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Abstract: Wetland treatment systems are used extensively across the world to mitigate surface
runoff. While wetland treatment for nitrogen mitigation has been comprehensively reviewed, the
implications of common-use pesticides and antibiotics on nitrogen reduction remain relatively
unreviewed. Therefore, this review seeks to comprehensively assess the removal of commonly used
pesticides and antibiotics and their implications for nitrogen removal in wetland treatment systems
receiving non-point source runoff from urban and agricultural landscapes. A total of 181 primary
studies were identified spanning 37 countries. Most of the reviewed publications studied pesticides
(n = 153) entering wetlands systems, while antibiotics (n = 29) had fewer publications. Even fewer
publications reviewed the impact of influent mixtures on nitrogen removal processes in wetlands
(n = 16). Removal efficiencies for antibiotics (35–100%), pesticides (−619–100%), and nitrate-nitrogen
(−113–100%) varied widely across the studies, with pesticides and antibiotics impacting microbial
communities, the presence and type of vegetation, timing, and hydrology in wetland ecosystems.
However, implications for the nitrogen cycle were dependent on the specific emerging contaminant
present. A significant knowledge gap remains in how wetland treatment systems are used to treat
non-point source mixtures that contain nutrients, pesticides, and antibiotics, resulting in an unknown
regarding nitrogen removal efficiency as runoff contaminant mixtures evolve.

Keywords: constructed wetlands; nitrogen removal; contaminants of emerging concern; pesticides;
antibiotics; non-point source pollution

1. Introduction

Water quality degradation in rivers and streams across the globe is becoming a major
concern, especially as stresses from climate change increase [1]. The leading cause for
surface water impairments in the United States is due to non-point source pollution [2].
Non-point sources include urban, agricultural, and construction runoff [3], which often
contain nutrients, suspended sediment, pesticides, antibiotics, and other pharmaceuticals,
fecal coliform, and metals [3–6]. Nutrient contamination, such as nitrate-N (NO3-N) from
fertilizer applications, is persistent in rivers and is the most common form globally of chem-
ical contamination in groundwater, resulting in NO3-N being a major cause of drinking
water impairment across the United States and the globe [7–11]. In addition to nutrients,
chemically derived common-use pesticide (CUPs) applications throughout the world have
increased by 71% from 1990 to 2017, with 11% used for non-agricultural application in the
United States [12,13]. The United States Geological Survey (USGS) recently reported that
urban pesticides (e.g., 4-Hydroxychlorothalonil, azoxystrobin, carbendazim, propiconazole,
2,4-D, diuron, prometon, triclopyr, fipronil, imidacloprid) accounted for 83% of the pesti-
cides found in urban sites where the mixture complexity and potential toxicity of the pesti-
cides increased with increasing urbanization [14]. Additionally, most antibiotics used in
human and veterinary medicine (e.g., macrolides, sulfonamides, trimethoprim, quinolones)
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are excreted via urine and feces. Antibiotics used by humans often enter wastewater treat-
ment systems where removal efficiencies ranged from 15.8–78.4% from 2010 to 2019 [15].
Veterinary antibiotic residues in livestock products result in 24,000,000–72,000,000 kg of
antibiotic residue being introduced into agricultural soil and downstream aquatic environ-
ments from manure applications annually [16]. While CUPs and antibiotics are important
for agricultural productivity to support an ever-increasing global population, these chemi-
cals have become ubiquitous in waterways worldwide, resulting in significant effects on
agroecosystem food webs (e.g., honeybee colony collapse) [17] and human health (e.g.,
reproductive and development disruption, carcinogens, antibiotic-resistant genes) [18,19].

Wetland treatment systems, including natural and constructed wetlands, are now
being used extensively across the United States and the world to treat non-point source
pollution. This is due to their cost-effectiveness and low energy consumption compared
to other surface water treatment methods (e.g., coagulation, membrane filtration, ion
exchange) [20–22]. Wetlands utilize plants, soils, and associated microbial assemblages to
remove pollutants through biodegradation, substrate adsorption, and plant uptake [23,24].
These wetland treatment processes take place in different biogeochemical compartments of
the wetland (e.g., aqueous, sediment, detritus), which have separate roles as either sinks or
sources [25]. However, there are limitations to wetland treatment systems including the
requirement of large areas and the high variability in performance, as design and operation
can be challenging because of the complexity of environmental processes, changing influent
concentrations, seasonal changes in weather, and system clogging [22].

The use of wetlands as a treatment approach for NO3-N is well known [11,26–29];
however, N removal performance is significantly impacted by wetland design, operation,
and internal and external environmental factors (e.g., microbial communities, plants,
type and concentration of contaminants) [30]. Specifically, contaminants of emerging
concerns (CECs), which include CUPs and veterinary antibiotics, in surface waters have
only recently started to be investigated for their impact on ecologically important processes
(e.g., NO2-N oxidizing bacteria population, NH4

+-N oxidizing bacteria population) [31,32].
Exposure to specific CUPs (e.g., imidacloprid) in runoff waters and exposure to antibiotic
residues contained in livestock manure and wastewater (e.g., tetracycline, lincomycin,
chlortetracycline, sulfamethazine) may influence the population structure of denitrifying
bacteria communities [33–36], and thus, the activity of microbial denitrification in adjacent
wetland treatment systems.

Therefore, this review sought to comprehensively assess past reports related to CUPs
and antibiotic treatment in wetlands along with the implications of runoff mixtures for the
nitrogen (N) cycle and specifically NO3-N removal in wetland treatment systems receiving
runoff from urban and agricultural landscapes. The objectives of this review were to:
1. Evaluate the current scientific status of the topic, 2. Quantify the scale and type of
wetlands used to treat runoff mixtures, 3. Identify the source and mixture of antibiotics and
CUPs reported to be entering wetlands along with removal mechanisms, and 4. Review
implications to N removal processes (e.g., denitrification, plant uptake) in the presence of
antibiotics and/or CUPs.

2. Materials and Methods

This review was designed to better understand the current state of knowledge on the
implications of runoff mixtures to the N cycle in wetland treatment systems (specifically the
removal of NO3-N). The review was completed by identifying the methodology and major
results about nutrient (N) and CEC (pesticides and antibiotics) removal efficiencies along
with implications to the N cycle. The Preferred Reporting Items for Systematic Reviews
and Meta-Analysis (PRISMA) standard was used for analyzing and reporting [37]. Herein,
studies used in this review are referred to as primary studies.
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2.1. Eligibility Criteria

This review sought to include all searchable studies that have researched the ability
of wetlands to treat runoff from urban and agricultural landscapes. The primary studies
eligible for inclusion in this review needed to meet the following criteria: (1) the study
performed analysis on the ability of wetlands to treat CUPs and/or antibiotics from non-
point source pollution; (2) the study was from a peer-reviewed journal.

2.2. Identification of Records

The primary studies were obtained from searching Web of Science and SCOPUS
databases. A search string was determined through an iterative process to identify studies
using any of the search terms in the title, abstract, and/or keywords. The final search string
used was the following: (treatment wetland AND antibiotic OR treatment wetland AND
pesticide OR constructed wetland AND antibiotic OR constructed wetland AND pesticide).
The search was further limited to full-text peer-reviewed journal articles available in English.
The official search ended in July 2021 and resulted in 1224 studies meeting the criteria.

Limitations of the search included evaluating only English studies, inevitably un-
derrepresenting the sample of collected studies by excluding those that may have met
all other search criteria but were not available in English. Additionally, the keywords
used were important to define papers retrieved in the database search; however, it was
inevitable that the keywords did not entirely encompass all relevant papers even with
careful consideration and several iterations of keywords. These are inherent limitations
to all reviews; thus, even though the search was performed systematically, the primary
studies may still be biased. However, the limitations do not necessarily take away from the
importance and applicability of the findings.

2.3. Screening and Coding of Studies Based upon Eligibility Criteria

After the initial database search, a three-phase process was used to screen primary
studies that met all eligibility criteria (Figure 1) [38]. Using Rayann [39], one coder indepen-
dently read the title and abstract for all the studies obtained from the initial database search
after duplicates were removed. One coder was used throughout the process to maintain
consistency and reduce bias; however, if there was any uncertainty regarding the inclusion
of a primary study, a second coder was sought for a final decision.

Each study was evaluated to ensure it pertained to wetland treatment of non-point
sources. For example, Zheng et al. (2021) was removed from further analysis because the
authors simulated domestic sewage waste (point source pollution) to study the removal
efficiency of sulfamethoxazole and nitrogen in wetland mesocosms [40]. Additionally,
Maryniuk et al. (2016) considered how high-contaminant loads in wetlands impact large-
mouth bass [41], whereas Sen et al. (2019) focused on the impact of crows that roosted in
constructed wetlands and their ability to be carriers of E. coli [42]. Neither of these studies
quantified or identified wetland contaminant removal efficiencies or N cycle pathways, so
these studies were removed from further analysis. Studies were also removed if only nutri-
ent removal was analyzed without the presence of pesticides or antibiotics. For example,
Hussain et al. (2011) analyzed N removal in the presence of antibiotics; thus, the study was
retained for further analysis even though the antibiotic removal potential was not speci-
fied [43]; however, Jia et al. (2021) investigated N removal and poly-3-hydroxybutyrate-co-
3hydroxyvalerate/polylactic acid removal in the absence of any pesticides or antibiotics, so
this study was removed from further analysis [44]. Review articles were also excluded from
the analysis, given that new research on the topic was not conducted; rather, a summary of
the existing research was reviewed and/or meta-analysis was completed. From this, there
were 181 primary studies used for further analysis [3,16,23,25,30,32,43,45–218].
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The final step of the screening process was to code the primary studies using a com-
mon coding schema (Table 1). Key information was coded, including the publication year,
location of the study, the scale of the wetland system, number and type of contaminant(s) of
concern, removal mechanisms studied, source of runoff, and removal efficiencies. Concerns
on correct coding were resolved by the second coder, which included defining wetland
systems (e.g., excluding vegetated ditches and riparian buffers), non-point source iden-
tification, and identifying removal mechanisms. Throughout the screening and coding
process, coders met weekly to check in on progress and to resolve any issues that arose.
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Table 1. Coding schema used for each primary study.

Variable Description

ID Identification number
First Author The first author of the primary study

Year Year the primary study was published
Journal Publication source of primary study

Location The geographic location (state, country) of the study area

Scale The type and size of the system studied (e.g., microcosms,
mesocosms, full-scale)

Type of wetland The type of wetland that was studied (e.g., pond, subsurface
flow, free-water surface wetland)

Length The length of time during which the study took place (days)

Mixtures present Does the water source contain more than one type of
contaminant?

Number of contaminants of
concern

The number of contaminants of concern analyzed in the
primary study

Contaminant(s) of concern The contaminants of concern analyzed in the primary study

Type of contaminant The type of contaminant of concern analyzed in the primary
study (e.g., nutrient, pesticide, antibiotic)

Water type The source of water studied (e.g., urban runoff,
agricultural runoff)

Type of Plants The type of plants present in the study

Removal mechanism The mechanism of contaminant removal studied (e.g., sorption,
phytoremediation, dilution, wetland size)

Removal efficiencies The removal efficiencies of the contaminants of concern
Other results Additional results of importance

3. Results

Following the screening, 181 primary studies were identified, with 153 on CUP re-
moval, 29 on antibiotic removal, and 31 on a combination of contaminants. Primary study
publication dates ranged from 1995 to 2021, with a linear increase in primary studies on
the topics over the last 15 years. The primary studies were drawn from 37 countries.

3.1. Bibliometric Source Overview of the Primary Studies

Publication information, such as geography, was analyzed to provide insight into
the annual scientific production growth of research about wetland treatment systems of
runoff mixtures to assess Objective 1. Annual scientific production growth on the topic
was approximately 29%, showing that this research area is growing, with the peak year
of production being 2019 (Figure 2). The decline in publications in 2020 and 2021 could
be due to delayed publications from the COVID-19 pandemic. However, 2021 was close
behind with 16 publications, even without a complete representative sample of the year,
since the studies were collected up to July of 2021. These results demonstrate that research
about CUP and antibiotic treatment from wetland systems is growing as more of these
contaminants are introduced into the environment and being detected in downstream best
management practices and waterways.

The publication sources for the primary studies were indicative of the interdisciplinary
nature, broad application, and relevance of the topic, dependent on region. The top publi-
cation sources for the primary studies included Chemosphere (n = 25), Science of the Total
Environment (n = 16), and Ecological Engineering (n = 16; Table 2). Table 2 only reports
the top five sources. However, 61 total sources were identified. These findings indicate
that wetland treatment systems treating non-point source runoff mixtures have broad
applicability to a variety of journal sources, which ranged from chemistry, environmental
hazards and contaminations, engineering, biology, and ecology-focused journals.
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Table 2. Results by publication source for the top 5 sources of the primary studies.

Publication Source Count Percent of Primary Studies (%)

Chemosphere 25 14
Science of the Total

Environment 16 9

Ecological Engineering 16 9
Environmental Pollution 10 5

Environmental Science and
Pollution Research 8 4

Other = 56 107 59

The primary studies took place throughout the world, occurring in 37 countries.
Countries with the highest number of primary studies included the United States (U.S.;
n = 52), China (n = 30), and France (n = 26; Figure 3). This could undoubtedly be due to the
limitation of the review to English journals. However, this could also be indicative of water
quality concerns and policies limiting the use of emerging contaminants in different regions
of the world. For example, the U.S. has approved the use of pesticides and antibiotics
(e.g., phorate, dicrotophos, tribufos, oxytetracycline, streptomycin) for outdoor agricultural
use, of which many have been banned or phased out by the European Union, Brazil, and
China [219]. In the U.S., the Mississippi River Basin is the largest, most intensively farmed
region with phorate, dictophos, tirubfos, and oxytetracycline primarily applied to land in
the Southeastern region of the United States [220]. This is represented in Figure 4, where the
state of Mississippi was the location of 48% of the primary studies in the U.S. Furthermore,
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these studies were further analyzed based upon experimental design and implications to
wetland treatment processes in the sections below.
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3.2. Scale and Type of Wetlands Used

The scale and type of wetland system used for analysis within the primary studies
were coded to determine the scope of the studies along with their impact on the study
results to assess Objective 2. The scale has the potential to impact removal efficiencies of
contaminants by increasing the number of variables in the system, moving from a controlled
environment to a natural environment, and introducing artificial impacts (i.e., wall-effects
in microcosm and mesocosm experiments) as studies progress from microcosm to full-
scale [221,222]. Microcosm studies utilize repeatable small-scale systems to understand a
specific biogeochemical process (e.g., sorption, phytoremediation, microbial activity) in
a controlled environment [222,223]. On the other hand, full-scale systems include major
processes in the natural environment; however, these studies are harder to replicate due to
land and cost constraints [221]. Mesocosm studies are a more cost-effective tool to study
contaminant removal in wetlands compared to a full-scale system, while still providing
useful predictions using treatment replicates and controls to study wetland efficacy in
controlled and natural environments [221,224]. As for the primary studies, 43% studied
full-scale systems, 37% studied mesocosms, and 21% studied microcosms (Figure 5), with
only two studies investigating more than one scale [53,76].
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The primary studies that showed high removal efficiencies (greater than 75%) were
larger for mesocosm studies. Of the studies that analyzed the mesocosm scale, 68% had at
least one contaminant removed at an efficiency greater than or equal to 75% [16,23,45,48,53–
55,58,59,67,69,70,76,79,86,102,104,105,112–114,124,144,151,154,161,163,169–171,175,178–180,
182,183,185,192,193,195,201–203,209,210,217–219]. Additionally, 54% of microcosm studies
resulted in high removal efficiencies [30,60,76,78,83,90,94,97,119,129,131,143,146,164,168,
177,181,188,194,200,207] and 59% of field studies resulted in high removal efficiencies [3,46,
50,53,62,63,68,74,77,80,82,84,85,87,92,95,99,103,106,107,117,119,121,122,126,128,133,135,139,
141,142,147,150,156,159,160,173,174,184,186,187,189,191,196,206,208,212]. However, efficien-
cies between studies for specific contaminants and/or classes were not able to undergo statistical
evaluation due to few studies having the same contaminant and/or class evaluated.

The type of wetland system was another principal factor to consider because the type
of system impacts removal efficiencies, dependent on the contaminant of interest [225].
Wetlands are often defined based upon hydrology (e.g., free-water surface and subsurface
flow) along with vegetation (e.g., emergent, submerged, floating, and free-floating) [226].
In this review, 19 different wetland systems were identified throughout the primary studies.
These ranged from natural systems to different types of constructed systems including
agricultural field practices (e.g., rice fields and wetland buffers). Natural wetlands were
defined as wetlands that existed naturally in the environment. These included, but were
not limited to, floodplains, prairie potholes, depressions, salt marshes, and ephemeral
wetlands. Constructed wetland systems included horizontal flow wetlands, subsurface
flow wetlands, man-made reservoirs (e.g., ponds, lakes, lagoons, dugouts, and storage
dams), free-water surface wetlands, vertical flow wetlands, wetlands in a series, floating
treatment wetlands, stormwater basins, and recirculating wetlands. Wetlands used as an
agricultural field practice included rice fields, which acted as temporary wetlands with
some of the same species as temporary ponds [227]. Additionally, wetland buffers were
defined as a wetland system constructed near agricultural fields to remove contaminants
in the water before entering receiving waterbodies.

The most common wetland systems identified were horizontal subsurface flow con-
structed wetlands (n = 42; Table 3). However, while horizontal subsurface flow constructed
wetlands were the most common wetland system reviewed, removal efficiencies for CUPs
and antibiotics varied widely from 0% norlurazon removal at the field-scale [61] to 100%
imidacloprid removal at the mesocosm scale [210]. Additionally, natural wetland sys-
tems and reservoirs were analyzed in 15% and 14% of the primary studies, respectively.
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Both wetlands were used to treat a variety of contaminants (e.g., atrazine, metolachlor,
chlorpyrifos, clothianidin, endosulfan, permethrin, prosulfocarb, fluometuron, isopro-
turon) in full-scale systems. Removal efficiencies ranged from 10% (clothianidin) [187]
to 100% (permethrin) [77] for natural wetlands and 0% (prosulfocarb) [128] to 100% (iso-
proturon) [126] for reservoirs. The least studied systems were depressions, ephemeral
wetlands, wetland buffers, recirculating constructed wetlands, and salt marshes each ap-
pearing only once throughout the primary studies. However, six studies investigated the
ability of rice fields to mitigate nutrients, pesticides, and antibiotics as a wetland system
in Mississippi, U.S. [63,160,174], India [56], China [115], and Spain [103] with high re-
moval efficiencies (58–100%) for several different contaminants (e.g., diazinon, benthocarb,
carbofuran, atrazine, permethrin, NH4

+-N, NO3-N, nitrate-N).

Table 3. Results by wetland type analyzed in the primary studies.

Type of Wetland Count Percentage of Primary Studies (%)

Horizontal flow constructed wetland 41 27
Natural wetland 22 15

Reservoir 21 14
Subsurface flow constructed wetland 19 13

Free-water surface constructed wetland 13 8.5
Vertical flow constructed wetland 9 6.5

Rice Field 6 3.9
Stormwater basin 4 2.6
Restored wetland 4 2.6

Constructed wetland series 3 2.0
Floating treatment wetland 3 2.0

Wetland buffer 2 1.3
Recirculating constructed wetland 1 0.65

3.3. Source and Mixture of Contaminant Types Entering Wetlands

Specific design approaches used in the primary studies were analyzed to identify
study length (e.g., days, years), type of water analyzed (e.g., urban runoff, rural runoff),
and contaminants evaluated to address Objective 3. This was completed to determine
which methodological approaches were used most often throughout the primary studies,
along with attempting to understand the impact of seasonality, type of landscape runoff,
contaminant type, the presence of mixtures of contaminants, and wetland plant type in
the primary study results. The length of the study was important to identify the impact
of time on wetland treatment. Water type provided insight into runoff from urban and
agricultural landscapes and into which landscapes have been studied the most. The specific
contaminants studied and the presence of mixtures were coded to determine the most
common contaminants and how the contaminant (CUPs and/or antibiotics) impacted
NO3-N removal efficiencies. Finally, the type of wetland plants recorded in the primary
studies assisted with identifying which wetland plants were most commonly used and
if there was an impact on the removal efficiencies of different contaminants based on
planting plan.

The length of the study was coded in five different categories: hours, days, weeks,
months, and years (Table 4). Hours were defined as any study that took place less than 24 h.
Only one study fell into this category, which evaluated removal efficiencies of permethrin
in a mesocosm study with four different wetland plant species (i.e., Leersia oryzoides, Typha
latifolia, Sparaganium americanum, Thalia dealbata) over 12 h [54]. The second category, days,
was defined as an experiment that lasted between 1 to 7 days, which included 13% of
the primary studies. The category of weeks was then defined as an experiment that was
between 7 to 30 days, with months defined as an experiment that took place between 30 to
365 days, and years being an experiment that was longer than 365 days.
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Table 4. Results by the length of the study analyzed by the primary studies.

Length of Studies Count Percentage of Primary Studies (%)

Hours 1 1
Days 23 13

Weeks 48 26
Months 96 53

Years 14 8

Months were the most common length of study (53%), and weeks were the second
most commonly evaluated (26%). Most of the microcosm studies (67%) addressed peri-
ods shorter than months, while a majority of the mesocosm studies (64%) used longer
periods. Additionally, several contaminants (e.g., methyl-parathion, malathion, endosul-
fan, chlorpyrifos, diazinon, tetracycline) were removed within a relatively short period
(i.e., less than 10 days) [144,168,171,174,177]. However, other studies found accumulation
of contaminants (e.g., pyrethroid, 2,4-MCPA, glyphosate, propoxycarbazone-Na, NO3-
N) [68,114,126] with recommendations that the long-term impact on wetlands needs to be
further investigated.

The runoff from landscapes defined the water type and included agricultural runoff,
urban runoff, both agriculture and urban runoff, or nature reserve. This was coded based
on land cover in the watershed for field-scale systems. For mesocosm and microcosm
experiments, the primary study either stated where the water was collected from, or the
type and concentration of contaminants used for synthetic water. For example, Birch et al.
(2004) studied a wetland located in an urban watershed in Sydney, Australia to determine
the removal efficiencies of organochlorine pesticides, polycyclic aromatic hydrocarbons,
trace metals, nitrogen, phosphorous, and stormwater effluent [213]. On the other hand,
Butkovskyi et al. (2021) used synthetic wastewater to simulate agricultural runoff by
applying tap water, fertilizer solution, and different types of pesticides (bentazone, MCPA,
metalaxyl, propiconazole, pencycuron, imidacloprid) to potted microcosms containing
Phalaris arundinacea sp. Larsa [181]. For the primary studies, the most common water
type was from agricultural runoff (n = 148), with both agriculture and urban runoff en-
compassing 18 studies, and urban runoff alone assessed in 15 studies (Figure 6). Studies
investigating urban and agricultural runoff were either not specific about the water type
and instead reported contaminant(s) applied in upstream regions (e.g., sulfonamides used
to treat both human and animal infections [76,90,170], or the field site for the primary
studies’ watershed contained both urban and agricultural runoff [74,80]. Finally, nature
reserve was the least studied landscape (n = 1); Tsui et al. (2008) assessed glyphosate
concentrations in the Mia Po Nature Reserve in Hong Kong [87].

Seven different types of contaminants were studied: nutrients, pesticides, antibiotics,
other pharmaceuticals besides antibiotics, metals, minerals, and industrial by-products
(Table S1). Pesticides included herbicides, insecticides, and fungicides and were the most
common type of contaminant analyzed, appearing 556 times throughout the primary
studies with peak study counts occurring between 2016 and 2021 (Figure 7). The most
common pesticides studied were atrazine (n = 25), chlorpyrifos (n = 22), s-metolachlor
(n = 21), alachlor (n = 16), and isoproturon (n = 14), along with 158 other pesticides
analyzed. Atrazine is a commonly used herbicide, introduced in 1985, and is mainly
used for agricultural landscapes while also being used on residential lawns and golf
courses, particularly in the Southeastern United States [228]. Additionally, chlorpyrifos,
an insecticide introduced in 1965, and s-metolachlor, an herbicide introduced in 1976, are
used for agricultural and non-agricultural landscapes, while alachlor and isoproturon are
herbicides mainly used for agriculture.
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Antibiotics appeared throughout the primary studies 60 times, starting in 2007, with peak
counts of primary studies (nantibiotics = 9, nnutrients and antibiotics = 11, nnutrients, pesticides, and antibiotics
= 1) between 2016 and 2021. The most common antibiotics studied were tetracycline (n = 11),
sulfamethoxazole (n = 5), monensin (n = 3), narasin (n = 3), and ciprofloxacin (n = 5), out
of a total of 29 primary studies. Of these, narasin and monensin are used as veterinary
antibiotics and were found primarily in agricultural runoff, whereas sulfamethoxazole,
tetracycline, and ciprofloxacin are used more for humans and were found in urban runoff.

Additional contaminants found in the primary studies included other pharmaceu-
ticals, metals, minerals, and industrial byproducts. Other pharmaceuticals included any
pharmaceutical that was not considered an antibiotic (e.g., carbamazepine, caffeine, di-
clofenac, fluoxetine, naproxen, ibuprofen). Industrial byproducts were defined as con-
taminants that are commonly used in industry such as fragrances (e.g., cashmeran, di-
hydrojasmonate), plastic production (e.g., bisphenol A, di-n-butyl phthalate), dyes (e.g.,
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uranine), corrosion inhibitors (e.g., benzotriazole), and de-icing fluids (e.g., 5-methyl-1H-
benzotriazole). While these contaminants were not the focus of the review, they were
observed in the primary studies and are often found in runoff from urban and agricultural
landscapes [80,99,101,103,112,137,151,213].

There was a total of 9 nutrients analyzed throughout the primary studies, with the
most common being TN (n = 29), NO3-N (n = 15), NH4

+-N (n = 12), total phosphorus
(TP, n = 10), and nitrite-N (NO2-N; n = 4). Other nutrients found in the primary studies
were orthophosphate, sulfate, chloride, and urea. As for the presence of mixtures, only
30 primary studies looked at contaminant mixtures. Nutrient and pesticide mixtures were
the most common mixtures studied, peaking between 2016 and 2021 with 11 primary stud-
ies. Only one study in 2020 considered a runoff mixture containing antibiotics, nutrients,
pesticides, and other pharmaceuticals [103]. Of these studies that looked at mixtures, only
16 specifically analyzed the impact on nitrogen removal in the presence of different contam-
inants [23,30,58,59,67,97,102,103,112–114,120,131,169,179,181,201]. Thus, the data shows
that only recently have some of these contaminants started to be studied individually, in
the case of antibiotics, but also as mixtures. This has resulted in the limitation of this review
to systematically analyze the implications of wetland design parameters and mechanisms
on N removal processes.

3.4. Removal Mechanisms and Efficiencies

Removal mechanisms were coded based upon the specific processes that were the
focus of the primary study to further address Objective 3. Fifteen removal mechanisms
were evaluated (Table 5). Varying mechanisms provide insight into the impact on contami-
nant removal efficiencies, particularly the impact on nitrogen removal processes. Design
parameters included size, depth, and aspect ratio of the wetland in addition to the impact of
timing (the removal efficiencies over time from contaminant exposure) and space (distance
from wetland inlet). If a specific process was not listed and instead removal efficiency of
contaminants was analyzed for the wetland system as a whole, then “holistic approach”
was coded.

Table 5. Results by removal mechanisms studied for impact on removal efficiencies of contaminants
by primary studies.

Removal Mechanism Count Percentage of Primary Studies (%)

Phytoremediation 90 23
Sorption 69 18

Microbial activity 43 11
Holistic approach 37 9.8

Dilution 35 9.3
Hydrologic regime/flow rate 26 6.7

Timing 26 6.7
Loading concentration 25 6.4

Space (distance throughout wetland) 8 2.0
Presence of mixtures 7 1.8

Photodegradation 7 1.8
Design parameters (size, depth, aspect ratio) 6 1.5

Temperature of water 3 0.77
Weather 2 0.51

Saline Concentration 1 0.26

For the primary studies, the most common removal mechanisms studied were biologi-
cal processes such as phytoremediation (n = 90), sorption (n = 69), and microbial activity
(n = 43). Phytoremediation was coded if the primary study looked at the impact of vegetated
vs. non-vegetated systems [55,161,175], or analyzed the plant roots [23,119,127,180,210],
leaves [127,210], and stems [119,210] for contaminant concentrations. The type of wet-
land plant used throughout the primary studies helps to identify which wetland plants
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were most common and if there was an impact on the removal efficiencies for differ-
ent contaminants dependent on plant species. There were 92 genera of plants identi-
fied, with Typha spp. being the most common, comprising 14% of the primary stud-
ies, and Phragmites spp. used in 11% of the studies (Table 6). It is important to note
that not all studies used wetland plants [43,83,89] or identified the specific plant species
within the wetland system [148,159,179]. Also, not all primary studies that specified the
plant species present in the wetland system analyzed the impact of phytoremediation
as a removal mechanism [21,173,205]. For the studies that did investigate phytoreme-
diation, vegetated systems increased removal efficiencies compared to non-vegetated
systems [51,55,66,95,154,161,175,181,217], with mature plants out-performing younger
ones [158].

Table 6. Results of the top 10 plant genus used by the primary studies.

Plant Count Percentage of Primary Studies

Typha spp. 53 14
Phragmites spp. 43 11

Iris spp. 15 4
Carex spp. 14 4
Cyperus sp. 12 3
Phalaris sp. 11 3

Glyceria spp. 10 3
Canna sp. 9 2

Scripoides sp. 9 2
Other (n = 92) 210 54

As for the impact of the type of plant on removal efficiencies, Lv et al. (2016) concluded
that Typha latifolia, Phragmites australis, Iris pseudacorus, and Juncus effusus were all able
to take up and metabolize imazalil and tebuconazole with removal efficiencies between
46–96% and 25–41%, respectively [78]. Additionally, Tang et al. (2019) concluded that
there were no significant differences in planted systems (Cyperus alternifolius, Canna indica,
Iris pseudacorus, Juncus effusus, and Typha orientalis) and that plants with high biomass
and transpiration were able to accelerate the removal of chlorpyrifos and conventional
pollutants with removal efficiencies between 94–98% [86]. On the other hand, some
primary studies found that specific species outperformed others, with Lemna minor having
high removal efficiencies for dimethomorph (17%) and pyrimethanil (12%) compared to
Spirodela polyrhiza (11–15%) [111]. Additionally, Phalaris arundinacea was better at up taking
dicamba, dimethoate, trifloxystrobin, metamitron, and tebuconazole (mean removal of
4%) compared to Typha latifolia (2%) [95], Eleocharis mutata retained less imidacloprid in
the plant material and roots (0.5%) compared to Nymphaea amazonum (78.9%) [210], and
Pontederia cordata reduced greater amounts of azoxystrobin (51.7%) compared to Juncus
effusus (24.9%) and Silene latifolia (28.7%), while Silene latifolia was the best at removing
imidacloprid (79.3%) [154].

Sorption to wetland media was a removal mechanism of focus for 18% of the primary
studies (Table 5). This included studies that compared different media types [67,104,170]
or analyzed the amount of contaminant sorbed to the wetland media by determining
the concentrations of contaminants [74,87,135,170,229] or determining sorption isotherm
coefficients for the media [137,196,198]. The different media types found in the primary
studies included biochar [59,170,179,192], straw [133,134], compost [170], different types
of soil [67,145,196,197], gravel [104,161,229], pebbles [179], zeolite [59,114,147,218], and
cobbles [104].

Soil types and properties (e.g., organic matter content, porosity, structure, moisture
content, electrical conductivity) are important components of wetland systems and have
been found to impact microbial communities, N cycling, and vegetation growth [229].
However, these soil properties are dependent upon wetland type (natural vs. constructed
wetlands) and age. For example, newly developed, constructed wetlands may have to
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overcome soil compaction, resulting in decreased porosity and redox potential, which in
turn impacts N cycling [230]. Overall, the type of contaminants present has been reported
to impact sorption processes due to competing cations [87] and differences between highly
vs. weakly sorbing contaminants [54]. Additionally, sedimentation or sorption was not the
primary removal mechanism in wetland systems with the presence of multiple removal
mechanisms (e.g., increased hydraulic retention time, vegetation, microbial activity); in-
stead, it enhanced contaminant removal [67,74,84,115,135,196,218]. For example, Uddin
et al. (2019) found electrical conductivity, total organic carbon, and total nitrogen in the soil
significantly impacted microbial richness and diversity [115].

Microbial activity is another important removal mechanism in wetland systems be-
cause microbial communities facilitate water treatment through metabolic actions (e.g.,
anabolism, catabolism) [231]. Microbial communities are mainly found in the rhizospheres,
the biofilms around the media, and the water. For the primary studies, 11% focused
on microbial activity as a specific removal mechanism. The increased microbial activ-
ity enhanced the removal capabilities for CUPS and antibiotics [59,60], with microbial
degradation being a leading mechanism for removal [194]. However, the microbial commu-
nities were impacted by the substrate [59,194], the type and concentration of contaminants
present [58,114,179], and the physicochemical properties of the water [179]. In particular, Lu
et al. (2021) reported the presence of sulfamethoxazole improved interactions for denitrify-
ing bacteria, but also decreased network complexity and microbial interaction on the whole
molecular network, thus altering the community structure of nitrogen-transforming mi-
croorganisms [114]. Yuan et al. (2020) observed the addition of Mn ore impacted microbial
diversity, causing increased removal potential for antibiotics (ciprofloxacin hydrochloride
and sulfamethazine), TN, NH4

+-N, and NO3-N [59].

3.5. The Impact of CUPs and Antibiotics on Nitrogen Removal

Overall, 31 primary studies analyzed and reported contaminant removal efficiencies
for runoff mixtures containing nitrogen, pesticides, and/or antibiotics to address Objective
4 (Table S2). The removal efficiencies for each contaminant varied widely, with total
nitrogen ranging from 5% to 99% removal and a mean of 58%. Ammonia-N had a similar
range of 7% to 100% and a mean of 75% removal. Nitrate-N removal varied widely from
−113% to 98%; however, only one primary study found an accumulation of NO3-N, which
was attributed to the amount of zeolite used in the mesocosm cells [114]. As for the CUPs
and antibiotics studied, the removal efficiencies varied from −619% to 100% and 35% to
100% for pesticides and antibiotics respectively, with negative removal efficiencies being
attributed to runoff and remobilization of pesticides in full-scale systems.

The location of the wetlands for these 31 primary studies with the highest removal effi-
ciencies of TN and NO3-N occurred in the United States [67,99], while the highest removal
efficiencies of NH4-N and pesticides occurred in the United States and Greece [77,99,218].
In contrast, the highest efficiencies of antibiotic removal occurred in China [58]. However,
the variation in removal efficiencies reported throughout the primary studies was likely
due to the wide range of CUPS and antibiotics studied, the type of wetland systems (e.g.,
scale, wetland type, plant type), and the climatic conditions of the wetland analyzed. For
example, Lu et al. (2021) reported that removal efficiencies of NH4

+-N were most affected
by temperature, rather than the concentration of contaminants, with increasing removal
efficiencies occurring at higher temperatures and with increased contact time [113]. For
the 31 primary studies identified as analyzing runoff mixtures containing nitrogen, CUPs,
and/or antibiotics, only two studies analyzed natural wetland systems and found relatively
high removal efficiencies (43–100%) for TN, NO3-N, NH4

+-N, atrazine, S-metolachlor, and
Permethrin [77,184]. The lowest removal efficiencies for TN and NH4

+-N were found
with full-scale horizontal flow constructed wetlands [3,213], while the lowest removal
efficiencies for NO3-N and antibiotics were found with mesocosm vertical flow constructed
wetlands [114]. In contrast, the lowest removal efficiencies for pesticides were associ-
ated with a full-scale wetland buffer [126]. Despite these external climatic and wetland
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design parameters, the leading cause for N-removal disruptions is thought to be due to
contaminant mixture type and concentration.

Several primary studies reported the impact of CUPs’ and antibiotics’ presence on
nitrogen removal efficiencies. Of these, seven studies reported that the specific contam-
inant analyzed decreased nitrogen removal [30,58,67,113,114,169]. The impact of CUPS
and antibiotics on nutrient removal was mainly attributed to a decline in the microbial
communities responsible for nutrient metabolism and degradation [30,114,131,169], where
the presence of plants and type of plant species [23,102,120,201], saturated vs. unsaturated
conditions [120,201], weather conditions [201], and timing [48,169] also played a role in
N removal in the presence of CUPS or antibiotics. Ohore et al. (2021) reported that the
presence of tetracycline decreased nitrogen removal initially, but observed an increase in
total N removal with an increasing number of days due to the degradation of antibiotics
in the wetland system [169]. Additionally, Tong et al. (2019) observed the presence of
plants protected the microbial communities, limiting ofloxacin’s ability to negatively impact
NO3-N and NH4

+-N removal [30].
However, the presence of CUPs and antibiotics has also been observed not to affect

nitrogen removal in wetland treatment systems [23,158,201], and in some cases, the CUPs
or antibiotics increased N removal [43,131]. These increases in N removal are presumed
to be due to an increase in microbial community diversity and richness in the presence
of CUPS or antibiotics [23,171]. Yu et al. (2019) observed that tetracycline had a slightly
negative effect on nitrogen removal (91% to 71%); however, the presence of copper and
tetracycline led to higher microbial richness with increases in microbial variations [171].
In contrast, Lu et al. (2021) observed that the presence of sulfamethoxazole had positive
influences on denitrifying bacteria interactions, but reduced the network complexity and
microbial interactions in the wetland mesocosms [114].

Runoff mixtures not only impact N removal efficiencies, but also impact the wetlands’
ability to remove CUPs and antibiotics. Recent investigations on the impact of N on CUPs
indicated that nitrifying bacteria can also degrade certain pesticides (e.g., metribuzin,
imazalil, tebuconazole) [59,102,120]. However, in some cases, the presence of nutrients
decreased CUP or antibiotic removal efficiencies in the wetland [171,205]. For example,
Matamoros et al. (2020) reported both the presence of nutrients impacted CECs removal
and that the presence of other CECs (caffeine, tributyl phosphate, 5TTri, bisphenol A,
benzotriazole, carbamazepine, diclofenac, ibuprofen, lorazepam, naproxen, oxazepam,
primidone, and triclosan) can reduce pesticide (sulfonyl 104, alachlor, bentazone, chlor-
pyrifos, DEET, molinate, oxadiazone, propanil, tebuconazole, and MCPA) removal in rice
fields [103].

4. Conclusions

This review sought to analyze 181 primary studies that used wetlands of varying
scales to treat runoff from urban and agricultural landscapes; this was accomplished by
assessing the bibliometric information of the primary studies, identifying wetland scale
and type, quantifying the source and mixture of CUPs and antibiotics entering wetlands,
identifying mechanisms of removal used to treat runoff mixtures, and analyzing the
implications of these mixtures to nitrogen removal processes (e.g., denitrification, plant
uptake). While the scientific production of wetland treatment systems used to treat runoff
has increased by 29%, of the primary studies reviewed, only 16 wetland treatment systems
received urban runoff, while 82% of the studies used wetlands to treat agricultural runoff.
Additionally, antibiotics and runoff mixtures have only recently begun to be studied.
This has resulted in only 31 of the primary studies evaluating removal efficiencies in the
presence of runoff mixtures, with only one study analyzing mixtures containing nutrients,
antibiotics, and pesticides.

The impacts on CUP (−619–100%), antibiotic (35–100%), and N (TN = 5–99%,
NO3-N= −113–98%, NH4-N = 7–100%) removal efficiencies varied greatly over the
primary studies. Variations were likely due to the wide range of different types of
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CUPs (n = 556) and antibiotics (n = 60) analyzed. Additionally, the location, scale of
the wetland system (microcosm, mesocosm, field-scale), presence and type of plants, the
substrate used, weather conditions, wetland type, and design parameters all impacted the
efficacy of the wetland system for water quality treatment. However, the largest impact
on nitrogen removal was the shift in microbial community diversity and richness in the
presence of CECs; however, this shift was seen to both increase and decrease microbial
communities depending on the contaminant mixture, showing a lack of understanding of
how microbial communities are impacted by different types and mixtures of CUPs and
antibiotics. In addition, long-term exposure analyses of wetland treatment processes and
efficacy were limited.

Throughout the primary studies, a lack of uniform reporting on wetland removal
performance appeared, with a portion of the studies reporting removal efficiencies, defined
as the difference between the influent and effluent mean concentrations over the influent
concentration, while others reported removal loads, defined as a mass balance removal
rate. Some primary studies also reported on sorption isotherms, microbial populations, or
toxicity. In addition, the wide variety of different classes of CUPs and antibiotics analyzed
throughout the primary studies made it difficult to perform further statistical analysis
to compare wetland type, scale, length of study, and removal mechanisms with removal
efficiencies. A significant knowledge gap remains in urban wetland treatment systems,
which are continuing to become more important as urban centers continue to grow. Even
more, a significant knowledge gap remains in how wetland treatment systems are used to
treat non-point source mixtures containing antibiotics and CUPs, resulting in a significant
unknown regarding nitrogen removal efficiency in wetland systems as contaminant runoff
mixtures and mechanisms for treatment evolve.
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