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Abstract: Accurate information on irrigated areas’ spatial distribution and extent are crucial in
enhancing agricultural water productivity, water resources management, and formulating strategic
policies that enhance water and food security and ecologically sustainable development. However,
data are typically limited for smallholder irrigated areas, which is key to achieving social equity and
equal distribution of financial resources. This study addressed this gap by delineating disaggregated
smallholder and commercial irrigated areas through the random forest algorithm, a non-parametric
machine learning classifier. Location within or outside former apartheid “homelands” was taken as a
proxy for smallholder, and commercial irrigation. Being in a medium rainfall area, the huge irrigation
potential of the Inkomati-Usuthu Water Management Area (UWMA) is already well developed for
commercial crop production outside former homelands. However, information about the spatial
distribution and extent of irrigated areas within former homelands, which is largely informal, was
missing. Therefore, we first classified cultivated lands in 2019 and 2020 as a baseline, from where
the Normalised Difference Vegetation Index (NDVI) was used to distinguish irrigated from rainfed,
focusing on the dry winter period when crops are predominately irrigated. The mapping accuracy of
84.9% improved the efficacy in defining the actual spatial extent of current irrigated areas at both
smallholder and commercial spatial scales. The proportion of irrigated areas was high for both
commercial (92.5%) and smallholder (96.2%) irrigation. Moreover, smallholder irrigation increased
by over 19% between 2019 and 2020, compared to slightly over 7% in the commercial sector. Such
information is critical for policy formulation regarding equitable and inclusive water allocation,
irrigation expansion, land reform, and food and water security in smallholder farming systems.

Keywords: irrigated areas; vegetation indices; informal irrigation; water security; sustainable devel-
opment smallholder farmers; South Africa

1. Introduction

The impacts of climate change, such as increasing temperatures, frequency, and
intensity of drought, and flooding, coupled with population growth, urbanisation, land
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degradation, and improper agricultural practices, are compounding the existing food
and water insecurity challenges [1,2]. The projected world population growth to over
9 billion people by 2050 [3] will increase the land under irrigation for agriculture to
meet the food requirements of the increased population [4,5]. If not well planned, this
will result in socio-ecological unsustainability, compounding climate change, and severe
consequences on human and environmental health and wellbeing [6,7]. Apart from the
socio-economic benefits, increasing the irrigated area can exacerbate the pressure on already
dwindling freshwater resources, which is a cause for concern under climate change [8–11].
The warming climate exacerbates the challenge of water and food insecurity, through
unpredictability and scarcity, which have already resulted in shifts in agro-ecological
zones and, thus, is affecting crop yields [12]. These impacts are bound to worsen without
clear knowledge of the spatial extent of irrigated areas, and dynamic shifts in these [7].
This important information is needed to plan and formulate policies and strategies on
irrigation expansion, rural economic development, land reform, and agricultural water
management [7].

Irrigation is an indispensable climate change adaptation strategy, especially for small-
holder farmers who constitute most farmers in developing countries and are the most
vulnerable to climate change [11]. Particularly, their reliance on the increasingly highly
variable and unpredictable rainfall for agriculture makes the transition to irrigated agri-
culture more relevant now than ever [13,14]. However, the cross-cutting challenges of
irrigation expansion require cross-sectoral and transformative approaches that recognise
the interlinkages within and between systems [15,16]. This is based, in part, on that almost
70% of the available freshwater resource withdrawals are already being used for crop
production, on only 18% of cultivated areas globally [4]. Therefore, the worsening climate
change, the challenges of rural socio-economic development, and the increasing demand
for food, whether it be for household or national food security, or as an economic activity
for livelihoods or national gross domestic product (GDP), warrant coherent policies and
strategies that balance improved water use efficiency with environmental and human
outcomes for sustainability [8,12].

Knowledge of the current spatial extent and dynamic changes in irrigated land is
important to inform policy and decision making in formulating coherent strategies on
water allocation, agricultural water management, regulating land and water use, and
directing irrigation infrastructure investment and development [17]. However, this in-
formation is scant, compromising the sustained and transformational change needed in
the agriculture sector to enhance water and food security, and socio-ecological sustain-
ability [11,18]. Existing databases on irrigated areas are mostly developed at the global
scale and, generally, on a coarse spatial resolution, with a spatial mismatch, therefore
misrepresenting the actual irrigated areas [6,11,19]. A more localised spatial scale and
resolution are preferred for tracking changes in irrigated areas over time [18,19]. This has
become even more important with the increasing vulnerability to climate disasters and
other risks, such as the COVID-19 pandemic, which impacted agriculture in ways that are
still largely unknown [16]. Thus, accurate data on irrigated land, disaggregated between
smallholder and large-scale commercial farming, are essential for informing policy and
supporting decision makers with strategies that promote and increase the sustainability of
the agriculture sector in terms of economic, social, and environmental dimensions. Such
localised quantification is more important for the smallholder sub-sector, which is on small
and fragmented parcels of land, which is usually difficult to detect on low resolution
satellite images [11,20], and may, therefore, be substantially under-estimated. Because of
the mismatch in the scale of regional and global irrigation mapping, the use of irrigation
water in smallholder farming areas is largely unaccounted for. Yet, it is widely recognised
that the total area of smallholder irrigated areas in many African countries is greater than
commercial irrigation [21,22]. As a result, it becomes evident that there is more water use
in the smallholder irrigation subsector, yet most of this water is unaccounted for [21,23].
In South Africa, where large-scale commercial white farmers own most irrigated areas,
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the proportion of cultivated areas that are irrigated was similar for small- and large-scale
irrigation in one province, Limpopo [23,24].

This study builds on earlier initiatives that also extracted irrigated areas world-
wide [25–27]. These projects produced irrigated area maps that were generally coarse
in spatial resolution, as they were mostly regional or global initiatives. These include the
FAO (Food and Agriculture Organization) database [28], Global Map of Irrigated Areas
version 5 (GMIA 5.0) [29], the MIRCA 2000 product [30], and IWMI’s (International Water
Management Institute) irrigated area map [31], among other datasets. In 2016, IWMI
developed an improved irrigated area geospatial product for Asia and Africa using Fourier
series, canonical correlation analysis, and time-lagged regression at a spatial resolution
of 250 m for 2000 and 2010 [27]. Subsequently, IWMI also developed another localised
irrigated areas map for Limpopo Province in South Africa, using Landsat 8 imagery [11].
Even though these spatial datasets are crucial in quantifying and mapping irrigated areas,
the accuracy is generally low due to low spatial resolution [19]. A recent study in South
Africa revealed that using low spatial resolution data can lead to the misclassification of
irrigated areas, particularly in smallholder fields that are 1 to 2 ha in size, which is too
small to be distinguished by low-resolution satellites [19,32].

Advances in information technologies have significantly improved remote sensing
tools through the advent of cloud-based big data management platforms such as Google
Earth Engine (GEE), artificial intelligence, and machine learning algorithms [6,33]. These
advances, coupled with the availability of freely accessible remotely sensed datasets, greatly
improve agricultural information management by reducing the pre-processing, process-
ing, and post-processing time [6,19,33–37]. The mapping improvements are concurrently
applied to improve the mapping accuracy and distinguish irrigated from rainfed areas [6].

We, therefore, used this improved technology to accurately assess irrigation by small-
holder farmers relative to larger-scale commercial irrigation, and how this compares under
different extrinsic circumstances. This study developed a more accurate irrigated area
dataset for the Inkomati-Usuthu Water Management Area (IUWMA), South Africa, using a
combination of the random forest classifier, GEE, and the R-programming language. The
IUWMA is appropriate for this study as it is a relatively moist area in an arid country.
It has a substantial combination of commercial and smallholder agricultural land use
that constitutes a major regional gross domestic product (GDP) component. The water
management area has a large, resource-poor, rural population within its former homelands.
However, it has substantial high-priority biodiversity conservation areas, including prior-
ity mountain catchment areas and important catchments in the world-renowned Kruger
National Park. Moreover, there are downstream obligations of water flow and water qual-
ity to Mozambique (Sabi and Komati) and Swaziland (Usuthu Rivers); however, all the
available freshwater resources are almost all allocated [38]. We then used this increased
understanding to inform policy and guide decision making on informed strategies on
sustainable irrigation expansion for commercial and smallholder sectors and accounting
for the possible impacts of the stochastic events, such as those represented by the COVID-19
pandemic, on agriculture and agricultural water use.

2. Methods
2.1. Description of the Study Area

The study focused on the 37,000 km2 IUWMA (Figure 1), in the eastern half of
Mpumalanga Province, with a small component in northern Kwazulu-Natal, and comprises
four sub-catchments, including the Sabie/Sand, Usuthu, Crocodile, and Komati Rivers.
The IUWMA was established for efficient water management at decentralised levels.
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Figure 1. The IUWMA and the sub-catchments also showing former homelands, areas established under apartheid, and 
reflect the current rural informal smallholder agricultural sector. 

The topography is characterised by a Great Escarpment, dividing its land area into 
two major sections: (a) the Plateau area with an elevation of more than 2000 m to the west, 
and (b) the Lowveld area in the east [39]. The two topographic zones determine the climate 
of the water management area where a temperate climate dominates the Highveld, whilst 
a sub-tropical climate dominates the Lowveld areas [38]. Rainfall is seasonal, occurring 
during the summer season (October to February). The IUWMA is a relatively moist region 
compared to the rest of the country, yet almost all its freshwater resources are allocated, 
leaving little room for further development [38]. The winter season (April to August) is 
generally dry and cold, with occasional light snow in the southwestern divide. These rel-
atively warm and almost frost-free conditions make the water management area a vibrant 
irrigated crop production area during the dry winter season. The average annual temper-
ature is about 20 ˚C, and the mean annual rainfall ranges from 400 mm to 1500 mm [39]. 
Natural vegetation is predominantly grassland in the higher altitudes, and savanna at 
lower altitudes and winter agriculture is irrigated due to the dry conditions. Smallholder 
irrigation is predominant in former homelands, also called Bantustans (Figure 1), areas 
allocated to indigenous black people during the apartheid era, which were, and still are, 
generally poorly resourced. The north-eastern section of the IUWMA lies within the Kru-
ger National Park [40]. The water management area is rich in minerals that include huge 
coal reserves. However, coal mining seriously affects water quality [39]. 

2.2. Methodological Framework 
The methodological framework (Figure 2) illustrates the processes in classifying irri-

gated and rainfed areas in the IUWMA. High-resolution and cloud-free satellite images 
from the Sentinel 2 (20 m spatial resolution) for June to October 2020 (a period when irri-
gation within the tropical region is detectable using the Normalised Difference Vegetation 
Index (NDVI) as it is dry) were selected and mosaicked within the GEE platform. The 

Figure 1. The IUWMA and the sub-catchments also showing former homelands, areas established under apartheid, and
reflect the current rural informal smallholder agricultural sector.

The topography is characterised by a Great Escarpment, dividing its land area into
two major sections: (a) the Plateau area with an elevation of more than 2000 m to the
west, and (b) the Lowveld area in the east [39]. The two topographic zones determine
the climate of the water management area where a temperate climate dominates the
Highveld, whilst a sub-tropical climate dominates the Lowveld areas [38]. Rainfall is
seasonal, occurring during the summer season (October to February). The IUWMA is a
relatively moist region compared to the rest of the country, yet almost all its freshwater
resources are allocated, leaving little room for further development [38]. The winter
season (April to August) is generally dry and cold, with occasional light snow in the
southwestern divide. These relatively warm and almost frost-free conditions make the
water management area a vibrant irrigated crop production area during the dry winter
season. The average annual temperature is about 20 ◦C, and the mean annual rainfall
ranges from 400 mm to 1500 mm [39]. Natural vegetation is predominantly grassland in
the higher altitudes, and savanna at lower altitudes and winter agriculture is irrigated
due to the dry conditions. Smallholder irrigation is predominant in former homelands,
also called Bantustans (Figure 1), areas allocated to indigenous black people during the
apartheid era, which were, and still are, generally poorly resourced. The north-eastern
section of the IUWMA lies within the Kruger National Park [40]. The water management
area is rich in minerals that include huge coal reserves. However, coal mining seriously
affects water quality [39].

2.2. Methodological Framework

The methodological framework (Figure 2) illustrates the processes in classifying irri-
gated and rainfed areas in the IUWMA. High-resolution and cloud-free satellite images
from the Sentinel 2 (20 m spatial resolution) for June to October 2020 (a period when
irrigation within the tropical region is detectable using the Normalised Difference Vege-
tation Index (NDVI) as it is dry) were selected and mosaicked within the GEE platform.
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The mapping exercise facilitated deriving disaggregated statistics for smallholder and
commercial farming areas to inform policy formulation and decision making.
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Figure 2. Methodological framework to classify irrigated areas using a non-parametric machine
learning algorithm, the random forest.

The former homelands dataset extracted cultivated areas in predominantly small-
holder farming areas, which are generally small and fragmented. Large commercial farming
is absent in former homelands. The extraction of smallholder farmlands facilitated distin-
guishing smallholder croplands from commercial farms in each catchment and deriving
related statistics. The GEE functionalities were used to identify four land use categories
using Sentinel 2 images (Table 1) through spectral signatures of the four land uses: water,
natural vegetation, agricultural areas, and built-up areas.

Table 1. Land-cover classification types used as training samples to classify irrigated areas.

Land Classification Description

Cultivated land
Land planted with seasonal crops (maize, wheat, soybeans, etc.),
newly opened cropped areas, fallow land, etc. The list excludes

permanent evergreen tree plantations and fruit orchards.
Vegetated areas Shrublands, woodlands, grasslands, natural or planted forests

Water All water bodies, including rivers, wetlands, reservoirs, etc.
Built-up area All settlements, including industrial areas

The focus was on seasonal crops (maize, wheat, soybean, groundnuts, etc.) and we
excluded planted permanent fruit crops (orange, banana, macadamia plantations, etc.).
Planted fruit crops are differentiated from natural forests in that natural forests in tropical
regions shed leaves during the dry winter season, whereas planted fruit crops are always
green. Moreover, in almost all cases, planted fruit crop fields maintain a defined shape,
and the trees are grown in lines, which facilitates their differentiation. The random forest
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algorithm can identify and map such land uses to keep track of these attributes and decision
rules during the mapping process [41,42].

A supervised classification was run using the random forest classifier. The random
forest classifier was chosen mainly because of its flexibility and ability to classify data with
a high degree of accuracy [43,44]. The agricultural areas from the classified product were
then integrated with already existing agricultural datasets. These datasets include the
digitised farm boundaries, which were acquired from the Department of Agriculture, Land
Reform, and Rural Development’s (DALRRD) [45], and the 2018 land use map of South
Africa, which classifies cropland [46].

2.3. Average Monthly Rainfall in IUWMA

The classification of irrigated areas targeted the dry winter seasons (April to August)
when little or no rainfall is received in the water management area (Figure 3). Crop
production during the dry winter season is, therefore, through irrigation [6,11,47]. Previous
studies have indicated that there is crop production throughout the year, but it is divided
into two types, irrigated and rainfed agriculture [11,47]. Horticultural crops that include
green peas, butternut, tomatoes, potatoes, and dry beans are generally grown during
the dry winter period under irrigation using groundwater [47]. Irrigation during the
wet summer period is mainly for cash crops at the commercial level and is generally
supplementary irrigation for the intra-seasonal dry spells [6,11,47].
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2.4. Extracting Crop Phenology from NDVI

Healthy crops reflect infra-red and absorb red and blue, whereas unhealthy plants
reflect red and absorb infra-red portions of the electromagnetic spectrum. So the red and
near infra-red bands are important in compiling the NDVI and other vegetation indices, as
the blue portion is absorbed in the upper atmosphere [48]. In a region with a single modal
annual rainfall pattern, there is less absorption of the visible light and low reflection of
the infrared light during the dry season (Figure 4), resulting in low NDVI values. High
NDVI values on croplands during the dry season signify irrigation, as there is generally
insufficient rainfall to stimulate leaf flush. NDVI values drop around May to June but pick
up between July and September due to irrigation (Figure 4).
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Figure 4. An example of single growing season and related phenological measures analysed through
NDVI.

Outliers and seasonality typically characterise a time series of NDVI data in regions
characterised by dry and wet seasons [49]. The single modal annual rainfall pattern of the
study area shows that rainfall (or agricultural season) starts in October and ends in April,
indicating a time lag between rainfall and seasonal crop phenophases [50] (Figure 3). As
rainfall is a key factor in the seasonal crop cycle, there is a positive correlation between
rainfall and the seasonal crop growth pattern [51]. Thus, vegetation growth and greening
begin in October/November, and browning begins in May/June (Figure 4). This process
also applies to rainfed crops in areas with a single modal crop growth cycle. In winter irri-
gated areas, greening starts at any time of the dry period from June to October. Croplands
could be at a greening stage, yet others are at the boosting stage, while some are at the
browning stage.

In most cases, farming relies on rainfall during the wet season; the rainfed crop will
start greening in November and browning in May. The greening of irrigated crops begins
around June and the browning in October. Thus, the classification of irrigated areas was
assessed from June to October, coinciding with the dry season.

NDVI time-series data were crucial in the extraction of crop phenology. To extract
crop phenology, average monthly NDVI data derived from the Landsat 8 images were
computed on GEE from June to October, the winter and dry season for the 2019 and 2020
datasets. The NDVI was used to distinguish irrigated areas from rainfed areas and compare
changes in irrigated areas during the 2019 and 2020 winter growing seasons.

2.5. Mapping Irrigated and Rainfed Areas

To separate irrigated and non-irrigated areas, NDVI thresholds between 0.19 and
0.25 were employed, and this was in full agreement with the literature [47,52]. These
NDVI thresholds were determined using histogram equalisation and the sigmoid contrast
stretch [6]. Cell statistics were used to integrate the irrigated and non-irrigated datasets
from each year into one dataset. Therefore, the seasonal variations of vegetation indices
provided the basis for distinguishing irrigated from rainfed areas using time-series NDVI
data. The final dataset was then masked to the extent of the agricultural areas (derived
from the integration of three datasets (GeoTerraImage, DALRRD, and the classification
performed in this study)).

Agricultural areas were classified using Sentinel 2 imagery, and integrated data from
the 2018 South Africa Land cover map. The classified agricultural areas were verified
for accuracy assessment using Google Earth imagery. Then the Landsat 8 derived NDVI
was used to identify cropped fields during the dry winter season. The kappa index and
confusion matrix were used to assess the land use/cover classification accuracy. The
ground-truth points used were randomly chosen, and information on each was compared
between the land use/cover and Google Earth imagery. The kappa confusion matrix
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gave an overall accuracy of 84.9%, which is a highly acceptable accuracy. The accuracy
assessment is indispensable for determining the quality of the classified cultivated area
derived from the random forest classifier.

3. Results
3.1. Delineating the Irrigated and Rainfed Areas

The initial product developed from the remote sensing processing of Sentinel was
a map showing the extent and spatial distribution of cultivated areas in both 2019 and
2020 (Figure 5a,b, respectively). The maps also show the proportion of the two cultivation
systems per sub-catchment, comparing 2019 and 2020. The cultivated cropland map
incorporates both irrigated and rainfed areas. Irrigation outside former homelands is
assumed to be large-scale and formal, and within former homelands, irrigation is assumed
to be undertaken by smallholders.
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Figure 5. Distribution of cropped areas (irrigated and rainfed) in the IUWMA and the proportion between irrigated and
rainfed areas per sub-catchment comparing 2019 (map (a)) and 2020 (map (b)).

The IUWMA has a large area of cultivated cropland (Figure 5), occupying 15% of the
total land area. However, the distribution of cultivated land is uneven, as determined by
topography, distribution of the river network and soil types, and the location of former
homelands (Figure 5). The highest concentration of cultivated land is mainly in the Lowveld
area to the east of Komati and Usuthu sub-catchments and the former homelands. The
parts of the Sabie and Crocodile sub-catchments bare of agriculture are mostly within the
Kruger National Park and other conservation areas.

3.1.1. Changes in Cropped Areas between 2019 and 2020 in Sub-Catchments

The statistical information is given in Tables 2 and 3. It shows the irrigated and rainfed
areas in the IUWMA. At over 80% of the total cultivated area, irrigated land is predominant
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in the water management area, where the rainfed area accounts for less than 10% of the
total cultivated area.

Table 2. Proportions of irrigated and rainfed areas per sub-catchment in 2019 and 2020.

Sub-
Catchment

Sub-
Catchment
Area (ha)

Rainfed
Area (ha)

Irrigated
Area (ha)

Cultivated
Area (ha)

Rainfed
Area as % of
Cultivated

Areas

Irrigated
Areas as% of

Cultivated
Areas

Cultivated
Area as % of
Catchment

Area

2019

Usuthu 809,577.1 13,454.3 108,792.8 122,247.1 11.0 89.0 15.1
Crocodile 1,044,273.3 10,910.8 119,671.6 130,582.4 8.4 91.6 12.5

Sabie 930,109.3 11,422.2 66,179.5 77,601.6 14.7 85.3 8.3
Komati 863,975.9 40,165.6 180,662.1 220,827.7 18.2 81.8 25.6

Total 2,793,383.6 75,952.8 475,306.0 551,258.8 13.8 86.2 19.7

2020

Usuthu 809,577.1 8741.9 113,505.2 122,247.1 7.2 92.9 15.1
Crocodile 1,044,273.3 4937.1 125,745.3 130,682.4 3.8 96.2 12.5

Sabie 930,109.3 2044.3 75,557.3 77,601.6 2.6 97.4 8.3
Komati 863,975.9 25,648.0 195,179.7 220,827.7 11.6 88.4 25.6

Total 2,793,383.6 41,371.3 509,987.5 551,358.8 7.5 92.5 19.7

Table 3. Percentage change per sub-catchment in agricultural systems between 2019 and 2020.

Rainfed Area (%) Irrigated Area (%)

Usuthu −35.0 4.3
Crocodile −54.8 5.1

Sabie −82.1 14.2
Komati −36.1 8.0
Overall −45.5 7.3

3.1.2. Changes in the Cultivated Area between 2019 and 2020 in Former Homelands

The same trend of irrigated land predominance continues in former homelands
(Figures 6 and 7). Although slightly less in 2019, the land under irrigation increased even
more strongly between 2019 and 2020 in the former homelands (Figures 6 and 7 and
Tables 4 and 5): from 80% of the total cultivated areas in 2019 to 96% in 2020.
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Table 4. Proportions of irrigated and rainfed areas in former homelands in 2019 and 2020.

Former
Homelands Name

Homeland
Area (ha)

Rainfed
Area (ha)

Irrigated
Area (ha)

Cultivated
Area (ha)

Rainfed Area as
% of the

Cultivated
Areas

Irrigated
Areas as % of

Cultivated
Area

Cultivated
Area as % of
Homeland

Areas

2019

Kangwane 344,255.6 20,072.1 73,931.9 94,004.0 21.4 78.7 27.3
Gazankulu 134,944.8 7553.8 29,070.9 36,624.7 20.6 79.4 27.1
Kwazulu 22,264.6 72.4 2022.4 2094.8 3.5 96.5 9.4
Lebowa 75,202.0 1859.3 19,606.1 21,465.4 8.7 91.3 28.5

Total 576,667.0 29,557.6 124,631.3 154,188.9 19.2 80.8 26.7

2020

Kangwane 344,255.6 4141.0 89,863.0 94,004.0 4.4 95.6 27.3
Gazankulu 134,944.8 1185.3 35,439.5 36,624.7 3.2 96.8 27.1
Kwazulu 22,264.6 1.5 2093.2 2094.8 w0.1 99.9 9.4
Lebowa 75,202.0 508.2 20,957.2 21,465.4 2.4 97.6 28.5

Total 576,667.0 5836.1 148,352.8 154,188.9 3.8 96.2 26.7

Table 5. Percentage change in agricultural systems in former homelands between 2019 and 2020.

Rainfed Area (%) Irrigated Areas (%)

Kangwane −79.4 21.6
Gazankulu −84.3 21.9
Kwazulu −97.9 3.5
Lebowa −72.7 6.9

Overall −80.3 19.0

3.2. Changes in the Irrigated Area between 2019 and 2020

As shown in Tables 2 and 4, with changes summarised in Tables 3 and 5, significant
increases are notable in irrigated areas in the IUWMA between the 2019 and 2020 winter
growing seasons. This characteristic is evident in all sub-catchments. Figures 8 and 9
further detail how some cultivated areas that were not irrigated in 2019 were irrigated in
2020. Therefore, the increase is not necessarily a change in the area of land under cultivation,
but variations in both rainfed and irrigated areas between 2019 and 2020. Although the
rainfed area is less than irrigated in the IUWMA, it is also evident that between 2019 and
2020, the area that continued as rainfed further decreased by over 45% (Table 6). During
the same period, the land under irrigation increased by 7.3% (Table 6), putting a further
strain on already scarce water resources, as highlighted by previous studies [38]. An
even stronger trend also manifests in former homelands, where the land under irrigation
increased by 19%, and rainfed agriculture decreased by 80% (Table 6).

Table 6. Percentage change in the cultivated areas between 2019 and 2020.

Agriculture Type 2019 2020 % Change

IUWMA
Rain fed areas (ha) 75,966.5 41,282.0 −45.7
Irrigated areas (ha) 475,360.0 510,044.6 7.3

Total cultivated areas (ha) 551,326.5 551,326.5

Former
Homelands

Rain fed areas (ha) 29,557.6 5836.1 −80.3
Irrigated areas (ha) 124,631.3 148,352.8 19.0
Total homeland (ha) 154,188.9 154,188.9

Formal/
commercial
irrigation

Rain fed areas (ha) 46,408.9 35,445.9 −23.6
Irrigated areas (ha) 350,728.7 361,691.8 3.1

Total cultivated areas (ha) 397,137.6 397,137.6
Note: Negative changes represent decrease and positive, increase.
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4. Discussion

Irrigated agriculture is fundamental to food and water security as it accounts for
40% of global food production on less than a third of the world’s cropped land [53].
The proportion could increase if the uncounted water used in smallholder irrigation is
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included [54]. Irrigation is projected to play a pivotal role in future food production because
of climate change and associated variability [4,55,56]. Currently, the sub-sector supports
food production in dry seasons, generally using groundwater resources in arid and semi-
arid regions like South Africa to produce food, and increasingly supplements production
during the dry season [6,11]. The importance of irrigated agriculture is evidenced by
its high yields, between 30% and 60% higher than rainfed agriculture [57]. However, as
already alluded to, irrigation already accounts for over 70% of total global freshwater
withdrawals (both surface and groundwater) [4]. Irrigated agriculture, therefore, plays
an important role in food and water security. As the population is projected to more
than double by 2050 and more than treble by 2100 [3], irrigated agriculture is expected to
increase significantly if agriculture is to meet the increasing food demands from a growing
population. Plans to increase the land under irrigation should be informed by accurate
information on the present spatial distribution and extent of irrigated agriculture, yet this
information is very scant [11].

Accurate and up-to-date spatial information on irrigated areas is necessary to effec-
tively manage the limited water resources and is critical for policy decisions that improve
water use efficiency, promote irrigation expansion and inform water reallocation [6,11].
The availability of an accurate irrigated agriculture dataset also facilitates strategic on-farm
decisions such as irrigation scheduling and improved water productivity throughout the
growing season [58,59]. Such knowledge is critical for informing irrigation expansion
and enhancing food and water security. Thus, a high resolution and accurate irrigation
dataset is essential for assessing irrigation water requirements, cropping patterns, and
evapotranspiration trends in highly irrigated areas in space and time [19]. This information
facilitates hydrologic modelling that determines groundwater recharge, assessment of
water demands at the field scale, and characterising the spatio-temporal variation of crop
yields in irrigated areas [19,60].

As population increases and climate change compound water and food insecurity chal-
lenges [61], one strategy that can be adopted to ensure food and water security is increasing
the irrigated areas to allow crops to be cultivated outside their optimal climate growing
regions and buffering against climate variability [4]. This approach makes irrigation an
important climate change adaptation strategy. However, irrigation could negatively affect
water resources, resulting in groundwater depletion and diminished surface water supplies,
as is the current case in the IUWMA, with huge impacts on downstream water supplies
and availability [47]. Moreover, irrigation expansion can damage natural habitats and
disturb natural environments, with serious socio-ecological impacts, such as biodiversity
loss and associated reduction in ecosystem services [62]. Therefore, irrigation guidelines
and policies must integrate water and water use policies to ensure sustainable resource
use in the irrigation sector. However, this is possible only when there is accurate spatial
information on the distribution and extent of current irrigated areas. This is what this
study has done, producing an alternative methodology to accurately map irrigated areas,
in support of previous studies [6,11,23,47].

As previous studies have shown a significant trend of the increasing area under irriga-
tion and increased water use in irrigated agriculture [6,11,23,47], there is an urgent need for
new strategies to enhance the water productivity and avail water resources to other sectors
where water is also needed. New strategies also need to acknowledge early gaps and in-
equalities that exist and dictate water resource access, allocation, and use due to era-specific
policies, for example, the apartheid era in South Africa. For example, in such a setting, new
strategies, legislation, and policy need to promote resource decentralization and equity and
shift towards policy integration for fairness and feasibility of implementing policies. The
National Water Act of South Africa [63], highlights, for example, that inequities within the
water sector need to be redressed for the gaps within the irrigation sector (between small-
holder and commercial irrigation) to be addressed. This means that, where water resources
become too limited, poverty alleviation and food security of historically disadvantaged
small-scale informal irrigators need to be prioritized over the disproportionately high
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volumes used by relatively few formal, labour-extensive large-scale irrigators [63]. There
is, therefore, a need for policy and decision makers to formulate strategies that promote
access to water by smallholder farmers without compromising water security. However,
these policies need to be based on accurate spatial information on current irrigated areas.
Currently, most smallholder farmers in southern Africa, including South Africa, lack access
to water, a situation compounded by poor and biased policies, incorrect water allocation
and poor distribution mechanisms, and a lack of institutional environments to account for
socio-economic biases and promote equity [64,65].

The climate-sensitive agriculture sector is a prominent feature for the economies of
many countries worldwide. In southern Africa, for example, over 70% of the population
relies on this sector for food, income, and employment [12]. Yet, the increasing intensity and
frequency of extreme weather events of droughts and heatwaves have become a major cause
of low yields, and worsening food and water insecurity [12]. The challenges call for urgent
interventions to enhance water-efficient cropping systems, and food and water security
innovations and strategies that drive related Sustainable Development Goals (SDGs).
Given the intensification of climatic changes, pronounced rainfall variability, and water
challenges, the Southern African Development Community (SADC) Regional Indicative
Strategic Plan (RISDP) of 2003 and the Comprehensive Africa Agriculture Development
Programme (CAADP), and Regional Agricultural Policy (RAP), all highlight a need for the
agriculture sector to be prioritised while acknowledging that rainfed agriculture alone is
exposed to risk and maybe unsustainable as a food security strategy or to drive economic
development [14].

In the IUWMA, irrigated areas were 86% of total cultivated areas in 2019, increas-
ing to 92% in 2020. The change was even more pronounced in smallholder irrigation
in former homelands, increasing from 80% to 96%. This further underlines the growing
importance of irrigation for food security, particularly among the most vulnerable, high-
lighting the significant transformations in smallholder agriculture in the management
area. The COVID-19 pandemic probably contributed to this remarkable increase in land
area under irrigation as households resorted to agriculture to supplement the lost income
(www.gov.za/sites/default/files/gcis_document/202005/43321rg11113gon535_0.pdf
(accessed on 10 November 2021)). This is based on the fact that agriculture was considered
an essential sector that was allowed to operate during COVID-19 pandemic lockdowns.
People who lost jobs and other sources of income during the lockdowns resorted to agri-
culture as an alternative source of income. This highlights the importance of irrigated
agriculture in enhancing food security and improving rural livelihoods. Further empirical
research and ground-truthing will enhance the method’s accuracy and improve the under-
standing of the impacts of COVID-19, weather and climate changes, and other contributing
factors. Apart from informing policy formulation and decision making, disaggregated infor-
mation on irrigated areas’ spatial distribution and extent facilitate estimating consumptive
water use of crops in irrigated agriculture [47].

Despite being important in improved crop productivity, irrigated agriculture has large
water consumption through high unproductive losses through runoff and evaporation. For
example, winter crop production is very important in a water-scarce country like South
Africa, but this could be limited to certain areas due to high water stress and frost in
some dry regions [4]. Thus, the water management area is key for sustainable agriculture,
which can improve productivity, national food security, and improved livelihoods through
earnings spread throughout the year, employment creation, and foreign exchange earned
from exports. This brings to the fore the concept of the water–energy–food (WEF) nexus,
which considers the interlinked sectors in integrated resources management [14]. With
South Africa’s unemployment rate worsening, winter agriculture provides an important
opportunity to create employment, create extra income for poor households, and improve
livelihoods and the resilience of poor communities. Thus, winter agriculture could be a
climate change adaptation strategy, particularly in rural areas. The IUWMA is ideal for
this, being both humid and frost-free for crop production throughout the year.

www.gov.za/sites/default/files/gcis_document/202005/43321rg11113gon535_0.pdf
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Producing food with scarce water resources (water productivity) and limited land
resources (land productivity) is a major challenge in dry and semi-arid climates like South
Africa [4]. As the cultivation of drought-tolerant crops enhances soil fertility and could
mitigate agronomic challenges in the dry winter season, it is also very important to grow
locally adapted plant species and underutilised indigenous crops that adapt to harsh local
conditions [66]. This creates an opportunity to develop a dry season cropping system that
contributes to food security, conserves scarce resources, and ultimately alleviates poverty
in poor former homeland areas.

4.1. Policy Implications

Southern Africa has a large number of underdeveloped rural farming communities.
Given the worsening water scarcity challenges in the region, South Africa included, current
and potential contributions of rainfed and irrigated agriculture need to be quantified, based
on projected rainfall totals and the cost and availability of irrigation water supply [4,7].
This information is critical for strategic policy formulations that lead to the adaptation of
the agriculture sector to the current challenges and the development of the smallholder
irrigation sector, including supplementary water for rainfed agriculture, and the adoption
of irrigation technologies [12,67]. The current policies, such as the CAADP and the RAP
under the SADC Food, Agriculture and Natural Resources FANR Directorate, highlight
potential for irrigation, especially informal irrigation, to intensify smallholder agriculture
and provide opportunities for smallholder farmers to increase their production, combat
hunger, poverty, and food insecurity, and improve their socio-economic standing and
resilience to climatic shocks in the SADC region, which is experiencing rainfall variability
challenges [12,67].

Irrigation developments in South Africa occurred before 1950 and after the Tomlinson
Commission on socio-economic development, which recommended irrigation schemes
(“informal”) for subsistence-based farming activities to combat hunger and household food
insecurity in 1955 in rural areas [4,7]. These schemes were inadequate to allow rural people
to participate in agriculture for economic performance and benefits for improved liveli-
hoods, while the “formal” irrigated agriculture allowed for this to happen [4,7]. To date,
irrigation remains an essential component of sustainable agricultural development. Still, it
needs to be developed systemically and holistically, considering its intricate interlinkages
with other sectors of energy and water [68]. That is because agriculture as a sector and,
more specifically, informal irrigated agriculture is vulnerable to extreme weather changes
and is expected to be more vulnerable to future climatic shocks [64]. Differential climate
change impacts will be expected on the overall agriculture sector in South Africa, but the
severity of such impacts will largely be due to underlying conditions relating to equity and
socio-economic standing created by past biases of the apartheid era.

Those likely to experience severe impacts are communities in marginal areas that
were previously not accounted for in the past policy development [69]. Therefore, radical
transformation and climate change adaptation will be largely linked to new strategies
and policies’ abilities to account for existing gaps, injustices, and unique socio-economic
statuses in South Africa. Such policies should, in their framework, prioritise resource
decentralisation sustainably, ensure policy integration, and create policy environments that
speak of inequality and aim to achieve equity and inclusion. They will have to provide so-
lutions and actions that will enable their objectives to achieve equity and address injustices.
This would help in the journey to achieving objectives of development strategies within
the agriculture sector such as the Strategic Plan for South Africa’s Agriculture, Agricultural
Policy in South Africa, and the Black Economic Empowerment Framework for Agricul-
ture (AgriBEE), which speak of equity, inclusion, agricultural support for smallholders,
competitiveness, and profitability of smallholdings and diversification of structures of
production for improved livelihoods and socio-economic statuses in South Africa [70].
This study has enhanced the implementation of these policies by providing an approach
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that accurately maps the spatial distribution and extent of irrigated areas, disaggregated
between smallholder and commercial farming areas.

4.2. Limitations

Recent advances in remote sensing and machine learning algorithms have improved
the mapping and monitoring of irrigated lands under various environmental conditions
in near real-time [6,71]. Its main advantage is that they offer a synoptic overview of
irrigated areas in various spectral regions and with temporal frequencies adequate to assess
crop growth, maturity, and harvest [6,47]. Big data platforms like the GEE facilitate the
comparison of images over a long period, allowing appreciating changes over time. This is
apart from the time and cost-effectiveness of remotely sensed data compared to traditional
statistical surveys [72]. Improved irrigated areas improve water allocation to farmers,
irrigation performance and intensity assessment, and environmental impact assessment,
thereby improving irrigation water use efficiency.

The accuracy could even improve by applying machine learning algorithms on high-
resolution images such as IKONOS, WorldView, RapidEye, and QUICKBIRD, but these
remain too costly. The 6-day revisit time of the Sentinel 1 platform facilitates a more precise
crop assessment within seven days, allowing the detection of irrigation events to allow for
informed irrigation scheduling [71]. Moreover, as a radar sensor, Sentinel 1 is not affected
by cloud cover or other weather events.

One challenge of using remote sensing in mapping irrigated areas is related to its use
in humid areas, as there is considerable overlap in spectral signatures between irrigated
and rainfed areas. The vegetation is always green, making it difficult to separate irrigated
fields from rainfed plots. However, this is being overcome by using temporal data on
crop planting, maturity, and harvest in combination with spectral information [19,73].
The limitation of the specified revisit periods of sensors is being overcome by the use
of unmanned aerial vehicles (UAVs), which allow user-defined temporal and spatial
resolution [19].

5. Conclusions

Irrigated agriculture is a sustainable climate adaptation strategy that is acknowledged
by strategic plans and policies such as the CAADP and the RAP in the SADC region and
the Agricultural Policy and the Strategic Plan for South Africa’s Agriculture. As a strategy,
irrigated agriculture could play a role in poverty alleviation, helping the SADC region’s
member states move closer to achieving food security and SDG 2, in particular, creating
employment opportunities, and encouraging economic growth in the SADC region. This
study has enhanced the implementation of these policies and strategies by developing
more accurate and disaggregated spatial information on the distribution and extent of
irrigated areas within smallholder farming systems. Accurate knowledge of the spatial
distribution and extent of irrigated areas facilitates formulating and implementing strategic
and coherent policies for transforming water and agriculture within smallholder farming
systems. Recent advances in remote sensing and the application of machine learning
algorithms facilitated the mapping accuracy of 84.9 of irrigated areas. Apart from the
mapping accuracy, the study has differentiated smallholders from commercial irrigated
areas and derived statistics for each sub-sector. Smallholder irrigated area was shown to be
increasing at a faster rate than the commercial area. The knowledge represents a significant
change in irrigation analysis and expansion as it includes both smallholder and commercial
farmers, allowing policy and decision makers not to leave anyone behind. Therefore, while
acknowledging the importance of material investment in sustainable irrigation expansion,
it is equally important to recognise the key issues smallholder farmers encounter and
their interconnectedness. Therefore, any interventions related to smallholder irrigation
expansion should be undertaken holistically. The initial step to achieve informed reforms
in the agriculture sector is the provision of accurate spatial extent and distribution of
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cropped lands, particularly irrigated areas. This study has provided an improved process
to enhance the accuracy of irrigated areas mapping.
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