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Abstract: The growth of global energy transportation has promoted the rapid increase of large-scale
LNG (liquefied natural gas) carriers, and concerns around the safety of LNG ships has attracted
significant attention. Such a floating structure is affected by the external wave excitation and internal
liquid sloshing. The interaction between the structure’s motion and the internal sloshing under wave
actions may lead to the ship experiencing an unexpected accident. In this research, a hydrodynamic
experiment is conducted to investigate the motion responses of a floating tank mooring, both close
to and away from a dock. The resonance coupling effect of the internal sloshing and gap flow on
the tank’s motion is considered. Based on the measured motion trajectory of the floating tank, the
stability and safety of the floating tank are estimated. The results show that the sloshing resonance
and narrow gap resonance are beneficial to the stability of the ship. This is helpful for controlling the
motion of a berthed ship under wave action with a reasonable selection of the gap distance and the
liquid level.

Keywords: sloshing; narrow-gap resonance; motion response; floating tank

1. Introduction

Safety of ocean transportation is the first consideration for marine engineering. Ship
stability and its cargo safety depend not only on the design of the ship but also on its
interaction with the environmental conditions. The coupling actions of the liquid motion
in the ship tank and the external wave loads may cause instability of the ship. Therefore,
understanding the motion responses of the liquid cargo ship under the combined actions
of multiple loads may be necessary for ship design.

In the past twenty years, the coupling effect between sloshing and ship motion has
attracted the attention of many researchers. The coupling actions of the liquid motion in
the ship tank and the external wave loads may cause instability of the ship. Faltinsen and
Timokha [1] gave a general overview of sloshing in ship tanks. Molin et al. [2] presented a
coupled analysis of liquid sloshing and LNG-FPSO based on linear potential theory in the
frequency domain. Soon after, a time-domain simulation method with nonlinear viscous
sloshing calculation was adopted by Lee et al. [3] and they found that the most pronounced
coupling effects are the shift or split of peak-motion frequencies. For understanding the
sloshing problem, Brosset et al. [4] introduced a Sloshel joint industry project. A series
of researches were conducted based on this project (Bogaert et al. [5]; Lafeber et al. [6];
Maguire J.R. et al. [7]). In addition, Nam et al. [8] provided a hybrid method of impulse-
response-function (IRF) and finite difference to solve the ship’s motion and nonlinear
sloshing problems. After careful experimental validation, they further investigated the
sloshing-induced internal forces and their effects on sloshing-induced impact loads. Jiang
and Bai [9] numerically investigated the coupling effect of a swaying box and its internal
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liquid sloshing under wave actions. The interaction of the floating box and resonance
sloshing was visually shown. Moreover, lots of scaled experimental investigations were
also used to study the coupling effect. Lee et al. [10] established an experimental test for
the ship hull’s six degree-of-freedom (6-DoF) motion responses in regular waves for both
intact and damaged conditions. Ahn et al. [11] compared the weather side and lee side
sloshing impact pressure for LNG cargo tanks under wave action. Similarly, an improved
membrane LNG tank was introduction by Xue et al. and its sloshing repression performance
was proven [12]. Kim et al. [13] investigated the dynamic pressure on the tank wall and
the sloshing-induced pressure of two different tanks were compared. In addition, Xue and
Lin. [14] investigated the effect of different liquid baffles and storage vessels’ shapes on the
suppression of sloshing. They found that the vertical baffle flushing with a free surface is a
more effective tool for reducing the impact pressure. In addition, Xue et al. [15] applied a
porous material layer to the interior of the liquid tank to obtain optimized parameters in
terms of sloshing restriction by varying the porosity, thickness ratio, and average diameter
ratio. In addition, the virtual boundary force method was developed to investigate and
discuss the efficiency of ring baffles in reducing violent liquid sloshing [16].

In addition to the sloshing inside the ship tank, another phenomenon, which is called
narrow gap resonance also affects the stability of the ship. The narrow gap resonance
usually appeared when the LNG ships docked next to an FPSO or for transfer operations.
The nonlinear motion response may even cause the ship to attack the side structure,
although some protection devices have been invented (Metherell and Metherell [17]).
Therefore, Kashiwagi et al. [18] and Teigen et al. [19] studied the wave effects related to
side-by-side LNG offloading systematically. A variety of investigations on the coupling
effect between two floating systems were then carried out (Xiang and Faltinsen [20]; Zhao
et al. [21]; Pessoa et al. [22]). Zhao et al. [23,24] reviewed some necessary research topics
(motion response, sloshing, gap resonance) for the gap resonance between FLNG-side-by-
side offloading safe operations. Once the resonance occurred, the resonant wave height in
the narrow gap may reach up to five times the incident wave height (Iwata et al. [25]), which
affects the ship’s motion significantly. To understand the hydrodynamic characteristic of
the resonant fluid in the narrow gap, Moradi et al. [26] investigated wave resonance in the
narrow gap between two side-by-side fixed bodies. The body breadth, gap width and draft
depth were found to have a significant influence on gap resonance characteristics. Ning
et al. [27] considered two barges of different draughts in incident waves. The results showed
the wave frequency corresponding to the largest wave amplitude decreased as either barge
draught grows. Lu et al. [28] investigated the phenomenon of fluid resonance in narrow
gaps between multi-bodies in close proximity under water waves. They found that the
resonant frequency moved towards a lower frequency when the gap width increased.
Recently, the numerical investigation by Lu et al. [29] revealed the effect of mooring
stiffness on the coupling dynamics of the gap resonance and the sway or heave motion of
the floating body in regular waves.

While in the harbor, there is a real phenomenon of the superposition of vibrations of
two different oscillating systems: sloshing resonance and narrow gap resonance. Different
from the previous research, the resonance coupling of sloshing and gap fluid acting on the
floating tank were considered together in the present study. A series of experimental tests
were performed, considering both resonance behaviors. The aim of the present study is to
understand the coupling effect of the inner and outer liquid flow around a float tank. In this
paper, the motion responses of a moored floating object under wave action are captured
and compared carefully. By adjusting the water levels and the gap distances, the stability
of the floating object is discussed under different environmental loads. The present work
may have practical significance for improving the safety of vessels transporting liquids.
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2. Experimental Setup
2.1. Experimental Condition

The physical model test of the motion response of the floating tank was carried out
in a wave flume with dimensions of 11 m (length) × 0.6 m (breadth) × 1 m (depth). The
wave flume is located at the Ningbo Institution of Technology, Zhejiang University. The
physical model of the tank was made of acrylic and the dimensions of the model are the
length 0.58 m, the width 0.60 m, and the height 0.38 m. The width of the tank along the
wave direction was presented by W. In the present experiment, the sides of the tank model
were in contact with the flume and the 0.015 m gap was filled by four universal wheels on
both sides, which ensures that the movement of the floating tank can be constrained into a
two-dimensional plane. The floating tank was designed to meet the draught requirement
of the liquid cargo ship, so that the coupling resonance of the sloshing and gap flow can
occur simultaneously. The draught depth (d) was set to 0.14 m through a reasonable ballast
evenly arranged within the tank.

Three wave probes were installed around the floating tank (shown in Figure 1) to
measure the wave height. Two displacement sensors, M1 and M2, were fixed on the dock
and outer frame, respectively, and their flexible sides were anchored on the same location
of the floating tank for measuring the motion of the tank. In addition, an angle sensor
was placed at the center top of the floating tank for capturing the rotation movement of
the tank.
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the floating tank. 

Figure 1. (a) The layout of the experimental wave tank; (1) floating box, (2) mooring line, (3) outer fixed frame,
(4) inclination sensor, (M1/2) Displacement sensors, (S1/2/3) Wave probes; (b) Parameter setup of the experimental
model, λ is wave length.

2.2. Problem Description

The motion responses and hydrodynamic characteristics of the floating tank under
wave actions in the open sea were first tested. The water level in the wave flume is
h = 0.40 m. The incident wave with a period of T = 1 s and wave height of H0 = 0.04 m.

The natural period of the tank was estimated according to Equation (1), which was
derived by Faltinsen and Timokha [30], where Tn is the natural period of the floating tank.
Varying filling levels in the floating tank H (0.05 m to 0.15 m, with ∆H = 0.2 m) were then
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tested in the present experiment. Among them, the H = 0.07 m is the resonant condition of
the floating tank.

Tn =
2π√

nπg
W tanh( nπH

W )
, n = 1, 2, 3, . . . , (1)

The motion responses and hydrodynamic characteristics of a berthed floating tank
under wave action were then studied. A vertical dock is considered in this condition.
Therefore, a narrow gap appears behind the floating tank.

Tg = 2π

√√√√ BgW
h−d + d

g
. (2)

The frequency of the narrow gap was estimated by Equation (2), Tg is the natural
period in the gap, Bg denotes the gap size between tank and dock model. The liquid levels
in the floating tank H = 0.07 m, 0.11 m, 0.13 m and 0.15 m and gap widths Bg (0.06 m and
0.09 m) were taken into account in this study. The gap resonance appeared at Bg = 0.06 m
with Tg = 1.06 s. The test arrangements are shown in Table 1 (in detail, cases 1:1-6 studied
motion response of floating tank in the open sea and cases 2:1-6 focused on the floating
tank in the berthing condition).

Table 1. Parameters arrangement of the test cases.

Cases H
(m)

Bg
(m)

Tn
(s) Sloshing Resonance Tg

(s) Narrow Gap Resonance Coupled Resonance

1-1 0.05 o 1.17 o o o o
1-2 0.07 o 1.01 | o o o
1-3 0.09 o 0.92 o o o o
1-4 0.11 o 0.86 o o o o
1-5 0.13 o 0.81 o o o o
1-6 0.15 o 0.79 o o o o
2-1 0.13 0.06 0.81 o 1.06 - o
2-2 0.13 0.09 0.81 o 1.19 o o
2-3 0.15 0.09 0.79 o 1.19 o o
2-4 0.15 0.06 0.79 o 1.06 - o
2-5 0.07 0.06 1.01 | 1.06 - +
2-6 0.07 0.09 1.01 | 1.19 o o

“-” is narrow gap resonance, “|” is sloshing resonance, “+” is coupled resonance, “o” is non-resonance.

In this paper, the duration of each test is set to 100 s. But the stable intermediate
data (30–80 s) was intercepted for the analysis below. The displacement amplitude of each
direction was obtained and the results were expressed as AmpX (surge), AmpY (heave)
and AmpR (pitch).

3. Results and Discussion
3.1. Motion Response of Floating Tank in Open Sea

Figure 2a gives the motion response of the floating liquid tank in the open sea. The
heave response was reduced effectively when resonant sloshing occurred (Table 1, case 1-2)
and the surge motion was insensitive with variations in the liquid sloshing status. Further
observation of the heave response in Figure 2b indicates that the amplitude of the heave
motion of the floating tank with the sloshing resonance approximates 50.8% of that without
sloshing action. (Table 1, case 1-1). The effects of the sloshing resonance on suppressing the
motion of the floating tank are obvious.
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Figure 2. (a) Motion response of floating tank in the open sea; (b) Time histories of swing motion of floating tank under
resonant and non-resonant conditions.

3.2. Motion Response of the Berthed Floating Tank

The motion responses are compared between the open sea (Table 1, cases 1: 1-6) and
berthing conditions (Table 1, cases 2: 1-6). Figure 3 shows that the liquid motion in the
ship’s tank and the narrow gap has little effect on the surge motion of the floating tank,
which is relatively steady. The heave motion is significantly reduced when the resonant
sloshing occurred (Table 1, cases 2-5 and 2-6). However, when sloshing resonance occurred
(Table 1, case 1-2, cases 2-5 and 2-6), the restriction on the heave motion of the floating tank
is significant. The heave motion can be reduced by about 40%. The pitch of the floating
tank fluctuated irregularly with the variation of the liquid level in the tank, which may be
caused by the non-linear motion of the liquid flow. Under berthing conditions, the pitch
of the floating tank is reduced compared to the open sea. Furthermore, Table 2 gives the
dispersion coefficients of the motion response to express the fluctuation characteristics of
the movement, which was the ratio of standard dispersion and the mean of each amplitude
under two different environmental loads. The results illustrate that the surge of the floating
tank is significantly affected by the variation of environmental loads. This can also be
confirmed from the results in Figure 3 that the heave of the floating tank is reduced due to
the coupling resonance.
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Table 2. Dispersion coefficients of motion response.

Deviation Coefficient Open Sea Berthing Condition

AmpX 0.052036 0.035876
AmpY 0.246216 0.259292
AmpR 0.045661 0.058453

The reflection and transmission coefficients of cases are depicted in Figure 4. The
incident and reflect wave were separated by using Goda’s method [31] and then the
reflection coefficients were calculated by the reflected wave height divided by the incident
wave height. The transmission coefficients are the ratio of the wave height in the narrow
gap to the incident wave height. They indicate that changes in environmental loads
have little effect on the reflection coefficient. In the berthing condition, it is clear that the
transmission of the coefficient increases significantly due to the appearance of a narrow
gap. Concerning Figure 3, the pitch motion of the floating tank has an overall decline
under berthing conditions, which may be influenced by the fluid motion in the narrow gap.
Meanwhile, three obvious resonant actions (Table 1, cases 2-1, 2-4 and 2-5) occur when
Bg = 0.06 m; they lead to a significant elevation of wave height in the leeside of the floating
tank. A corresponding phenomenon is observed in Figure 3, in which the narrow gap
resonance can reduce the pitch amplitude of the floating tank.
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3.3. Motion Response of Berthed Floating Tank

To further understand the motion response of the berthed liquid cargo vessel under
wave action, the frequency analysis of the motion response and wave height in the narrow
gap are provided in Figure 5. Figure 5a,b show that the amplitude of the tank motion
is significantly reduced when the sloshing resonance occurs. The higher order wave
frequencies emerge as double and triple times frequencies in the floating tank backwash.
Unlike a single narrow gap or sloshing resonance, when coupled resonance occurs, the
transmitted waves towards the floating tank backwash have a wider distribution at higher
order frequencies. A corresponding phenomenon is shown in the motion response diagram
that the coupled resonance leads to a reduction in the rotation amplitude of the floating
tank. However, the actual wave frequency is still at around the first order incident wave
frequency. In this case, in the frequency domain of the wave height in Figure 5a, part of
the wave frequency lies near the narrow gap resonant period, Tg = 1.06 s. Meanwhile, the
resonance leads to a dispersion of wave energy and a significantly lower wave amplitude
than in other cases.
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3.4. Collision Test of the Floating Tank with Dock

Finally, the distance (D) between the floating tank and the dock was discussed
(Figure 6). The distance was calculated by Equation (3), which is affected by the initial
gap, the translation in wave direction and the horizontal component of rotation. Figure 7
illustrates the real-time dimensionless distance ((D − Bg)/Bg) of the berthing tank. It can
be seen from Figure 7 that the floating tank did not collide with the dock under the present
experimental series. This is consistent with the result in Figure 3. Because the maximum
translation was 0.033 and the rotation angle was 2.16◦, and therefore the minimum distance
was Bg − |X|+W/2(1 − cos(R)) = 0.028 m. In addition, when the sloshing resonance oc-
curred individually (Table 1, case 2-6), the surge of the floating tank was restricted and the
trajectory was compressed. Meanwhile, the floating tank had a smaller distance amplitude.
When the sloshing resonance and narrow gap resonance occurred simultaneously (Table 1,
case 2-5), the motion trajectory of the tank was more concentrated and, therefore, beneficial
to the stability of the ship in berthing situations.

D(t) = Bg + X(t) +
W
2
(1 − cos R(t)). (3)
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4. Conclusions

The coupled effect of sloshing and narrow gap resonance on the motion response of
the liquid tank was investigated based on the experimental test in this research. The water
level of the floating tank and narrow gap width was adjusted as variables and the motion
response of the floating tank was analyzed. The main conclusions are listed as follows:

1. A reasonable liquid tank design can reduce the amplitude of the heave response under
wave action through tank resonance and improve the stability of the ship at anchor;

2. When narrow gap resonance occurs, the wave height between the narrow gap in-
creases significantly. The sloshing resonance has a beneficial effect on the stability
of ships;

3. The surge motion response of the floating tank is minimally affected when resonance occurs;
4. The occurrence of the coupling resonance may be beneficial to the stability of the

vessel when berthing;
5. Based on the experimental cases in this paper, no collisions occurred in all cases and

the resonance of sloshing and narrow gap contributed to avoiding a collision of the
floating body with the dock.
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