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Abstract: Water productivity (WP) of crops is affected by water–fertilizer management in interaction
with climatic factors. This study aimed to evaluate the efficiency of a hybrid method of season
optimization algorithm (SO) and support vector regression (SVR) in estimating the yield and WP
of tomato crops based on climatic factors, irrigation–fertilizer under the drip irrigation, and plastic
mulch. To approve the proposed method, 160 field data including water consumption during the
growing season, fertilizers, climatic variables, and crop variety were applied. Two types of treatments,
namely drip irrigation (DI) and drip irrigation with plastic mulch (PMDI), were considered. Seven
different input combinations were used to estimate yield and WP. R2, RMSE, NSE, SI, and σ criteria
were utilized to assess the proposed hybrid method. A good agreement was presented between the
observed (field monitoring data) and estimated (calculated with SO–SVR method) values (R2 = 0.982).
The irrigation—fertilizer parameters (PMDI, F) and crop variety (V) are the most effective in estimat-
ing the yield and WP of tomato crops. Statistical analysis of the obtained results showed that the
SO–SVR hybrid method has high efficiency in estimating WP and yield. In general, intelligent hybrid
methods can enable the optimal and economical use of water and fertilizer resources.

Keywords: irrigation; season optimization algorithm; support vector regression; yield estimation

1. Introduction

Tomato is one of the most important crops in Iran, with a cultivated area of 0.13 million
hectares. The country is located in arid and semiarid regions and faces water scarcity due
to climate change. Accordingly, it is necessary to manage the allocated water to the
tomato cultivation properly. This provides suitable conditions for the optimal use of water
resources along with food security. Crop yield and water productivity are a function
of different crop conditions, including climatic factors, and soil and water management.
Because in different climatic conditions, the response of tomatoes to various inputs and
simultaneous evaluation of water–fertilizer, planting time, plant density, and the type of soil
under field conditions is time-consuming and costly, providing and using soft computing
methods seems essential. Currently, one of the appropriate solutions to calculate the
performance and phonological characterization of crops is intelligent techniques. Increased
costs, and time-consuming and human errors have led to the use of 3D and computer
models [1]. Various studies on modeling and estimating yield and water productivity (WP)
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have been performed using meta-heuristic algorithms and artificial neural network (ANN)
methods [2–10].

Researchers have used various intelligent models to predict daily evaporation, solar
radiation, water retention, soil-saturation permeability, and crop yield [11–20].

Kaul et al. [21] investigated the efficiency of neural network models in estimating
forage maize and soybean yields in the Maryland area in the northeastern United States.
The results showed that neural network models are more accurate than regression models.
Dehghanisanij et al. [22] examined the effect of fertilizer and under-irrigation on the
vegetative growth of cherry trees. The results showed that fertilizer and irrigation levels
were the most dynamic operations for cherry trees. Ji et al. [23] used the ANN model
for predicting rice yield in mountainous areas of Fujian, China. The results showed that
the ANN model was highly efficient in predicting rice yield for Fujian with R2 = 0.87.
Higashide [24] investigated the yield of tomatoes in summer greenhouse cultivation under
the effects of radiation and temperature in different periods in Higashimiyoshi, Tokushima,
Japan. The results showed that solar radiation is one of the main parameters in predicting
the yield of tomatoes in greenhouses. Alvarez [25] used ANN to predict average regional
wheat yield in the Argentine Pampas and concluded that the ratio of rainfall to crop
potential evapotranspiration (R/CPET) is the most important climatic factor in estimating
wheat crop yield. Norouzi et al. [26] predicted the quantity and quality of rainfed wheat in
the hilly areas of western Iran using an artificial neural network (ANN). Results showed
the ANN model successfully predicted biomass, grain yield, and grain protein by obtaining
values of R2 > 0.90. Dahikar et al. [27] examined an ANN for predicting agricultural
crop yield and concluded that the results of the ANN model in predicting crop yield
are satisfactory. Aboukarima [23] predicted cotton leaf area in Egypt using the ANN
model and reported the main lobe length, right and left lobe length, leaf width, and
the length of the right as the most influential parameters in predicting the cotton leaf
area. Gandhi [10] used the ANN model for estimating the rice crop yield in Maharashtra
state in India and reported that the ANN model has a high ability to assess the crop
yield. Lin et al. [28] estimated greenhouse tomatoes using TOMGRO and Vanthoor growth
models and an integrated model. Results showed that the output of the integrated model
was more reasonable and universal than the TOMGRO and Vanthoor growth models with
RMSE = 2.5974. Bang et al. [28] evaluated the fuzzy logic method for predicting crop yield.
The results of the fuzzy logic method showed that the best model for predicting crop
yield based on rainfall and temperature parameters was obtained. Abrougui et al. [29]
used ANN and multiple linear regressions (MLR) for predicting organic potato yield.
They concluded that the ANN model performed better in estimating potato yield than
the MLR model. Dehghanisanij et al. [30] concluded that the ETcact was lower under
subsurface drip irrigation (SDI) (384.8 mm) than under drip irrigation (DI) (423.4 mm).
Kumar et al. [31] estimated crop yield in the agriculture sector using the random forest
(RF) method. The results indicated that the RF algorithm has a high performance to
provide the best model in estimating crop yield by considering the minimum number
of parameters. Ding et al. [31] investigated the effect of irrigation amount and type
of phosphate (P) fertilizer on potato yield. The results showed that P acidic fertilizers
increase micronutrients. Rodrigues et al. [32] stated that nitrogen fertilizer (N) increases
the productivity and yield of maize and oats.

Due to the need to replace complex crop models in evaluating yield and WP with
simpler statistical models and limited previous studies, the purpose of this study was to
propose and evaluate the efficiency of a hybrid method of season optimization algorithm
(SO) and support vector regression (SVR) in modeling and estimating the yield and WP
of tomato crops based on climatic factors, irrigation–fertilizer under drip irrigation, and
plastic mulch and determining influential variables to estimate crop yield and WP.

The remaining sections are established as follows. Section 2 focuses on the description
of the study area, site designation and experimental treatments, and the proposed method.
Field monitoring and modeling results and discussion are presented in Section 3. Section 4
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includes the conclusion and concludes the study, and recommends some limitations and
orientations for future work.

2. Materials and Methods
2.1. Field Studies

Cultivated lands of Miandoab city were for this study. Miandoab is a city in southeast
Urmia province located in northwest Iran. The geographical coordinates of Miandoab
are 46◦2′ N and 36◦58′ E at 1314 m above sea level (Figure 1). The weather in this region
is variable, with relatively hot summers and cold winters. Miandoab is an essential
agricultural region in West Azerbaijan province. The main crops are wheat, barley, tomato,
sugar beet, corn, and apple orchards. In this region, agriculture is based on groundwater,
and therefore farmers use water pumps to harvest water.
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2.2. Site Designation and Experimental Treatments

Tomatoes (Monaco variety) were planted as seedlings on 15 May 2021. Two types
of treatments, drip irrigation (DI) and drip irrigation with plastic mulch (PMDI), were
considered. First, the potential evapotranspiration under standard conditions (ETo) was
calculated by the Penman–Monteith method to calculate the water requirement. After deter-
mining the ETo, the crop coefficients (using the four-stage FAO method) were determined,
and the amount of irrigation water required was calculated as follows:

IR =
Kc∗ETo
1− LR

−ER (1)

where IR indicates irrigation requirement (mm), Kc indicates crop coefficient, LR indicates
leaching coefficient, and ER means adequate rainfall.

The pressure of the filtration system was 1 bar, and the inlet pressure to the irrigation
tape was 0.8 bar. Water consumption was measured by a volume meter. The irrigation
labyrinth drip tape with an outlet distance of 20 cm was used. Seedlings were planted on
both sides of the drip tape, and cultivation intervals were considered 0.3 × 1.35. Irrigation
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interval in PMDI and DI treatments was considered equal to 2 and 3 days, respectively.
Crop harvesting was done on August 15, August 25, and September 5, respectively.

The amount of WP of tomato crop was calculated from Equation (2):

WP =
Y

Wa
(2)

where WP indicates water productivity, Y indicates crop yield, and Wa indicates irriga-
tion water.

Chemical and physical analyses of soil and fertilizers used are presented in Tables 1–3.
The data in Table 1 were used to control irrigation scheduling.

Table 1. Chemical and physical analysis of soil at a depth of 0–30 cm.

ρb
(gr/cm3)

PWP
(cm3/cm3)

FC
(cm3/cm3)

OC
(%)

TNV
(%) θs pH Texture EC

(dS/m) Silt Sand Clay Depth
(cm)

1.3 0.098 0.303 1.24 11.7 33 8.02 Loam 1.212 47 33 20 0–30

Table 2. Soil testing and crop calendar.

Area (ha) Cultivation
Pattern Variety Date of

Planting N (%) P
(ppm)

K
(ppm)

N
(Kg/ha)

P
(Kg/ha)

K
(Kg/ha)

1 tomato Monaco 2021/05/05 0.1 24.2 287 50 125 150

Table 3. Amounts of fertilizer used.

Fertilizer Amount Date

Triple superphosphate 100 kg 12 May 2021

Ammonium sulfate 100 kg 12 May 2021

Potassium sulfate 175 kg 12 May 2021

Urea 50 kg 12 May 2021

Agricultural sulfur 125 kg 12 May 2021

2.3. Seasons Optimization Algorithm

Seasons optimization (SO) is a population-based optimization meta-heuristic algo-
rithm [33]. It models the growing process of trees in four seasons of a year. Figure 2
illustrates the flowchart of the SO algorithm. SO is an iterative algorithm in which each
agent is called a tree. For solving an optimization problem, the algorithm starts its process
with a population, which is called a forest. Each member of the population is called a tree,
which denotes a potential solution for the given problem [33]. The algorithm updates the
trees using four operators, namely renewing, competition, seeding, and resistance. The
renewal phase models the impact of the spring on the growth of trees.

The competition phase modes the growth of trees in the summer. In this phase,
the trees compete with their neighbor trees on shared resources, including nutrients,
water, light, and other resources. To stimulate competition, the first Nc most robust trees
are identified.
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To simulate the impact of the competition on a neighbor Ti, the below relationship is
defined [33]:

Ty+1
j = 1

Λj+1 × ϕ(Ty
j )

where
ϕ(Ty

j ) = Ty
j + θ

Λj =
Zi
∑

k=1
Sk × ∆−2

j,k × λj,k

∆j,k =

√
D
∑

z=1
(Tjz − Tkz)

2

λj,k =

{
1 if(Sk ≥ Sj)

1− γ else

(3)

where Ty
j is the location of Tj in the generation y. Λj is the value of competition index

or crowdedness, which computes the effect of the neighbors on Tj. D shows the number
of variables of trees. The function ϕ(.) calculates the growth Tj in the same environment
when its neighbors are ignored. Sk indicates the strength/fitness of the kth neighbor tree,
∆j,k is the distance between Λj and the kth neighbor, the variable λj,k is the impact of the
neighbor Tk on the growth of the tree Tj. γ ∈ [0, 1] is a random asymmetry index, which
shows the value to which the effect of a relatively weak neighbor is decreased.

The seeding phase is inspired by the seeding mechanism of trees in the autumn.
In this phase, several trees are randomly selected and take part in the seeding phase.
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The resistance phase simulates the resistance of the trees against harsh winter cold. The
resistance operator removes the least-strength trees from the population.

When the stopping measures are met, the algorithm updates the trees in the population
by iteratively applying to renew competition, seeding, and resistance operators. Finally,
the fittest tree is identified as the optimal solution [33].

2.4. Support Vector Regression (SVR)

SVR is based on support vector machine classification models [34]. SVR is used to
solve nonlinear regression problems. For a brief explanation of SVR, its formulation is
done. For this purpose, the dataset G is represented by Equation (4).

G =

{
(ck, dk)| k = 1, 2, . . . , m

, ck ∈ RN , dk ∈ R

}
(4)

To solve the nonlinear regression problem with SVR, first the inputs are mapped
nonlinearly to the large-sized feature space f, using Equation (5). for this purpose [34]:

f (ci) = wϕ(ci) + b
∣∣∣w ∈ RM×h , b ∈ R (5)

where ϕ(ci) is a function that represents the inputs from space R to space RM×h, w indicates
the weight vector, and b denotes the bias value.

b is defined as follows [34]:

b =
1
n

 ∑
0<γ−i <C

di ∑
xj ∈ SV

(γ+
j − γ−j ) H(ci, cj)− ε

 + ∑
0<γ−i <C

di − ∑
cj ∈ SV

(γ+
j − γ−j )H(ci, cj) + ε (6)

The SO algorithm has been widely compared with the most efficient recent algorithms,
including evolutionary algorithms, particle swarm optimization (PSO), covariance matrix
adaptation evolution strategy (CMA-ES), self-adaptive differential evolution (JDE), grey
wolf optimizer (GWO), socio evolution, and learning optimization (SELO), and has given
more satisfactory results [33]. Since the SO algorithm performs better in terms of solution
quality and convergence rate compared to other algorithms, in this study we used it to
estimate the yield and WP of tomato crops. The flowchart of the proposed SO–SVR method
for selecting the SVM parameter is presented in Figure 3.

2.5. Benchmark

A wide range of climatic and irrigation—fertilizer parameters, including water con-
sumption during the growing season (Ir) (two levels of irrigation, drip irrigation (DI)
and drip irrigation with plastic mulch (PMDI), fertilizers (N, P, K), average temperature
(Temp.avg), minimum temperature (Temp.min), maximum temperature (Temp.max), average
relative humidity (RHavg), solar radiation (sunshine hours) (Ssh), rainfall (Pe) of each
month. (http://tatweather.areeo.ac.ir/?LRef=52c6c899-7597-412d-83d7-c4cd2d05204b,
15 May to 5 September 2021), and plant variety (V), were used for experiments (Table 4).
This dataset was collected on a farm with a length of 250 m, a width of 40 m, and an
average slope of 0.00101 mm−1 (https://earth.google.com/web/@36.96951444.45.9808815.
2285.67888459a.0d.35y.0h.0t.0r?utm_source=earth7&utm_campaign=vine&hl=fa, 15 May
to 5 September 2021). Of about 160 randomly selected records, 80% of the data was consid-
ered a training set and the rest a test set. Figure 4 shows a schematic of the farm used in
the experiments.

http://tatweather.areeo.ac.ir/?LRef=52c6c899-7597-412d-83d7-c4cd2d05204b
https://earth.google.com/web/@36.96951444.45.9808815.2285.67888459a.0d.35y.0h.0t.0r?utm_source=earth7&utm_campaign=vine&hl=fa
https://earth.google.com/web/@36.96951444.45.9808815.2285.67888459a.0d.35y.0h.0t.0r?utm_source=earth7&utm_campaign=vine&hl=fa
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Table 4. Range of dataset parameters.

Parameter Definition Minimum Maximum Average STDEV

Ir (DI, PMDI) Water consumption (mm) 483.41 648.13 540.25 13.19
Temp.min Minimum temperature (◦C) 8.20 23.6 15.79 0.76
Temp.max Maximum temperature (◦C) 40.40 20.40 32.68 0.77
Temp.avg Average temperature (◦C) 15.79 32.68 26.23 1.02
RHavg Average relative humidity (%) 19.80 61.00 32.28 1.26

Ssh Sunshine hours (J/m2) 0.00 8.60 4.61 0.46
Pe Rainfall (mm) 0.00 2.00 1.10 0.11

F (N, P, K) Fertilizers used (Kg) 50 100 80 5.16
PM Plastic mulch (−) - - - -
V Variety (−) - - - -
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2.6. Input Parameters

To evaluate the most appropriate input parameters, seven different combinations
were examined. In the first step, all parameters were selected as model input, and then
one of the input parameters was removed, and the proposed hybrid model was rerun
(Figure 5) [1,35].
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2.7. Evaluation Criteria

R2, RMSE, SI, σ, and NSE indices were utilized to assess the proposed hybrid model
(Table 5) [1]:
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Table 5. Statistical parameters.

Criteria No.

R2 =

[
ån

i=1(Ti−U)(T i−U)

ån
i=1

√
(T i−T)

2
ån

i=1

√
(U i−U)

2

]2
(7)

RMSE =

√
1
n

n
∑

i=1
(Ti −Ui)

2 (8)

SI =RMSE
T

(9)

σ =

n
∑

i==1
|(Ui−Ti)|

n
∑

i=1
Ti

×100
(10)

NSE = 1−
n
∑

i=1
(Ti−Ui)

2

n
∑

i=1
(Ti−U)

2

(11)

where, Ti and Ui are the estimated and observed yield and WP values, T and U are average
observed and estimated yield and WP values, respectively.

3. Results
3.1. Field Monitoring

The field monitoring results are presented in Table 6. Applied water flow is the same
in both irrigations treatments, but it was lower under PMDI mainly due to less water loss.
Under drip irrigation systems, irrigation water applies based on the depleted water from
the crop root zone. As a result, AE is usually high and it was 100% under PMDI where
no water loss was recorded by evaporation from the soil surface and water depletion to
under root zone. The amount of applied water in the PMDI treatment was 4834.1 m3/ha,
which indicates a reduction of 25.9% of applied water in the PMDI treatment compared
to DI (Figure 6). The results obtained in this study are consistent with the results of
other research [36,37]. Other researchers also reported that a slight reduction in water
consumption might not have a significant effect on crop yield [38,39].

Table 6. Mean values of irrigation parameters section.

Irrigation Qe * (L/s) Tco ** (h) Ig
′ (mm) AE′ ′ (%)

- DI PMDI DI PMDI DI PMDI DI PMDI

1 1.80 1.80 1.11 0.89 9.84 7.94 93.8 100

2 1.80 1.80 1.88 1.03 15.97 9.16 100 100

3 1.80 1.80 0.94 0.77 8.33 6.87 100 100

4 1.80 1.80 1.14 0.91 10.13 8.10 83.70 100

5 1.74 1.74 1.39 1.11 12.37 9.89 100 100

6 1.74 1.74 2.17 2.09 18.62 17.92 100 100

7 1.74 1.74 2.77 2.67 23.84 22.90 99.20 100

8 1.74 1.74 2.98 2.68 25.60 23.02 83.70 100

9 1.74 1.74 3.22 3.18 27.28 27.64 89.50 100

10 1.74 1.74 3.08 2.93 26.64 25.20 91.00 100

11 1.74 1.74 2.98 2.63 25.64 22.58 97.500 100

12 1.74 1.74 2.83 2.79 24.32 24.01 86.96 100

13 1.74 1.74 2.83 2.77 24.14 23.80 87.00 100

* Emitter discharge, ** Cut-off time, ′ Gross irrigation requirement, ′ ′ Water application efficiency.
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The measured yield and WP in DI and PMDI treatments are presented in Table 7.
According to the results, yield and water productivity in PMDI treatment compared to
DI increased by 3.70% and 28.65%. Research has also shown that the use of plastic mulch
under drip irrigation increases crop yield [40–42]. In general, PMDI treatment is the best
treatment in cases of water shortage and increasing WP.

Table 7. Yield and WP in research treatments.

RWC * (%) Yield (kg/ha) WP (kg/m3) WP (ER **) (Kg/m3) Improved WP (%)

DI PMDI DI PMDI DI PMDI DI PMDI DI PMDI

- 25.90 65,000 67,500 9.96 13.96 7.87 10.28 - 30.62

* Reduction of applied water. ** Effective rainfall.

3.2. Modeling Results
3.2.1. Impact of Input Combinations

The results obtained by the SO–SVR model using different input combinations are
shown in Tables 8 and 9. Psize and FE in the SO–SVR are considered 100 and 4000,
respectively. The Ω7 and Φ6 models obtained the most accurate results. The irrigation–
fertilizer parameters (PMDI, F) and plant variety (V) were introduced as the most influential
input parameters in estimating yield and WP. Sensitivity analysis showed that after Ω7
and Φ6 models, Ω1 and Φ1 models with the input parameters of rainfall and sunshine
hours also play an important role in estimating yield and WP.
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Table 8. Evaluation of hybrid models in yield estimation.

Model
Train Test SVM Parameters

R2 RMSE SI σ NSE R2 RMSE SI σ NSE C ε γ

Ω1 0.980 0.009 0.012 0.888 0.960 0.961 0.010 0.015 1.125 0.914 100 0.5 1
Ω2 0.975 0.010 0.014 1.125 0.918 0.972 0.012 0.018 1.415 0.906 10 1 1
Ω3 0.890 0.012 0.016 1.142 0.846 0.851 0.020 0.033 1.650 0.705 10 0.5 1
Ω4 0.905 0.013 0.018 1.325 0.823 0.890 0.017 0.025 1.480 0.740 10 1 1
Ω5 0.880 0.015 0.026 1.589 0.725 0.868 0.019 0.031 1.620 0.710 100 0.5 1
Ω6 0.992 0.006 0.007 0.836 0.987 0.980 0.007 0.008 0.860 0.979 10 1 1
Ω7 0.994 0.005 0.006 0.794 0.989 0.982 0.006 0.007 0.614 0.982 10 1 1

Table 9. Evaluation of hybrid models in WP estimation.

Model
Train Test SVM Parameters

R2 RMSE SI σ NSE R2 RMSE SI σ NSE C ε γ

Φ1 0.908 0.012 0.017 1.302 0.830 0.882 0.016 0.022 1.476 0.745 100 0.5 1
Φ2 0.882 0.014 0.023 1.574 0.732 0.870 0.018 0.029 1.615 0.725 10 1 1
Φ3 0.978 0.010 0.013 1.115 0.921 0.973 0.012 0.017 1.394 0.910 10 0.5 1
Φ4 0.981 0.009 0.011 0.875 0.961 0.962 0.010 0.013 1.158 0.916 10 1 1
Φ5 0.992 0.007 0.009 0.840 0.981 0.979 0.009 0.010 0.864 0.962 10 1 1
Φ6 0.993 0.006 0.008 0.838 0.987 0.981 0.005 0.008 0.710 0.981 10 1 1

According to Tables 8 and 9, models Ω7 and Φ6 modeled the yield and WP with
lower error (RMSE = 0.005–0.006) according to the irrigation–fertilizer and plant variety
input parameters. Therefore, the rainfall and sunshine hours are effective parameters in
determining the yield and WP, respectively. Sensitivity analysis showed that after irrigation
and rainfall parameters, which affected the reproductive and leaves development of the
plant, the sunshine-hours parameter (which indicates the amount of energy received by the
plant) is also essential in estimating the crop yield. Sadras and Calvino showed that 90%
and 76% of soybean and corn yield are affected by irrigation parameters, respectively [41].
Kaul et al. identified available water as the critical parameter in estimating crop yield [42].
Montazer et al. reported irrigation and rainfall as the most influential parameters in
assessing wheat yield, which is consistent with the results of the present study [43].

According to Figures 7 and 8, it is clear that the yield and WP using the SO–SVR
hybrid method are estimated with high accuracy and are in appropriate agreement with
the observed values.

The results indicate that for both yield and WP traits, the proposed hybrid model
yields slightly higher WP and crop yield values compared to the observed value, which
is due to the relatively high accuracy of the hybrid model in this study. Based on the
results, calculating the average temperature (Temp.avg), minimum temperature (Temp.min),
maximum temperature (Temp.max), and average relative humidity (RHavg), parameters
have little effect on reducing the RMSE error, but appending rainfall (Pe) and solar radiation
(Ssh) parameters reduce the RMSE. The results of this study are consistent with the results
of previous research. Hosseini et al. obtained the accuracy of predicting wheat yield in
Qorveh province in northwestern Iran using an artificial neural network of 0.99 [44].
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Figure 7. (a–d) Comparison of predicted yield with observed results in the training and test stages.



Water 2021, 13, 3615 13 of 17

Water 2021, 13, x FOR PEER REVIEW 12 of 16 
 

 

  
(c) SVR on the training dataset. 

  
(d) SVR on test dataset 

Figure 7. (a–d) Comparison of predicted yield with observed results in the training and test stages. 

  

(a) SO–SVR on the training dataset 

  
(b) SO–SVR on test dataset. 

Figure 8. (a,b) Comparison of predicted WP with observed results in the test and training stages. 

The results indicate that for both yield and WP traits, the proposed hybrid model 

yields slightly higher WP and crop yield values compared to the observed value, which 

R² = 0.9705

66,000

67,000

68,000

69,000

66,000 67,000 68,000 69,000

P
re

d
ic

te
d

 Y
ie

ld
 (

k
g

/h
a)

Observed Yield (kg/ha)

66,000

67,000

68,000

69,000

0 20 40 60 80 100 120

Y
ie

ld
 (

k
g

/h
a)

Data number

Observed

R² = 0.9644

66,000

67,000

68,000

69,000

66,000 67,000 68,000 69,000

P
re

d
ic

te
d

 Y
ie

ld
 (

k
g

/h
a)

Observed Yield (kg/ha)

66,000

67,000

68,000

69,000

0 10 20 30 40

Y
ie

ld
 (

k
g

/h
a)

Data number

Observed

R² = 0.993

13.8

13.9

14

13.8 13.9 14

P
re

d
ic

te
d

 W
P

 (
k
g

/m
3
)

Observed WP (kg/m3)

13.8

13.9

14

0 20 40 60 80 100 120

W
P

 (
k
g

/m
3
)

Data number

Observed

R² = 0.9812

13.8

13.9

14

13.8 13.9 14

P
re

d
ic

te
d

 W
P

 (
k
g

/m
3
)

Observed WP (kg/m3)

13.8

13.9

14

0 10 20 30 40

W
P

 (
k
g

/m
3
)

Data number 

Observed

Figure 8. (a,b) Comparison of predicted WP with observed results in the test and training stages.

The optimal results obtained using the hybrid SO–SVR model in the test and training
stages for models Ω7 and Φ6 are given in Tables 10 and 11.

Table 10. Evaluation of SO–SVR method in the training stage.

Method R2 RMSE SI σ NSE

SO–SVR 0.994 0.005 0.006 0.794 0.989

SVR 0.970 0.015 0.019 1.412 0.920

Table 11. Evaluation of SO–SVR method in the test stage.

Method R2 RMSE SI σ NSE

SO–SVR 0.982 0.006 0.007 0.812 0.982

SVR 0.964 0.018 0.022 1.161 0.912

Figure 9 shows the error distribution diagrams of SO–SVR and SVR on the test stage.
The results show that about 75% of the yield values estimated utilizing the SO–SVR have
an error of less than 2%, while in the SVR, 64% of the yield values calculated have an error
of less than 2%.
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3.2.2. Comparison with Other Methods

Due to the limited use of soft computing methods in WP estimation and yield, the SO–
SVR method with Ω7 and Φ6 models are compared with previous studies by Sharifi [45]
and Prasad et al. [46]. In Table 12, the SO–SVR hybrid model is compared with the results
of other studies. The SO–SVR method with R2 of 0.982 had better performance than the
Gaussian process regression algorithm (GPR) and random forest (RF) with R2 of 0.84
and 0.69, respectively. The superiority of the SO–SVR hybrid method compared to other
methods is the excellent performance of the SO algorithm in finding the optimal parameters
of the SVR method.

Table 12. Comparison of SO–SVR model with other methods.

Model R2 RMSE SI σ NSE

GPR 0.840 0.055 - - 0.835
RF 0.690 0.045 - - 0.687

SVR 0.964 0.018 0.022 1.161 0.912
SO–SVR 0.982 0.006 0.007 0.614 0.982

4. Conclusions

This paper investigates the influence of drip irrigation and plastic mulch on tomato
yield and introduces the SO–SVR hybrid method to estimate WP and yield. The average
improvement of WP and the reduction of applied water in PMDI treatment compared
to DI were 34.10% and 39.20%, respectively. The results showed that the observed and
estimated values were in good agreement. To determine the most appropriate effective
parameters in estimating WP and yield, seven models with different input combinations
were selected, respectively. The Ω7 and Φ6 models with input combinations including
irrigation–fertilizer parameters (PMDI, F) and plant variety (V) were introduced as the
superior models. In addition, the results indicate that the SO–SVR hybrid model has a
good capability in estimating yield and WP with R2 = 0.982, RMSE = 0.006, SI = 0.007,
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σ = 0.614, and NSE = 0.982, respectively. The SO algorithm is a high-speed convergence
algorithm and performed better than its peer algorithms in optimizing SVR parameters
and thus estimating the yield and WP of tomato crop. However, the SO–SVR model needs
to be parameterized, and the performance of the SO–SVR is a bit far from ideal. Therefore,
it is recommended that for future research the SO algorithm be combined with adaptive
neuro-fuzzy inference models and artificial neural networks to improve the defects and
provide generalizable results.
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