100 [%], (5)

where

• n represents the typology of H-SM scenario (FLOODurb or GREENurb).
• (Vlamx, T)c represents the total volume discharged from the specific CSO (x) into

SWDTs under varying return period rainfall events (T = 2, 5, 10 years) in the C-SM (c)
scenario (m3).
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• (Vlamx, T)n represents the total volume discharged from the specific CSO (x) into
SWDTs under varying return period rainfall events (T = 2, 5, 10 years) in the selected
H-SM scenario (m3).

2.5. The Economic Feasibility of the Designed Scenarios: A Preliminary Cost Analysis

The Lombardia Regional Price List of Public Works was used to compute the rate
of the cost of SWDTs and LID interventions in each investigated scenario under varying
precipitation inputs. In particular, to obtain the cost of SWDTs intervention (CTSWDT(S, T)),
varying according to the drainage scenario and the rainfall input, the following equations
were implemented:

CTSWDT(S, T) = VSWDT(S, T) · CSWDT [€], (6)

where

• VSWDT(S, T) represents the total volume of the SWDTs in the specific scenario (S) and
under varying return period (T = 2, 5, 10 years). It was calculated by summing the
volumes discharged in the three macro-catchments (A, B and C) (m3).

• CSWDT is the realization cost of SWDTs [EUR/m3], assumed equal to 850 EUR/m3

according to Lombardia Regional Price List of Public Works.

The cost of LID interventions, both independent from the precipitation input, was
then computed for the rain barrel (CTRB) in the FLOODurb scenarios and bioretention cells
plus permeable parking lots (CTGu) in the GREENurb scenario, as follows:

CTRB= (PRB · CB) + (SRB · CD) [EUR], (7)

CTGu = (SBC · CBC) + (SPPL · CPPL) [EUR], (8)

where

• PRB represents the total perimeter of rain barrels (m).
• SRB represents the total surface occupied by the rain barrels (m2).
• SBC represents the total surface occupied by the bioretention cells (m2).
• SPPL represents the total surface occupied by the permeable parking lots (m2).
• CD is the cost of roadway drainage (EUR/m2), assumed equal to 8.3 EUR/m2 *.
• CB is the cost of retention berm (EUR/m), assumed equal to 20.23 EUR/m *.
• CBC is the cost of the bioretention cells (EUR/m2), assumed equal to 160.14 EUR/m2 *.
• CPPL is the cost of the permeable parking lots (EUR/m2), assumed equal to

78.88 EUR/m2..

* All the costs were identified according to Lombardia Regional Price List of Public
Works.

The cost of floodable streets and square (FLOODurb scenario) was computed as the
sum of the realization cost of a 10 cm concrete Berm and that of the roadway drainage, due
to the absence of a specific cost item.

Subsequently, by adding the LID costs to those of SWDTs, the total costs of the H-SM
scenarios were computed. The latter were then compared with those obtained in the C-SM
scenario.

3. Results

Vlam results were quantified for each CSOs whose outflow discharge into SWDT
A, B, and C under varying rainfall inputs (2-year, 5-year, and 10-year return periods).
As an example, Figure 5 collects the hydrographs of CSO 1019 (Catchment A), the one
characterized by the larger impervious area treated, for all the investigated scenarios
under 10-year return-period rainfall event. In the same plot, the specific Qlaw (m3/s)
threshold value, essential for the identification of Vlam, was represented. Focusing on
the over threshold volumes (Vlam) in Figure 6, it is possible to understand that a higher
Vlam characterizes the C-SM scenario, followed by the two hybrid FLOODurb scenarios.
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The hybrid GREENurb scenario shows the best performance, sensibly reducing Vlam.
Observing the hydrographs as a whole, the FLOODurb scenario with lower discharging
time (RB_10h), if compared with the C-SM scenario, while reducing, as observed, the peak
volumes, overall releases a larger amount of excess runoff over time. The GREENurb
scenario, on the contrary, reduces both over threshold and total volumes.
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The same considerations also apply for the other CSOs under varying rainfall severity,
with the only difference being that under 2-year return-period rainfall, the implementation
of the GREENurb hybrid scenario completely avoids the need for stormwater detention
tanks (Vlam = 0) (Figure 7).
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The overall SWDTs volumes in the C-SM scenario, given by the sum of the Vlam
calculated in each CSO, are collected in Table 4.

Table 4. Stormwater detention tanks volumes in the centralized scenario.

C-SM T = 2 T = 5 (Years) T = 10

Catchment CSO ID Aimp (ha) Qlaw (L/s) Qlaw (m3/s) Vlam (m3)

A 1019 51.2 2048.00 2.05 1776.50 8309.71 14,716.63

B

2862 4.8 192.00 0.19 0.00 85.41 1148.10
2852 5.9 237.20 0.24 10.43 542.16 1287.50

J7 19.3 772.00 0.77 577.64 2685.57 3857.20
3155 0.3 12.00 0.01 18.70 78.23 112.96
2861 1.1 44.00 0.04 0.00 111.66 307.12

C
2863 12.3 492.00 0.49 0.00 0.00 0.00
3520 14.7 588.00 0.59 835.19 3781.62 5632.84

Total 3218.46 15,594.36 27,062.36

Overall, observing the results, it is possible to highlight that SWDTs are actually
also required under moderate precipitations (2-year return period), which suggests and
validates the idea that the flooding risk is a serious concern for the case study area. As
expected, total volumes increase as the rainfall severity increases, with a total difference of
about 12,000 m3 between the investigated precipitation inputs.

Table 5 collects Vlam identified for each CSOs discharging into SWDT A, B, and C
under 2-year rainfall input and for all the investigated H-SM scenarios. The overall SWDTs
volumes in the H-SM scenarios and under the mentioned precipitation is also given in the
same table. From the results, it is clear that the GREENurb scenario is able to avoid the
construction of SWDTs, completely retaining excess stormwater under 2-year return-period
precipitation. FLOODurb scenarios also succeed in reducing Vlam. However, the drainage
times seem to affect the behavior of floodable streets and squares, experiencing an almost
50% volume reduction, moving from a 10,h draining time to a 50 h draining time.
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Table 5. Stormwater detention tanks volumes in the hybrid scenario for a 2-year return-period
rainfall.

T = 2 Years FLOODurb Vlam (m3) GREENurb Vlam (m3)

Catchment CSO ID RB_10 RB_50 Gu

A 1019 988.68 421.16 0.00

B

2862 0.00 0.00 0.00
2852 0.00 0.00 0.00

J7 426.38 305.63 0.00
3155 9.02 4.98 0.00
2861 0.00 0.00 0.00

C
2863 0.00 0.00 0.00
3520 381.46 217.12 0.00

Total 1805.54 948.89 0.00

Tables 6 and 7 show Vlam in the H-SM scenarios, respectively, under 5-year and 10-year
return-period rainfall. With the increase of precipitation severity, higher Vlam values in all
the scenarios were registered. Again, the GREENurb scenario showed the best performance,
while the FLOODurb scenario with 10 h draining time was the worst.

Table 6. Stormwater detention tanks volumes in the hybrid scenario for a 5-year return-period
rainfall.

T = 5 Years FLOODurb Vlam (m3) GREENurb Vlam (m3)

Catchment CSO ID RB_10 RB_50 Gu

A 1019 6335.84 4507.61 1997.04

B

2862 21.92 6.93 0.00
2852 228.49 161.22 0.00

J7 1671.52 1334.19 0.00
3155 63.35 55.24 14.10
2861 98.60 79.82 4.02

C
2863 0.00 0.00 0.00
3520 2979.68 2215.33 570.00

Total 11,399.41 8360.35 2585.16

Table 7. Stormwater detention tanks volumes in the hybrid scenario for a 10-year return-period
rainfall.

T = 10 Years FLOODurb Vlam (m3) GREENurb Vlam (m3)

Catchment CSO ID RB_10 RB_50 Gu

A 1019 11,972.11 8951.15 5393.76

B

2862 429.68 324.35 0.00
2852 655.69 547.50 0.00

J7 2800.64 2375.74 1020.30
3155 97.80 85.48 42.78
2861 250.76 225.72 68.52

C
2863 0.00 0.00 0.00
3520 5073.70 3873.84 1941.90

Total 21,280.39 16,383.78 8467.26

The sum of the Vlam obtained from the CSOs is illustrated in Figure 8 and is useful
to enhance differences between the investigated C-SM and H-SM approach. Results,
represented with a column chart, are grouped in function of the rainfall input (T = 2, 5, 10).
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Observing Figure 8, both FLOODurb and GREENurb hybrid scenarios are able to
reduce the Vlam of the C-SM scenario. However, it is again evident that the GREENurb
scenario is able to substantially reduce the discharged volumes and even bring them to
the halt in the occasion of 2-year return-period rainfalls. As mentioned before, the reason
behind this is the presence of LID systems able to convey part of the stormwater runoff
into the native soil, significantly decreasing the volume needed for SWDTs. FLOODurb
scenarios with 50 h draining time showed better performances when compared with those
with 10 h draining time.

Moreover, the reduction in terms of total SWDTs volumes (Dn(x, T)) was evaluated for
each CSO under varying rainfall events, comparing SWDTs volumes in the H-SM scenarios
with those obtained in the C-SM reference scenario. The assessment of the reductions
helped visualize, even more strongly, the comments mentioned so far. Figure 9 collects
average CSOs volumes retentions for each investigated scenario. In summary, GREENurb
is confirmed to be the best solution for the reduction of SWDTs volumes, followed by the
FLOODurb scenarios, implementing floodable streets and squares with 50 h of draining
time. With the increase of rainfall severity, an overall decrease of retention performances
can be observed.
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Along with hydraulic and hydrological aspects, the performance assessment of sus-
tainable urban drainage scenarios usually involves additional criteria, such as those linked
to the economic feasibility of the investment. In this context, multicriteria analyses are
essential for the decision-making of urban sustainable development. Therefore, this study
foresaw a quantitative and comparative economic assessment of the investigated scenarios,
aiming at answering the following question: To what extent can the cost-saving from the
SWDTs realization cover the additional expenses of the latter?

Observing Figure 10, it is possible to note that the costs of each investigated scenario
increase with the increase of rainfall severity. GREENurb is always the most expensive
scenario, while FLOODurb is the cheapest, independently from the rainfall input.
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Figure 10. Cost of implementation of each investigated scenario under 2-year, 5-year, and 10-year return-period rainfalls
and standardized as a function of the whole case study area (m2).

Moreover, both the FLOODurb H-SM scenarios (RB_10h, RB_50), with a little in-
vestment to implement diffuse drainage intervention (colored green in the picture), are
able to significantly reduce the volume, and therefore the cost, of SWDTs (colored grey
in the picture). On the contrary, the GREENurb scenario seems to increase the overall
investment effort due to a higher cost of the LID chosen. However, the plots highlight that
implementing this scenario SWDTs can be completely avoided under 2-year return-period
rainfalls and significantly reduced under severe precipitations.

More specifically, cost-savings range from a minimum of 20% to a maximum of 59%,
obtained under less-severe rainfall and highest draining time. However, it should be noted
that the implementation of this scenario should inevitably foresee the participation of
stakeholders and citizens in the decisional process to make them aware of the idea of an
adaptable and floodable city. The GREENurb approach may also be worth considering,
especially under heavy rainfalls. In fact, tackling an investment increase of about 76%,
SWDTs volumes will be more than halved and urban context will gain green spaces with
their ecosystem services and wide-ranging benefits.
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4. Discussion and Conclusions

This research aimed to investigate the effectiveness of hybrid solutions (H-SM) for
the management of excess stormwater in a catchment with a combined sewer system
and in compliance with local regulations [42]. Specifically, the objective of this analysis
was to assess the ability of H-SM approaches to reduce the excess stormwater volumes
and, consequently, the storage volumes required. Therefore, a new case study and a
scenario-based methodology were proposed, providing an adequate decision-support
tool in contexts where there is no availability of real measurements for the calibration
of the current drainage network models. According to previous studies [33], findings
obtained so far consider the hybrid approach to be the optimal solution for the management
of excess rainwater at the urban catchment scale. While considering that LIDs cannot
completely solve the problem of urban flooding phenomena on their own, the hybrid and
diffuse approach allows reducing the excess stormwater volumes discharged into SWDTs.
Several studies focused on the assessment of the most suitable location of SWDTs as a
traditional and cost-effective solution to improve the overall performance of the urban
drainage system [14,15]. These studies highlighted that a widespread distribution of
SWDTs within urban contexts, if compared with their traditional centralized localization, is
able to minimize flooding risk, pollutant load, and costs. In this context, this research aimed
at understanding what happens if, with specific reference to hydraulic risk mitigation, the
same diffuse approach is reached through the implementation of sustainable drainage
systems, and which are the effects on the reduction of the volume needed for the SWDTs
placed downstream. To this end, as proposed in other studies [35,36], modeling scenarios
representative of three hybrid proposals were implemented to identify, by comparison with
a benchmark scenario without LID, the best solution for managing the excess stormwater in
the urban context of Sesto Ulteriano. Overall, the performances of the proposed scenarios
varied according to the typology of LID implemented, their technical properties, and
rainfall characteristics. Specifically, the FLOODurb hybrid scenarios (RB_10h, RB_50h),
characterized by floodable street and squares with a 10 cm water depth and, respectively, 10
h and 50 h of draining time, are able to significantly reduce excess stormwater volumes to
be discharged into SWDTs. However, with the increase of rainfall severity and the decrease
of draining time, a decrease in retention performances could be observed. In particular,
mean reduction ranged from a maximum of 74%, obtained from the scenario with the
highest draining time under the less-severe rainfall, to a minimum of 28%, obtained from
the scenario with the lowest draining time under the most severe rainfall. Nevertheless,
the GREENurb hybrid scenario obtained the best performances. Even if characterized
by a lower retrofitting (8.3% against the 35% of the FLOODurb scenarios), this scenario
involves LID able to mime the drainage pattern of natural soils and improve the stormwater
runoff infiltration. Again, rainfall characteristics affected the performance of this scenario
that reached mean lamination volume reductions ranging from 100% under a 2-year
rainfall to 77% under a 10-year rainfall. The modeling approach, however, usually has
limitations because it always implies a need to synthesize a large amount of information in
a simpler representation of the case study. In this context, model validation procedures
are certainly the most effective techniques to ensure that the model faithfully simulates
the behavior of reality. In the absence of datasets useful for validating the C-SM model,
the one representative of the reality and used as a benchmark, a different approach was
undertaken. It was considered interesting carrying out a scenario-based analysis with the
objective of assessing the difference between several modeling scenarios representative
of an H-SM approach with a C-SM scenario, representative of reality, but which does not
essentially have to faithfully reproduce its behavior. Moreover, a sensitivity analysis would
be essential in further studies for a better definition of characteristics and behavior of SuDS
implemented in the H-SM approaches.

In addition, the preliminary and basic cost-effectiveness analysis also led to interesting
results. The latter, solely focusing on economic and hydrological aspects, pointed out that
the larger investment effort of the (de)centralized LID could be, in specific cases, overtaken
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by the cost advantages resulting from the reduction of the SWDTs volumes. In particular,
cost-savings, comprehensive of the additional investment cost of LID implementation,
ranged from a minimum of 20% to a maximum of 59%, obtained under less-severe rainfall
and highest draining time of the FLOODurb scenario. Moreover, even if an investment
increase is needed (about 76%, if considering a 10-year rainfall event), the GREENurb
approach may also lead to significant reduction of SWDTs volumes, also bringing nu-
merous additional and widely known benefits to the urban context: water quality, urban
development, amenity and biodiversity, groundwater supplies recharge, water storage and
reuse, and community and recreational benefits [29,49]. In order to quantify these addi-
tional benefits, several studies have recently focused on the implementation of multicriteria
techniques able to take into account several determinants representative of LID techni-
cal, socioeconomic, ecological, and political performance for an integrated assessment of
sustainable drainage design in urban catchments [38,41]. Moreover, the UK Environment
Agency worked in partnership with the Construction Industry Research and Information
Association (CIRIA) to develop a free tool to evaluate the benefits of sustainable urban
drainage systems: BeST. This tool aims at supporting the quantification of the value of LID
benefits and scenario planning and can also be used to assess longer-term benefits towards
future uncertainty [50,51]. The results obtained so far, essentially highlighting the funda-
mental role of H-SM approaches in the mitigation of excess stormwater discharged, can
only be enhanced if included in the context of broader analyses, such as the multicriteria
ones. The use of specific tools for the assessment and monetization of the costs of LID, as
well as the setup of comprehensive multicriteria assessment, are worth considering for the
future analysis on this subject, providing decision-makers with substantial evidence of the
effects of H-SM approaches on an urban scale.
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