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Abstract: To explore the potential of smashing ridge tillage irrigation, it is necessary to investigate
how smashing ridge tillage technology with mulched drip irrigation affects soil water, salinity, and
cotton yield in saline fields. We conducted a two-year (2020–2021) field experiment to study the
effects of different smashing ridge tillage depths on soil bulk density, moisture, salinity, dry matter
production, yield, and its constituents (effective bolls, 100-bell weight). There were three smashing
ridge tillage depths: A (20 cm), B (40 cm), and C (60 cm), with traditional tillage as the CT. The
results showed that all of the smashing ridge tillage could reduce soil bulk density, improve the
utilization and uptake of deep soil water during the rapid growth period, and reduce the soil salt
content. Compared with the CT treatment, the average soil bulk density of the 0–60 cm soil layer in
treatments A, B, and C in 2020 and 2021 decreased by 3.05%, 5.87%, 10.09%, and 1.65%, 4.48%, and
8.49%, respectively. The average soil water content in the 0–120 cm soil layer at the flowering and
boll stage decreased by 3.68%, 6.28%, 9.04%, and 3.59%, 6.52%, and 9.98%, respectively; the soil salt
content in the 0–120 cm soil layer at the boll opening stage decreased by 4.21%, 6.75%, 11.95%, and
5.47%, 24.25%, and 54.13%, respectively. Cotton dry matter production and yield tended to increase
with an increasing depth of smash ridge tillage. Treatment C obtained the maximum dry matter
production, seed cotton yield, effective bolls, and 100-boll weight. The dry matter production at the
boll opening stage was significantly increased by 17.16% and 15.91%, and the yield was significantly
increased by 65.24% and 84.14% in treatments C in 2020 and 2021, respectively, compared to CT. The
smashing ridge tillage of 60 cm can optimize the structure of the soil tillage layer and also reduce
soil salinity and increase yield, which is the suitable depth of smashing ridge tillage for saline cotton
fields in the south of Xinjiang. The findings of the study can provide some theoretical basis and
practical experience for the improvement of saline soils and sustainable agricultural development in
South Xinjiang, China.

Keywords: smashing ridge tillage; mulched drip irrigation; soil moisture; soil salinity; yield

1. Introduction

Xinjiang is located in the hinterland of Northwest China and has a typical continental
arid climate [1]. The region is conducive to cotton growth, and the growing conditions
are favorable for cotton dry matter accumulation and fiber growth. Xinjiang is China’s
cotton production base, with the largest planting area and the best quality [2], and its
cotton output and area account for 84.90% and 67.08% of national cotton output and area,
respectively [3,4], having a significant impact on local economic and social development.
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The climate of Southern Xinjiang is extremely dry with little rain (the average annual
precipitation is only 46.7 mm), and water evaporative demand is large. It is an oasis ecology
and irrigated agriculture. Its irrigation demand index is over 85% [5], and farmland water
resources are seriously lacking. At the same time, Xinjiang has the largest saline soil area in
China. The area of salinized arable land accounts for 37.72% of the total arable land area
in Xinjiang, and the percentage in Southern Xinjiang reaches 49.6% [6]. Land salinization
has become a major limiting condition and limiting factor for agricultural expansion and
sustainable development in Southern Xinjiang [7].

Since the introduction of drip irrigation with mulch technology to cotton cultivation
in 1998, the problem of water shortages in Xinjiang has been alleviated to a certain extent.
However, mulched drip irrigation technology cannot achieve the effect of salt drainage
and salt washing on salinized farmland. The average annual salt accumulation in the
root soil layer of the crop reached 0.36 g kg−1, and salt accumulated continuously in
the field soil layer [8,9]. Moreover, due to the long-term implementation of continuous
mechanical tillage and continuous cotton cultivation, the tillage layer of cotton fields has
become shallow (the average depth of the tillage layer in the irrigated cotton areas of
South Xinjiang is only 20 cm) [10]. This causes the soil to harden, resulting in a poor air
permeability and the formation of an impermeable plough bottom. As a result, irrigation
water cannot leach salt into the deep layer, which seriously affects the effect of drainage
and salt washing and severely restricts crop growth and development as well as high
yield [11]. How to eliminate soil barriers in continuous cotton fields, improve the efficient
use of limited irrigation water, achieve water conservation in cotton fields, efficient water
use and saline land improvement synergy, and increase production and efficiency have
become the key scientific issues in the current agricultural production in South Xinjiang.

Improving soil tillage practices is one of the most effective ways to improve soil
structure and enhance soil quality [12,13]. Compared to conventional tillage, deep tillage
of more than 30 cm can destroy hardpans and decrease soil bulk density [14], increasing
soil porosity [15]. Moreover, deep tillage of compacted soil could also enhance soil health
and plant disease resistance [16], as well as increase organic matter storage in agricultural
soils [17]. In recent years, Wei Benhui, a researcher at the Institute of Economic Crops,
Guangxi Academy of Agricultural Sciences, proposed a new tillage method called “smash-
ing ridge tillage” in which the soil is rapidly ground by spiral bits and suspended naturally
into ridges without disturbing the soil layer [18,19]. This tillage method can break the
hard plowed bottom layer, significantly deepen the soil tillage layer, reduce the soil bulk
of the tillage layer, increase soil porosity and permeability, improve soil temperature, and
enhance soil nutrient content and soil water storage capacity [20–22]. Smashing ridge
tillage overcomes the problems of soil consolidation and fertility reduction caused by
traditional tillage that cannot be deeply tilled and loosened, shallow tillage layer, and
long-term mechanical crushing [23].

Smashing ridge tillage changes the physical structure of the soil and influences the
degree of soil salinization by regulating water transport. Sun et al., found that, compared
with conventional tillage, interval smashing ridge tillage and continuous smashing ridge
tillage reduced soil bulk density and salinity in the tillage layer and significantly increased
soil water content and cotton yield [24]. Hasigerile et al., noted that smashing ridge tillage
combined with desulfurized gypsum and biochar significantly reduced soil salinity and
facilitated crop growth and yield improvement [25]. Smashing ridge tillage can significantly
improve the yield and quality of a variety of crops such as maize, peanut, and rice, with a
10–30% increase in yield and a 5% improvement in quality [22,26–28]. The yield of winter
wheat still increased by 4.55% in the sixth year after smashing ridge tillage [29]. Some other
scholars have shown that under wheat and maize crop rotation conditions, smashing ridge
tillage was followed by a significant contribution not only to wheat season yield but also to
high maize yield in the following season [30]. It can be seen that the smashing ridge tillage
led to a continuous improvement in the growing environment of the crop.
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Most of the previous studies on smashing ridge tillage technology were comparative
analyses of different tillage methods in terms of soil quality, crop growth and development,
and yield. However, the relationship between the depth of the smashing ridge tillage on the
water and salt environment of cotton fields and crop production under the soil environment
conditions of water shortage and heavy reliance on irrigation in Southern Xinjiang is not
sufficiently studied, and the mechanism affecting the water and soil environment and yield
of cotton fields is not clear. The lack of specifications for the depth of the work of smashing
ridge tillage in response to the soil zone and obstacle factors has limited the application of
smashing ridge tillage technology to local conditions. Therefore, this study investigated the
effects of the depth of smashing ridge tillage on soil bulk density, water and salt content,
and cotton growth and yield through two-year field experiments with drip irrigation in
mulch cotton fields in South Xinjiang, revealing the mechanism of smashing ridge tillage
to reduce salt and increase yield. The aim was to construct a suitable tillage structure and
provide some theoretical basis and practical experience for the reasonable application of
smashing ridge tillage technology in the irrigated cotton areas of South Xinjiang.

2. Materials and Methods
2.1. Experimental Site Condition

This experiment was carried out in a typical saline cotton field (79◦2′5” E, 40◦0′10” N;
1098 m above sea level) in Tumushuk, Xinjiang, China, over two consecutive cotton growing
seasons (April to October) in 2020 and 2021. The experimental site is located in a temperate
extremely arid desert climate, with an average annual temperature of 15.16 ◦C, annual
precipitation of 80.15 mm (Figure 1), annual evaporation of 1643–2202 mm, and an average
annual frost-free period of 225 days. The groundwater level in the test site was below 7.2 m
in both 2020 and 2021 cotton growing seasons. The 0–120 cm soil layer was sandy loam,
with a soil bulk density of 1.38 g·cm−3, field water holding capacity of 22.37%, and soil
electrical conductivity (EC, mS cm−1) value of 5.19 mS cm−1 (soil/water weight ratio of
1:5). The contents of nitrate nitrogen, ammonium nitrogen, available phosphorus, and
available potassium in soil were 52.34, 3.30, 7.33, and 130.50 mg kg−1, respectively.

Figure 1. Distribution of precipitation and temperature during cotton growth period of experiment station in (a) 2020 and
(b) 2021.

2.2. Experimental Design and Treatments

This study was conducted in 12 experimental plots (40× 30 m each). The adjacent plots
were separated by 10 m to eliminate soil moisture and salt lateral infiltration (Figure 2a).
Four treatments, with three replicates each, were arranged in 12 plots. All treatments
included drip irrigation under mulch with different smashing ridge tillage depths (A, 20 cm;
B, 40 cm; C, 60 cm; and conventional tillage, CT). In spring 2020, the CT treatment was
plowed and tilled (20–25 cm) using a traditional five-share plow. Treatments A, B, and C
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were operated with a Wufeng 1SGL-200 deep loosening machine (Figure 3). Large water
irrigation (270 mm) was followed by rototilling (15–20 cm) and then seeding. The farming
methods of all treatments in the spring of 2021 were the same as those of the CT treatment
in 2020.

Figure 2. (a) The layout of the experimental plots and (b) a vertical section of the experimental plots. CT, conventional
tillage; A, 20 cm; B, 40 cm; C, 60 cm.

Figure 3. Deep loosener machine for smashing ridge tillage operation.

The studied plant was the Xinluzhong No. 56 cotton variety, which was sown on
4 April 2020, and harvested on 25 September 2020, and sown on 6 April 2021, and harvested
on 28 September 2021. A locally promoted planting pattern of “one mulch, three drip pipes,
and six crop rows” (Figure 2b) was adopted. The diameter of the drip irrigation belt was
16 mm, the wall thickness was 0.2 mm, the distance between drippers was 30 cm, and the
flow rate was 3.2 L h−1. The drip irrigation water source was the Yarkand River, which had
a salinity of 0.80 g L−1 (freshwater salinity < 1.00 g L−1) and a pH of 7.38. Irrigation was
carried out according to the local conventional irrigation system, and cotton was irrigated
10 times during the whole reproductive period with an interval of about 7–10 d. All plots
were irrigated at the same time. The timing of cotton irrigation in 2020 and 2021 is shown in
Table 1. Fertilizers were applied in equal amounts according to the “one water, one fertilizer”
method, with 472.5 kg hm−2 of urea (N mass fraction ≥ 46%) and 75 kg hm−2 of agricultural
potassium sulfate (K2O mass fraction≥ 50%). Other agricultural management measures in
the experimental area were the same as those in the surrounding fields. All measurements
and treatments remained the same throughout the experiment (2020 and 2021).
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Table 1. Irrigation schedule for 2020 and 2021 growing seasons.

Year Date DAS Irrigation
(mm) Year Date DAS Irrigation

(mm)

2020

June 10 67 37.5

2021

June 12 67 37.5
June 21 78 37.5 June 23 78 37.5
June 28 85 37.5 June 30 85 37.5
July 6 93 57.5 July 8 93 57.5
July 13 100 57.5 July 15 100 57.5
July 20 107 57.5 July 22 107 57.5
July 27 114 57.5 July 29 114 57.5

August 3 121 57.5 August 5 121 57.5
August 10 128 57.5 August 12 128 57.5
August 25 143 22.5 August 27 143 22.5

Total 480 Total 480
DAS: days after sowing.

2.3. Data Collection
2.3.1. Soil Bulk Density

During the cotton harvest period, the cutting-ring method was used to determine the
soil bulk density of the 0–60 cm soil layer, with every 10 cm as a layer, and sampling was
repeated three times for each treatment. Samples were transported to the laboratory in
sealed plastic bags, weighed, oven-dried at 105 ◦C, and reweighed. Bulk density (g cm−3)
was determined by dividing the dry soil mass by the sample core volume (100 cm3). The
measurement position was in the middle of the wide row of cotton.

2.3.2. Soil Moisture and EC

Soil samples were collected using an auger (5 cm diameter, 140 cm height) from each
plot at depths of 20 cm and from 0 to 120 cm before the irrigation days at different stages
of the cotton growth period, which included the seedling stage (20 May 2020 and 22 May
2021), bud stage (20 June 2020 and 22 June 2021), flowering and boll stage (25 July 2020
and 27 July 2021), and boll opening stage (24 August 2020 and 26 August 2021). A total
of 20 g of fresh soil samples was weighed, and the moisture content was measured using
the oven drying method (105 ◦C, 24 h). The value of gravimetric water content was the
average of three replicates in each treatment.

The soil samples were air-dried and crushed until they could pass through a 2 mm
sieve. Then, the soil electrical conductivity was determined using a conductivity meter
(DDS-11A, Shanghai INESA Scientific Instruments Co., Ltd., Shanghai, China) in a mixture
of dried soil and distilled water at a ratio of 1:5 (by weight).

2.3.3. Dry Matter Production

At the seedling stage, bud stage, flowering and boll stage, and boll opening stage, three
cotton samples of uniform growth were selected from each plot, and the above-ground and
below-ground parts were collected. After removing the dust on the surface of the obtained
fresh plant samples, the organs were separated, put in an oven at 105 ◦C for 30 min, and
dried at 75 ◦C to a constant mass. The samples were weighed with an electronic balance
(accurate to 0.01 g) to determine their dry weight.

2.3.4. Cotton Yield

Three 1 × 2.4 m plant samples in each plot were randomly selected, and the yield of
seed cotton was weighed. The measured yield constituents were 100-boll weight, plant
number, and effective boll number per plant. The yield and its constituents were taken as
the average of three plots.



Water 2021, 13, 3592 6 of 15

2.4. Data Collection

The data were processed using Microsoft Excel 2019. Analysis of variance was per-
formed using the SPSS 24.0 package (SPSS Inc., Chicago, IL, USA). Tukey’s significant
difference test was used to determine significant differences between the smashing ridge
tillage treatments at p < 0.05. Origin 2021 software (OriginLab, Northampton, MA, USA)
was used to create figures and perform principal component analysis (PCA). The biplots
were generated using the first two components (PC1 and PC2), which explained the maxi-
mum variation between the data sets.

3. Results
3.1. Soil Bulk Density

The effects of different smashing ridge tillage depths on the soil bulk density of the
0–60 cm soil layer during cotton harvest are shown in Table 2. The soil bulk density of
treatments A, B, and C in the 0–20 cm soil layer was significantly lower than that of CT
by 7.40%, 8.09%, 8.84%, and 6.57%, 7.30%, and 8.03% in 2020 and 2021, respectively. The
soil bulk density of treatment C in the 20–40 cm soil layer was significantly lower than
that of treatments CT, A, and B, by 8.86%, 8.57%, 2.29%, and 8.51%, 9.15%, and 3.01%
in 2020 and 2021, respectively. The soil bulk density of treatment C in the 40–60 cm soil
layer was significantly lower than the other treatments, decreasing by 11.49% and 8.90%
in 2020 and 2021, respectively. The differences between CT, A, and B treatments were not
significant. On the whole, the soil bulk density of the 0–60 cm soil layer in treatments A, B,
and C decreased by 7.40%, 8.09%, 8.84%, and 6.57%, 7.30%, and 8.03% in 2020 and 2021,
respectively, compared to CT. The above results showed that the treatment of smashing
ridge tillage could reduce the soil bulk density of different soil layers, and the deeper the
smashing ridge tillage depth, the greater the bulk density reduction, and the lowest soil
bulk density was found in different soil layers of treatment C.

Table 2. Changes of soil bulk density at different soil layers under different treatments during cotton harvest.

Treatments

Soil Depth (cm)

2020 2021

0–20 20–40 40–60 0–20 20–40 40–60

CT 1.36 ± 0.012 a 1.42 ± 0.018 a 1.48 ± 0.017 a 1.37 ± 0.035 a 1.41 ± 0.018 a 1.46 ± 0.015 a
A 1.26 ± 0.031 b 1.40 ± 0.025 a 1.47 ± 0.009 a 1.28 ± 0.014 b 1.42 ± 0.014 a 1.47 ± 0.033 a
B 1.25 ± 0.015 b 1.31 ± 0.021 b 1.45 ± 0.006 a 1.27 ± 0.032 b 1.33 ± 0.023 b 1.46 ± 0.013 a
C 1.24 ± 0.022 b 1.28 ± 0.038 c 1.31 ± 0.010 b 1.26 ± 0.004 b 1.29 ± 0.026 c 1.33 ± 0.020 b

Note: Different letters indicate significant differences between different treatments in the same column (p < 0.05). CT, conventional tillage;
A, 20 cm; B, 40 cm; C, 60 cm.

3.2. Soil Moisture

Differences in soil structure in the tillage layer influenced the characteristics of soil
moisture changes. The vertical distribution of soil moisture in the different soil layers in
2020 and 2021 for each treatment is shown in Figure 4. The distribution of roots at the
measuring depths in the cotton root zone is very different, and therefore the ability to
absorb water is also somewhat different. Under the conditions of mulched drip irrigation,
more than 85% of the cotton roots are concentrated in the 0–40 cm soil layer [31]. Therefore,
in this study, the 0–120 cm soil layer was divided into two regions, 0–40 and 40–120 cm, to
analyze soil moisture during the entire growth period of cotton. At the seedling stage, soil
moisture in 0–40 cm soil layer treatments A, B, and C was significantly higher than CT by
8.05%, 16.29%, 16.73%, and 6.79%, 12.07%, and 16.39% in 2020 and 2021, respectively, while
soil moisture in the 40–120 cm soil layer was lower than CT. At the bud stage, soil moisture
in 0–40 cm soil layer treatments A, B, and C was significantly higher than that of CT, and
the differences among treatments were small, but the soil moisture in 40–120 cm soil layer
treatments B and C was significantly lower than that of CT. Soil evaporation and plant
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transpiration were further enhanced during the flowering bell stage, which was also the
peak of water consumption, and water demand increased significantly. The soil moisture
in 0–40 cm soil layer treatments A, B, and C was significantly lower than that of CT, and
the soil moisture of each treatment in the 40–120 cm soil layer also showed a significantly
lower trend than CT. Overall, soil moisture was lower in treatments A, B, and C than in CT
in the 0–120 cm soil layer at the flowering and boll stage by 7.40%, 8.09%, 8.84%, and 6.57%,
7.30%, and 8.03% in 2020 and 2021, respectively. Cotton growth during the boll opening
stage had weaker water demand. Soil moisture in treatments B and C in the 0–40 cm soil
layer was still lower than CT, and soil moisture in treatments B and C in the 40–120 cm soil
layer increased slightly compared to CT.

Figure 4. Comparison of the vertical distribution of soil moisture under different smashing ridge
tillage depth treatments during the growth periods in 2020 and 2021. Data (mean ± SD) were
collected from soil depths between 0 and 120 cm. CT, conventional tillage; A, 20 cm; B, 40 cm; C,
60 cm. SS, seedling stage; BS, bud stage; FBS, flowering and boll stage; BOS, boll opening stage.

3.3. Soil EC

Figure 5 shows the distribution of soil EC at different soil depths. In terms of temporal
changes in soil salinity, the soil salinity in the 0–120 cm soil layer of three mashing ridge
tillage depth treatments showed a decreasing trend for two consecutive years. At the
seedling stage, soil salinity was significantly lower in treatments A, B, and C than in CT in
the 0–120 cm soil layer, by 2.44%, 14.07%, 24.08%, and 6.88%, 31.22%, and 53.20% in 2020
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and 2021, respectively. At the bud stage, soil salinity was significantly lower in 2020 and
2021 in 0–40 cm soil layer treatments A, B, and C than in CT. In the 40–120 cm soil layer, the
soil salinity of treatments A, B, and C in 2020 was significantly increased by 6.88%, 31.22%,
and 53.20% compared with CT, respectively. In 2021, there was no significant difference
in soil salinity among the treatments. Flowering and boll stage was the peak period of
irrigation. The soil salinity of the 0–40 cm soil layer treatments A, B, and C was significantly
lower than that of CT. In general, soil salinity was lower in treatments A, B, and C than in
CT in the 0–120 cm soil layer at the flowering and boll stage, by 5.76%, 5.86%, 14.79%, and
5.38%, 17.55%, and 36.67% in 2020 and 2021, respectively. At the boll opening stage, soil
salinity was reduced by 4.21%, 6.75%, 11.95%, and 5.47%, 24.25%, and 54.13% in treatments
A, B, and C compared to CT in the 0–120 cm soil layer in 2020 and 2021, respectively. The
soil salinity of the 0–120 cm soil layer in 2021 was significantly lower than that in 2020,
indicating that smashing ridge tillage could significantly reduce soil salinity.

Figure 5. Comparison of soil salinity levels under different smashing ridge tillage depth treatments
during the growth periods in 2020 and 2021. Data (mean ± SD) were collected from soil depths
between 0 and 120 cm. CT, conventional tillage; A, 20 cm; B, 40 cm; C, 60 cm. SS, seedling stage; BS,
bud stage; FBS, flowering and boll stage; BOS, boll opening stage.
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3.4. Dry Matter Production

The effect of smashing ridge tillage depth on the dry matter production of cotton is
shown in Figure 6. Smashing ridge tillage significantly increased the production of cotton
dry matter. Dry matter production at the seedling stage was significantly increased in
treatment C compared to treatments B, A, and CT. The dry matter production of treatment
C at the bud stage in 2020 and 2021 was significantly increased by 12.04% and 13.07%
compared to CT, respectively. The dry matter production during the flowering and boll
stage has the fastest growth rate during the whole growth period. In 2020 and 2021, the
increase in the dry matter during the flowering and boll stage accounted for 60.18–61.78%
and 58.36–60.75% of the total dry matter production, respectively. In 2020 and 2021, the
dry matter production of treatment C during the flowering and boll stage and the boll
opening stage was significantly higher than that of other treatments. In 2020 and 2021, the
dry matter production of treatment C during the boll opening stage increased significantly
by 17.16% and 15.91% compared with CT. The dry matter production of cotton in each
growth period increased with the increase in the smashing ridge tillage depth, and the
trend of the dry matter production was C > B > A > CT.

Figure 6. Effects of different smashing ridge tillage depth treatments on dry matter production of cotton in (a) 2020 and
(b) 2021. Different lowercase letters represent significant differences (p < 0.05, t-test) between treatments per year. CT,
conventional tillage; A, 20 cm; B, 40 cm; C, 60 cm.

3.5. Cotton Yield

Cotton yield, 100-boll weight, and effective bolls increased significantly with the
increasing depth of smashing ridge tillage (Figure 7). The 100-boll weight in treatments
B and C was significantly higher than in other treatments, and there was no significant
difference between treatment A and CT. Treatment C had the highest 100-bell weight with
a 4.64% and 4.68% increase in 2020 and 2021, respectively, compared with CT. The effective
bolls in treatments A, B, and C were significantly higher than CT. Among them, the effective
bolls in treatment C were significantly higher than in other treatments, which increased
by 49.79% and 48.74% compared with CT in 2020 and 2021, respectively. Treatment A, B,
and C cotton yields were significantly higher than CT, with treatment C cotton yielding
significantly higher than in the other treatments. The highest yields were 4518.75 and
5119.35 kg hm−2 in 2020 and 2021, respectively, which increased by 65.24% and 84.14%
compared with CT. The results indicated that the deeper the smashing ridge tillage depth,
the better for improving crop yield, which was consistent with the expression of soil salinity.
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Figure 7. Effects of different smashing ridge tillage depth treatments on (a) 100-boll weight, (b) effec-
tive bolls, and (c) yield of cotton in 2020 and 2021. Different lowercase letters represent significant
differences (p < 0.05, t-test) between treatments per year. CT, conventional tillage; A, 20 cm; B, 40 cm;
C, 60 cm.

3.6. Assessment of Treatment–Variable Interaction through PCA

To comprehensively evaluate the relationship between different smashing ridge tillage
depth treatments for soil bulk density, moisture, salinity, cotton dry matter production,
and yield, data obtained for individual treatments were averaged and subjected to PCA
(Figure 8). In 2020 and 2021, PC1 and PC2 showed 96.06% and 94.14% data variability,
respectively. Results of PCA confirmed that soil bulk density, moisture, salinity, cotton dry
matter production, and yield were closely associated with treatments C and B and less
associated with treatments A and CT. Soil bulk density and salinity were highly significant
and negatively associated with cotton dry matter production and yield. These results
indicated that a greater depth of smashing ridge tillage could promote water uptake and
utilization in cotton to promote root growth and thus increase yield.
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Figure 8. Principal component analysis (PCA) to elucidate the treatment–variable relationships between soil parameters
and cotton yield under different smashing ridge tillage depth conditions in (a) 2020 and (b) 2021. The lines originating from
the central point of the biplots show negative or positive correlations of different variables, and their closeness indicates
strength of correlation with a particular treatment. CT, conventional tillage; A, 20 cm; B, 40 cm; C, 60 cm.

4. Discussion
4.1. Effect of Smashing Ridge Tillage on Soil Bulk Density and Moisture

The impact of tillage measures on soil properties is first manifested in the change
of soil bulk density [32]. Smashing ridge tillage can loosen the soil and reduce the soil
bulk density compared to traditional rotary tillage, thus increasing soil permeability and
water retention [33,34]. Wei et al. [35] found that the soil bulk density after smashing ridge
tillage was still lower than traditional tillage after years of continuous planting by 10.56%.
The results of this study are consistent with the above findings. The soil bulk density of
the 0–60 cm soil layer after smashing ridge tillage was less than that of traditional tillage
treatment, and the increase in the smashing ridge tillage depth had a greater impact on the
deep soil bulk density. The average decrease in 2020 and 2021 could reach 4.34%. This may
be because smashing ridge tillage can break the bottom of the plow, loosen the plow layer
after plowing, improve the soil structure, and reduce the soil bulk density. After smashing
ridge tillage, the soil bulk density of each soil layer increased in 2021 compared with 2020,
which may be caused by, for example, irrigation and natural soil settlement. The level of
soil water content reflects the level of water holding capacity and water supply capacity
of the soil [36,37]. Smashing ridge tillage can effectively improve soil moisture content.
Li et al. [38] found that powder ridge cultivation breaks the bottom of the soil plow, which
is conducive to rainfall infiltration and soil moisture storage. Sun et al. [24] found that
by measuring the soil moisture in the 0–60 cm soil layer of a cotton field with mulched
drip irrigation, smashing ridge tillage can significantly increase soil moisture compared
with traditional tillage. However, the results of this study were different. Compared with
traditional tillage, the smashing ridge tillage increased the soil moisture in the 0–40 cm soil
layer at the seedling stage and bud stage and decreased the soil moisture in the 0–120 cm
soil layer at the flowering and boll stage. This is generally consistent with the research
results of Zhai et al. [39]. The reason for this may be that during the growth stage when the
water demand is small, the smashing ridge tillage increases soil moisture in the tillage layer,
which plays a role in water storage and moisture retention and is beneficial to the growth
and development of cotton. As the growth period of cotton progresses, the intensity of
water consumption by cotton at the flowering and boll stage increases. Smashing ridge
tillage loosens the soil, thickens the tillage layer, increases the rate of water infiltration,
promotes root growth and development, and facilitates the vertical distribution of crop
roots downward. With the strengthening of transpiration, the supply and consumption
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capacity of deep soil water is enhanced [10]. Deep soil water depletion was increased in
the smashing ridge tillage treatment.

4.2. Effect of Smashing Ridge Tillage on Soil Salinity

The movement of salt in saline-alkali soil is characterized by the migration of salts
along with water [40]. The vertical upward and horizontal movement of water relies
mainly on the capillary action of the soil. Smashing ridge tillage uses a spiral drill to
cut the soil horizontally so that the soil in the cultivated layer is finely broken, and the
internal structure of the soil capillary is reconstructed. By increasing the diameter of the soil
capillary and the roughness of the inner wall, the capillary action of the soil is weakened,
and the salt in the lower layer is prevented from moving upward [41]. The use of effective
physical measures for improving saline soils in smashing ridge tillage follows precisely
the law of salt transport in saline soils. Wei et al. [18] found that heavy saline land after
smashing ridge tillage showed a 31.31% decrease in total soil salinity, a 48.80% increase
in cotton yield, and a decrease in salinity from heavy to moderate. The results of this
study are consistent with the above reports. The results of this experiment showed that soil
salinity was significantly lower in the 0–120 cm soil layer in different smashing ridge tillage
depth treatments at the seedling stage than in traditional tillage, with the most significant
decrease in soil salinity in treatment C. The possible explanations were that increasing
the smashing ridge tillage depth breaks the plow bottom, improves soil porosity, and
rebuilds the internal structure of the soil capillary. In addition, the mulching film inhibits
evaporation and effectively reduces the upward movement of salinity. With the increase in
irrigation frequency during the growth period, the soil salinity in the 0–120 cm soil layer of
different smashing ridge tillage depth treatments was significantly reduced compared with
traditional tillage at the flowering and boll stage and boll opening stage. The soil salinity
of treatment C was significantly lower than that of other treatments. During irrigation, the
salts in the soil of the tillage layer will gradually leach down with the water due to the
effect of gravity. The salts are gradually leached to the lower layers with the water and
keep moving to deeper layers. Smashing ridge tillage reduces the upward movement of
salt in the lower soil and reduces the salt content of the soil in the cultivated layer [20].

4.3. Effect of Smashing Ridge Tillage on Cotton Growth and Yield

Soil compaction is the main reason for reducing root vigor and inhibiting root
growth [42]. Smashing ridge tillage has both deep loosening and deep plowing char-
acteristics, which can break the bottom of the plow, loosen the soil, and optimize the
soil structure. It can also have a significant improvement in the growing environment
of crops [43,44], increasing the ability of crop roots to supply water and nutrients by ab-
sorption and promoting crop yield growth [45]. Jin et al. [46] found that smashing ridge
tillage enhanced the growth and development of potato roots and effectively promoted
the development and dry matter accumulation of potato leaves and stems. Liu et al. [47]
showed that the effect of smashing ridge tillage cultivation technology on cassava yield
increase was significant, with a 46.69% yield increase compared to the traditional tillage
planting method. The findings of this study indicated that increasing the depth of smashing
ridge tillage could effectively promote cotton yield improvement. The 100-boll weight,
effective bolls, and yield of cotton increased significantly with the increase in the depth
of the smashing ridge tillage. Compared with traditional farming, treatment C increased
the cotton yield by 76.21% and 70.36% in 2020 and 2021, respectively. The findings of our
study are similar to those of Zhang et al. [48]. The main reason is that the smashing ridge
tillage improves the loose conditions of the cotton field tillage layer, which facilitates the
deep rooting and the mobilization of water and fertilizer and improves the sustainable
supply capacity of water and fertilizer required for cotton growth, thus producing a good
effect on cotton development and yield increase. Accordingly, the PCA displayed that
the application of the smashing ridge tillage was closely associated with soil bulk density,
moisture, salinity, cotton dry matter production, and yield. The PCA results for both years
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were generally consistent, showing a highly significant negative correlation between soil
bulk and salinity and cotton dry matter production and yield.

In this study, we concluded that the positive regulating effect of the smashing ridge
tillage depth on soil bulk density, water and salt environment, and cotton yield was linear.
The optimum indexes were found at a smashing ridge tillage depth of 60 cm. This is
the suitable smashing ridge tillage depth for salinized cotton fields in South Xinjiang
under the conditions of this experiment. However, for different levels of saline land, when
environmental factors such as soil, climate, and crop type change, whether the response
of soil/water and soil environment as well as crop production potential to the depth
of smashing ridge tillage changes currently needs further research. Like subsoiling and
plowing operations, smashing ridge tillage has certain after-effects. It is not necessary to
implement the operation every year, and it can be carried out alternately with farming
measures such as rotary tillage or no-tillage, and the number of years its effectiveness can
be maintained is something that still needs to be further studied.

5. Conclusions

In arid regions, the use of limited water resources for saline land improvement to
improve the sustainability of agriculture is an urgent issue to be addressed. In this study,
the effects of different smashing ridge tillage depth treatments on soil bulk density, water
and salt content, dry matter production, and yield were investigated. Based on the two-year
field experiment results in 2020 and 2021, our main conclusions are as follows: The increase
in the depth of the smashing ridge tillage can significantly reduce soil bulk density and soil
salinity, and increase soil moisture, play a role in water storage and moisture preservation
and facilitate the absorption and utilization of deep soil moisture by cotton. In addition,
the increase in the depth of the smashing ridge tillage promoted the production of dry
matter and yield of cotton compared to the traditional tillage. The recommended depth
of smashing ridge tillage for the improvement of salinized cotton fields and sustainable
agricultural production in South Xinjiang is 60 cm.
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