
water

Article

Altitudinal Gradient Characteristics of Spatial and Temporal
Variations of Snowpack in the Changbai Mountain and Their
Response to Climate Change

Yongming Chen 1,2,†, Zehua Chang 3,†, Shiguo Xu 1, Peng Qi 3,*, Xiaoyu Tang 3, Yang Song 2 and Dongmei Liu 2

����������
�������

Citation: Chen, Y.; Chang, Z.; Xu, S.;

Qi, P.; Tang, X.; Song, Y.; Liu, D.

Altitudinal Gradient Characteristics

of Spatial and Temporal Variations of

Snowpack in the Changbai Mountain

and Their Response to Climate

Change. Water 2021, 13, 3580.

https://doi.org/10.3390/w13243580

Academic Editor: Hongyi Li

Received: 27 October 2021

Accepted: 10 December 2021

Published: 14 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China;
chenym2477@163.com (Y.C.); sgxu@dlut.edu.cn (S.X.)

2 Jilin Institute of Hydraulic Research, Changchun 130500, China; titanichero@163.com (Y.S.);
weareidl@sina.com (D.L.)

3 Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology,
Chinese Academy of Sciences, Shengbei Street, Changchun 130102, China; changzehua@iga.ac.cn (Z.C.);
tangxiaoyu@iga.ac.cn (X.T.)

* Correspondence: qipeng@iga.ac.cn
† Yongming Chen and Zehua Chang are first co-authors.

Abstract: The variations in the snowpack in water towers of the world due to climate change have
threatened the amount and timing of freshwater supplied downstream. However, it remains to be
further investigated whether snowpack variation in water towers exhibits elevational heterogeneity
at different altitude gradients and which climatic factors mainly influence these differences. Therefore,
Changbai Mountain, a high-latitude water tower, was selected to analyze the changes in the snowpack
by the methods of modified Mann–Kendall based on the daily meteorological data from the China
Meteorological Data Service Centre. Meanwhile, the responses of snowpack change to climatic factors
over recent decades were assessed and generalized using additive models. The results showed that
the snow depth was greater in the higher altitude areas than in the lower elevation areas at different
times. Areas with a snow depth of over 70 mm increased significantly in the 2010s. Increasing
trends were shown at different altitudes from December to March of the next year during 1960~2018.
However, a significant decreasing trend was shown in April, except for altitudes of 600–2378 m.
The snow cover time at different altitudes showed a trend of first increasing and then decreasing
during 1960~2018. The date of maximum snow depth appears to be more lagged as the altitude
increases. In addition, the spring snowpack melted significantly faster in the 2010s than that in
the 1960s. The snowpack variation in low-altitude regions is mainly influenced by ET and relative
humidity. However, the mean temperature gradually became an important factor, affecting the snow
depth variation with the increase in altitude. Therefore, the results of this study will be beneficial to
the ecological protection and sustainable development of water towers.

Keywords: snowpack; climate change; water tower; Changbai Mountain

1. Introduction

Mountains are the water towers of the world and are important sources of fresh-
water; they supply a substantial proportion of both natural and anthropogenic water
demands [1,2]. In these high-altitude regions, snow is the main component of the hy-
drological cycle, because changes in the snowpack have a great impact on streamflow,
groundwater recharge, hydropower production [3], agricultural irrigation and ecosystem
function [4]. Due to climate change over the past few decades, the duration, depth and
cover of snowpacks in these mountain regions have all changed, which has threatened the
amount and timing of the freshwater supply [5]. Therefore, it is very important to maintain
the stability of the ecological environment in a water tower and provide sustainable water
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resources for downstream by assessing the spatial and temporal evolution characteristics
of mountain snowpacks and their responses to climate change.

Snow depth is an indispensable indicator for estimating snow water equivalent,
calculating surface radiation and the water budget, and simulating snowmelt runoff in
spring. Changes in the snow depth in the context of climate change are found in many
regions of the world. Widespread decreases have meant that snow depths were found to
exhibit average decreases of−12.2%/10 years for over Europe since 1951 [6]. An increasing
trend (>0.01 cm/year) in maximum and mean snow depth was found north of 40◦ N in
China [7]. Moreover, shifting precipitation from snowfall to rain results in less winter
precipitation falling as snow, and the melting of winter snow occurs earlier in spring all
over the world [8]. Many snow-dependent regions of the Northern Hemisphere are likely to
experience increasing stress from low snow years within the next three decades [6]. Climatic
factors are often considered to be the main drivers of snowpack changes. Many studies have
shown that the increase in temperature [9,10] and the decrease in snowfall [11,12] are the
main reasons for the change in snowpacks. However, it remains to be further investigated
whether snowpack variation in water towers exhibits elevational heterogeneity at different
altitude gradients, and which climatic factors mainly influence these differences.

Changbai Mountain is an important water tower located in a high-latitude region,
and is the source of the Second Songhua River, Tumen River, and Yalu River [13]. It is
also an important ecological functional area with a typical vertical belt spectrum, from
temperate broad-leaved forest to tundra in eastern Eurasia [14]. Snow is an important
factor in maintaining the balance of this region’s ecosystem. Several studies have already
found that the climate has been changing in the Changbai Mountains over recent decades.
The temperature has increased significantly, and the snowmelt period has advanced, which
has caused several ecosystem changes [15,16]. However, little attention has been paid to
spatio-temporal variations in the snowpack in the Changbai Mountains and its response to
the climatic factors.

The objective of this study was to fill the above-mentioned research gaps by investi-
gating the interannual variations and trends in the snowpack and how it has been affected
by climatic drivers in high-latitude water towers during 1960–2018. Firstly, the spatio-
temporal variations of the snowpack were analyzed at different altitudes. Secondly, the
variable characteristics of snow duration were simulated at different altitudes. Finally, the
contributions of these climatic factors to the snowpack were identified.

2. Materials and Methods
2.1. Study Site Description

This research was conducted in the Changbai Mountains, which are the source of Sec-
ond Songhua River (SSR), Tumen River (TR), and Yalu River (YR); the area is approximately
17.16 × 104 km2, and they are located at 39.8–45.4◦ N and 123.5–131.3◦ E (Figure 1a). The
Tumen River and Yalu River are international boundary rivers between China and North
Korea and Russia, respectively.

Changbai Mountains exhibit an obvious elevation gradient, ranging from −8 m to
2738 m (Figure 1b). This area is characterized by a temperate continental mountain climate
affected by monsoons. It is cold and dry in winter. The climate exhibits an annual average
temperature of−7~3 ◦C, and annual average snowfall of more than 600 mm in certain areas.

2.2. Data

Daily meteorological data from 54 stations (Table 1) in the Changbai Mountains were
obtained for the period of 1960–2018 from the China Meteorological Data Service Centre.
The variables included snow depth (SD), snowfall (SF), evapotranspiration (ET0), relative
humidity (RH), wind (W), sunlight hours (SH) and mean temperature (MT). The missing
rate of snow depth is 0.98%, and the suspicious rate is 0.002‰.
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13 54049 188.9 33 54076 268.1 53 54284 774.2 
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16 54156 200.4 36 54181 295    
17 54165 219.5 37 54274 306.7    
18 54259 224 38 54353 328.4    
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20 54171 229.5 40 54261 345.3    
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Table 1. The detail information of meteorological stations.

ID Code Altitude
(m) ID Code Altitude

(m) ID Code Altitude
(m)

1 54590 4.2 21 54483 233.6 41 54263 351.2
2 54497 13.8 22 54161 236.8 42 54267 362.3
3 54291 36.5 23 54290 241.1 43 54187 366.6
4 54494 72.6 24 54195 244.8 44 54374 379.7
5 50954 127.5 25 54365 245.5 45 54362 380.1
6 50949 136.2 26 54164 248.1 46 54192 384.6
7 50946 139.8 27 54260 252.9 47 54363 402.9
8 54293 142.8 28 54292 257.3 48 54286 475.6
9 50948 146.3 29 54349 258.9 49 54371 520.6
10 54065 169.1 30 54493 260.1 50 54186 524.9
11 54064 170.2 31 54273 263.3 51 54276 570
12 54069 173.6 32 54098 267.9 52 54285 721.4
13 54049 188.9 33 54076 268.1 53 54284 774.2
14 54072 196.5 34 54169 271.6 54 54386 775
15 54063 196.8 35 54172 290.3
16 54156 200.4 36 54181 295
17 54165 219.5 37 54274 306.7
18 54259 224 38 54353 328.4
19 54377 225.1 39 54266 340.5
20 54171 229.5 40 54261 345.3

2.3. Methods
2.3.1. Modified Mann-Kendall Method

A modified Mann–Kendall (MMK) test was applied to analyze the long-term trends in
snow depth throughout the entire study period. To correct serial correlations in the data, the
trend-free pre-whitening procedure was used: a more specific process of this methodology
is described by Qi et al. [17]. After the Z value was calculated for all meteorological stations,
they were spatially aggregated to obtain probability maps of the statistical differences.

2.3.2. Generalized Additive Model

Generalized additive models (GAM) are a nonparametric generalized multiple linear
regression method which can overcome limitations of the multiple linear regression model
and predict nonlinear relationships as a flexible regression technique using nonparametric
smoothers. The general formula of a GAM is:

g
(
µy

)
= β0 +

n

∑
i=1

fi(Xi) + εi (1)
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where g
(
µy

)
represents a function of the conditional mean of the response variable y,

and the term β0 is recognized as any strictly parametric component in the model, such
as the intercept. The component fi(Xi) is designated as the variable explained by the
nonparametric smoothing function, and εi is identically and independently distributed as
a normal random variable. The detailed calculation process can be found in the paper by
Liu et al. [6].

2.3.3. Spatial Interpolation

In recent years, based on meteorological station data, some spatial interpolation
methods have been applied to study the spatial distributions of snow depth and the climate
variations. Due to the inverse distance weighting method gave the lowest mean error than
other methods, the Inverse Distance Weight method (IDW) was applied widely in all over
world [17,18]. Thus, in this study, the IDW method was selected to analyze the spatial
variation of snow depth.

3. Results
3.1. Spatial Evolution of Snow Depth in the Changbai Mountains
3.1.1. Interdecadal Variation of Annual Mean Snow Depth

As shown in Figure 2, snow depth in the Changbai Mountains was greater in the higher
altitude areas than in the lower elevation areas at different times. It showed that snow
distribution in the Changbai Mountains exhibits obvious altitude gradient characteristics.
In the past 60 years, the spatial distribution of the interannual average snow depth of
the Changbai Mountains has changed greatly. A trend of increasing and then decreasing
was shown in the Changbai Mountains at different times. Compared with the 1960s
(Figure 2a,b), the snow depth decreased most significantly in the 1980s, with a mean value
of 25.44 mm (Figure 2c); then, snow depth gradually increased (Figure 2d,e), and it was the
largest in the 2010s with mean value of 33.89 mm (Figure 2f). Compared with other years,
the area with a snow depth of 70–90 mm increased significantly in the 2010s.

3.1.2. Variation of Monthly Mean Snow Depth

Snow depth in the Changbai Mountains has obvious seasonal variation characteristics.
In November, the entire region was completely covered with snow, with snow depths
reaching 30–50 mm at higher elevations (Figure 3a). After that, snow depths increased
month by month (Figure 3b), reaching a maximum in January (Figure 3c), with an average
snow depth of 68.30 mm. The maximum snow depth in the high-altitude area could reach
170–207 mm. After the snow depth reached its maximum, it starts to decrease gradually
(Figure 3d–f). The average snow depth in February was 57.29 mm (Figure 3d); however,
the snow in some stations at high altitudes reached 239 mm deep, which is higher than
the maximum in January. This indicates that the snow season was delayed, and the snow
period was longer in the high-altitude area than that of the low altitude area. The snow
depth decreases significantly in April (Figure 3f), and most of the areas have between 0
and 10 mm of snow, which is significantly affected by the increase in temperature.

3.2. Interannual Evolution of Snow Depth at Different Altitudes in the Changbai Mountains

There was no significant trend in snow depth at different altitudes in November from
1960 to 2018 (Figure 4a). The trend in variation was not consistent under each altitude
gradient. Increasing trends were observed at −8~200 m (slope = 0.04 mm/10 years) and
200–400 m (slope = 3.5 mm/10 year). Meanwhile, decreasing trends were observed at
400~600 m (slope = −0.18 mm/10 year) and 600~2738 m (slope = −0.17 mm/10 year).
Increasing trends in snow depth were observed at different altitudes in December during
1960~2018 (Figure 4b). The trend in increasing snow depth at −8~200 m is significant
(Z = 2.05), with a rate of 2.37 mm/10 year, and there was no significant change at all other
altitudes. Similar to December, only the snow depth from −8 to 200 m showed a significant
increasing trend (Z = 2.38) at a rate of 4.09 mm/10 year in January (Figure 4c). There was
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no significant trend in snow depth in either February (Figure 4d) or March (Figure 4e),
showing only a weakly increasing trend. The most significant change in snow depth was
in April, which showed a significant decreasing trend, except for between 600 and 2378 m
(Figure 4f). The decreasing trend was 0.07 mm/10 year at −8~200 m, −0.19 mm/10 year
at 200~400 m and 2.44 mm/10 year at 400~600 m, respectively. Compared with other
altitudes, interannual variation in snow depth was more significant at −8~200 m from 1960
to 2018.
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3.3. Intra-Annual Evolution of Snow Depth at Different Altitudes in the Changbai Mountains

The Changbai Mountains are a seasonal frozen soil area; the snow period lasts from
October to May. It can clearly be seen that as the altitude rises, the date of maximum
snow depth appears more lagged, with 0~200 m presenting at the end of January and
600~2738 m presenting in mid-February (Figure 5). At the same time, the start and end
times of the snowpack were different in different years. In the 2010s, the snow began on
October 17 at an altitude of −8~200 m; this start time lagged behind that in the 1960s by
11 days. The spring snowpack melted significantly faster in the 2010s than that in the 1960s.
The snow disappeared on 9 April in 2010s, 10 days earlier than in the 1960s at −8~200 m.
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The same phenomenon was observed at other altitudes; only the change was different with
increasing altitudes.
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In contrast to the changes in snow depth, the snow cover time at different altitudes
in the Changbai Mountains exhibited a trend of first increasing and then decreasing from
1960 to 2018 (Figure 6). In addition, the average snow cover time in the 1960s was 185 days
at −8~200 m, 195 days at 200~400 m, 193 days at 400~600 m and 198 days at 600~2738 m.
Compared with the 1960s, the average snow cover time in the 2010s had decreased by
8 days at −8~200 m, 6 days at 200~400 m, 5 days at 400~600 m and 2 days at 600~2738 m.
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In contrast to the change in snow depth, the snow cover time at different altitudes
in Changbai Mountain showed a trend of first increasing and then decreasing during
1960~2018 (Figure 6). In addition, the average snow cover time in 1960s was 185 days in
−8~200 m, 195 days in 200~400 m, 193 days in 400~600 m and 198 days in 600~2738 m,
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respectively. Compared with 1960, the average snow cover time in 2010s decreased by
8 days in −8~200 m, 6 days in 200~400 m, 5 days in 400~600 m and 2 days in 600~2738 m,
respectively.
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Based on the results of the GAM, the main drivers of snow depth variation dif-
fered at different elevations. The snowpack variation was mainly influenced by SF (de-
viance explained = 57.50%), followed by ET0 (deviance explained = 51.50%) and RH
(deviance explained = 40.60%) in November at −8~200 m during 1960~2018 (Table 2). It
was mainly influenced by ET0 (deviance explained = 64.90%), followed by RH (deviance
explained = 57.80%) and SF (deviance explained = 37.10%) in December. It was mainly influ-
enced by ET0 (deviance explained = 60.50%), followed by RH (deviance explained = 38.00%)
and SH (deviance explained = 34.80%) in January. It was mainly influenced by RH (de-
viance explained = 55.40%), followed by ET0 (deviance explained = 50.80%) and wind
(deviance explained = 32.90%) in February. It was mainly influenced by ET0 (deviance
explained = 53.70%), followed by RH (deviance explained = 46.90%) and SH (deviance ex-
plained = 31.80%) in March. It was mainly influenced by RH (deviance explained = 52.70%),
followed by ET0 (deviance explained = 46.90%) and SH (deviance explained = 39.00%)
in April.
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Table 2. The drivers of snow depth variability at −8~200 m in Changbai Mountain.

Duration Factors Edf F P R Deviance Explained

Nov.

W 1.00 1.00 0.32 0.00 2.03%
SF 8.58 7.16 0.00 0.57 57.50% ***

ET0 1.00 51.79 <2e-16 −0.47 51.50% ***
SH 1.00 28.94 0.00 −0.32 35.10% ***
RH 1.00 34.34 0.00 0.35 40.60% ***
Tm 1.69 5.31 0.01 −0.17 24.80% **

Dec.

W 1.00 11.92 0.00 −0.15 19.50% ***
SF 3.50 7.63 0.00 0.41 37.10% ***

ET0 1.00 82.74 <2e-16 −0.62 64.90% ***
SH 1.00 25.61 0.00 −0.32 33.20% ***
RH 2.86 13.99 0.00 0.44 57.80% ***
Tm 1.00 17.84 0.00 −0.24 23.90% ***

Jan.

W 1.00 16.08 0.00 −0.19 24.70% ***
SF 1.00 6.69 0.01 0.08 12.40% *

ET0 1.36 43.03 <2e-16 −0.60 60.50% ***
SH 2.40 8.58 0.00 0.37 34.80% ***
RH 1.19 17.93 0.00 0.25 38.00% ***
Tm 1.00 19.77 0.00 −0.24 26.20% ***

Feb.

W 5.34 3.40 0.01 −0.23 32.90% **
SF 1.00 0.25 0.62 −0.01 0.54%

ET0 1.62 23.05 <2e-16 −0.45 50.80% ***
SH 5.38 0.75 0.60 −0.03 14.70%
RH 4.42 8.31 0.00 0.40 55.40% ***
Tm 1.05 8.47 0.00 −0.13 16.80% **

Mar.

W 4.64 0.76 0.61 −0.02 14.50%
SF 1.167 2.81 0.11 0.04 7.48%

ET0 1.19 33.83 <2e-16 −0.46 53.70% ***
SH 5.86 2.17 0.05 −0.14 31.80% .
RH 1.00 40.39 <2e-16 0.36 46.90% ***
Tm 4.39 2.95 0.02 −0.19 30.40% *

Apr.

W 3.39 0.96 0.46 −0.026 11.40%
SF 4.19 2.33 0.05 0.13 28.40% .

ET0 4.426 4.36 0.00 −0.28 46.90% **
SH 7.76 1.47 0.20 −0.10 30.60%
RH 4.44 7.47 0.00 0.41 52.70% ***
Tm 1.69 8.47 0.00 −0.23 39.00% ***

Note: ‘***’ refer to p = 0, ‘**’ refer to p < 0.001, ‘*’ refer to p < 0.01, ‘.’ refer to p < 0.05, spaces refer to no significance,
‘Edf’ refer to estimated degrees of freedom.

The snowpack variation was mainly influenced by RH (deviance explained = 47.60%),
followed by ET0 (deviance explained = 46.80%) and SH (deviance explained = 32.60%)
in November at 200~400 m during 1960~2018 (Table 3). It was mainly influenced by
ET0 (deviance explained = 58.30%), followed by RH (deviance explained = 45.50%) and
Tm (deviance explained = 14.80%) in December. It was mainly influenced by ET0 (de-
viance explained = 38.30%), followed by RH (deviance explained = 26.50%) and SH
(deviance explained = 20.80%) in January. It was mainly influenced by ET0 (deviance
explained = 42.50%), followed by RH (deviance explained = 41.80%) and Tm (deviance ex-
plained = 21.50%) in February. It was mainly influenced by ET0 (deviance explained = 45.90%),
followed by RH (deviance explained = 39.60%) and SH (deviance explained = 34.90%) in
March. It was mainly influenced by RH (deviance explained = 52.10%), followed by ET0
(deviance explained = 42.90%) and Tm (deviance explained = 37.70%) in April.
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Table 3. The drivers of snowpack variability at 200~400 m in Changbai Mountain.

Duration Factors Edf F P R Deviance Explained

Nov.

W 1.72 0.56 0.56 0.00 4.27%
SF 2.80 1.20 0.36 0.05 9.74% ***

ET0 1.00 40.11 <2e-16 −0.45 46.80% ***
SH 2.42 7.30 0.00 −0.27 32.60% ***
RH 1.00 50.65 <2e-16 0.51 47.60% ***
Tm 1.37 3.15 0.04 −0.08 13.80% **

Dec.

W 1.00 7.08 0.01 −0.09 12.20% ***
SF 1.00 1.64 0.21 0.01 2.71% ***

ET0 3.42 13.91 <2e-16 −0.50 58.30% ***
SH 1.00 7.54 0.01 −0.10 12.60% ***
RH 1.74 14.66 0.00 0.37 45.50% ***
Tm 1.00 9.72 0.00 −0.14 14.80% ***

Jan.

W 1.00 10.24 0.00 −0.14 16.30% ***
SF 1.00 4.16 0.05 0.05 7.08% *

ET0 1.00 29.64 0.00 −0.35 38.30% ***
SH 1.04 14.24 0.00 −0.21 20.80% ***
RH 1.00 17.36 0.00 0.21 26.50% ***
Tm 1.00 14.23 0.00 −0.18 20.30% ***

Feb.

W 4.87 0.85 0.58 −0.05 12.20% **
SF 3.05 2.90 0.03 0.17 19.00%

ET0 1.00 34.27 0.00 −0.41 42.50% ***
SH 1.00 0.61 0.44 −0.01 1.12%
RH 1.99 11.31 0.00 0.33 41.80% ***
Tm 1.00 13.84 0.00 −0.21 21.50% **

Mar.

W 1.00 0.49 0.49 −0.01 1.11%
SF 2.16 4.54 0.01 0.19 21.00%

ET0 1.00 36.60 0.00 −0.38 45.90% ***
SH 7.57 2.69 0.01 −0.29 34.90% .
RH 2.70 6.81 0.00 0.25 39.60% ***
Tm 4.79 3.56 0.01 −0.27 33.60% *

Apr.

W 1.00 0.17 0.69 −0.02 0.33%
SF 1.61 0.80 0.48 0.01 4.06% .

ET0 2.52 9.58 0.00 −0.36 42.90% **
SH 1.00 3.63 0.06 −0.05 7.04%
RH 4.58 7.93 0.00 0.47 52.10% ***
Tm 1.72 10.64 0.00 −0.30 37.70% ***

Note: ‘***’ refer to p = 0, ‘**’ refer to p < 0.001, ‘*’ refer to p < 0.01, ‘.’ refer to p < 0.05, spaces refer to no significance,
‘Edf’ refer to estimated degrees of freedom.

The snowpack variation was mainly influenced by ET0 (deviance explained = 40.80%),
followed by RH (deviance explained = 39.90%) and SH (deviance explained = 24.90%)
in November at 400~600 m during 1960~2018 (Table 4). It was mainly influenced by
ET0 (deviance explained = 29.70%), followed by RH (deviance explained = 26.40%) and
wind (deviance explained = 14.60%) in December. It was mainly influenced by ET0
(deviance explained = 25.10%), followed by wind (deviance explained = 22.40%) and
SF (deviance explained = 16.20%) in January. It was mainly influenced by ET0 (de-
viance explained = 40.20%), followed by RH (deviance explained = 28.00%) and wind
(deviance explained = 25.60%) in February. It was mainly influenced by Tm (deviance
explained = 37.90%), followed by SH (deviance explained = 32.20%) and ET0 (deviance ex-
plained = 21.70%) in March. It was mainly influenced by RH (deviance explained = 49.60%),
followed by Tm (deviance explained = 46.90%) and ET0 (deviance explained = 33.30%)
in April.
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Table 4. The drivers of snowpack variability at 400~600 m in Changbai Mountain.

Duration Factors Edf F P R Deviance Explained

Nov.

W 1.00 1.26 0.27 0.00 2.51%
SF 1.00 1.74 0.19 0.02 3.19%

ET0 1.00 34.83 0.00 −0.38 40.80% ***
SH 2.57 4.61 0.01 −0.21 24.90% **
RH 1.00 35.73 <2e-16 0.39 39.90% ***
Tm 1.28 5.30 0.01 −0.12 16.80% *

Dec.

W 1.00 9.26 0.00 −0.13 14.60% **
SF 1.00 0.00 0.96 −0.02 0.01%

ET0 1.00 21.27 0.00 −0.24 29.70% ***
SH 1.00 2.97 0.09 −0.03 5.16% .
RH 1.00 17.53 0.00 0.24 26.40% ***
Tm 1.00 1.75 0.19 −0.01 3.27%

Jan.

W 1.00 15.44 0.00 −0.20 22.40% ***
SF 3.23 2.06 0.10 0.11 16.20% .

ET0 1.00 16.27 0.00 −0.21 25.10% ***
SH 1.00 5.92 0.02 −0.08 9.80% *
RH 1.00 6.51 0.01 0.09 11.40% *
Tm 1.66 2.35 0.11 −0.06 9.86%

Feb.

W 5.59 2.09 0.08 −0.13 25.60% .
SF 1.00 0.56 0.46 −0.01 1.12%

ET0 5.03 4.05 0.00 −0.29 40.20% **
SH 2.34 1.00 0.39 −0.03 7.48%
RH 2.95 4.24 0.01 0.23 28.00% **
Tm 1.00 7.62 0.01 −0.12 14.00% **

Mar.

W 2.53 0.65 0.55 −0.01 6.93%
SF 1.77 1.23 0.32 0.03 6.68%

ET0 1.00 11.52 0.00 −0.14 21.70% **
SH 7.64 2.65 0.02 −0.28 32.20% *
RH 2.08 3.01 0.05 0.09 20.30% *
Tm 7.86 2.42 0.03 −0.22 37.90% *

Apr.

W 1.65 0.93 0.38 −0.02 5.15%
SF 1.00 2.69 0.11 0.03 4.86%

ET0 1.00 27.87 0.00 −0.31 33.30% ***
SH 1.19 2.75 0.07 −0.07 8.11% .
RH 5.77 6.76 0.00 0.43 49.60% ***
Tm 1.95 16.60 0.00 −0.40 46.90% ***

Note: ‘***’ refer to p = 0, ‘**’ refer to p < 0.001, ‘*’ refer to p < 0.01, ‘.’ refer to p < 0.05, spaces refer to no significance,
‘Edf’ refer to estimated degrees of freedom.

The snowpack variation was mainly influenced by ET0 (deviance explained = 37.00%),
followed by RH (deviance explained = 31.50%) and SH (deviance explained = 22.00%) in
November at 600~2738 m during 1960~2018 (Table 5). It was mainly influenced by RH
(deviance explained = 11.70%), followed by ET0 (deviance explained = 11.20%) and SH
(deviance explained = 8.03%) in December. It was mainly influenced by Tm (deviance
explained = 8.31%), followed by wind (deviance explained = 7.87%) and RH (deviance
explained = 5.77%) in January. It was mainly influenced by SH (deviance explained = 7.77%),
followed by RH (deviance explained = 7.21%) and wind (deviance explained = 25.60%)
in February. It was mainly influenced by Tm (deviance explained = 26.10%), followed
by ET0 (deviance explained = 17.20%) and RH (deviance explained = 6.33%) in March. It
was mainly influenced by Tm (deviance explained = 61.40%), followed by ET0 (deviance
explained = 50.60%) and SF (deviance explained = 36.00%) in April.



Water 2021, 13, 3580 13 of 16

Table 5. The drivers of snowpack variability at 600~2738 m in Changbai Mountain.

Duration Factors Edf F P R Deviance Explained

Nov.

W 1.00 1.29 0.26 −0.01 2.40%
SF 1.00 0.23 0.64 −0.01 0.41%

ET0 1.00 28.89 0.00 −0.37 37.00% ***
SH 1.00 14.46 0.00 −0.20 22.00% ***
RH 1.00 24.02 0.00 0.31 31.50% ***
Tm 1.00 9.40 0.00 −0.13 15.10% **

Dec.

W 1.00 3.59 0.06 −0.05 6.08% .
SF 1.66 0.89 0.41 0.01 4.76%

ET0 2.00 2.00 0.13 −0.07 11.20%
SH 1.03 4.63 0.04 −0.06 8.03% *
RH 1.00 6.91 0.01 0.10 11.70% *
Tm 1.00 0.39 0.54 −0.01 0.68%

Jan.

W 1.00 4.61 0.04 −0.06 7.87% *
SF 1.00 1.64 0.21 0.01 2.85%

ET0 1.98 0.28 0.70 −0.00 4.05%
SH 1.00 1.46 0.23 −0.01 2.63%
RH 2.92 0.59 0.76 0.00 5.77%
Tm 2.88 0.81 0.46 −0.03 8.31% *

Feb.

W 1.00 1.23 0.27 −0.00 2.21%
SF 1.00 0.05 0.82 −0.02 0.09%

ET0 1.00 0.84 0.36 −0.00 1.54%
SH 1.00 4.51 0.04 −0.06 7.77% *
RH 2.27 0.81 0.41 0.02 7.21%
Tm 1.00 0.07 0.80 −0.02 0.12%

Mar.

W 1.00 0.58 0.45 −0.01 1.05%
SF 1.00 2.64 0.11 0.03 4.85%

ET0 1.00 10.58 0.00 −0.18 17.20% **
SH 1.00 0.00 0.96 −0.02 0.01%
RH 1.00 3.50 0.07 0.05 6.33%
Tm 4.52 3.07 0.02 −0.20 26.10% *

Apr.

W 3.14 1.34 0.26 −0.07 13.70%
SF 6.41 3.26 0.01 0.32 36.00% **

ET0 1.00 46.51 <2e−16 −0.46 50.60% ***
SH 1.90 5.27 0.01 −0.23 21.90% **
RH 1.00 18.66 0.00 0.28 31.40% ***
Tm 1.00 76.32 <2e-16 −0.62 61.40% ***

Note: ‘***’ refer to p = 0, ‘**’ refer to p < 0.001, ‘*’ refer to p < 0.01, ‘.’ refer to p < 0.05, spaces refer to no significance,
‘Edf’ refer to estimated degrees of freedom.

4. Discussion
4.1. Spatio-Temporal Changes of Snow in the Changbai Mountains

The Changbai Mountains are an important, functional ecological area in East Asia,
with a typical vertical belt spectrum, from temperate broad-leaved forest to tundra in
the east of Eurasia. Snow is one of the most important water sources for maintaining
ecological function of the region. It has been shown that snowmelt runoff can account
for 14.1% to 59.8% of the total runoff in watersheds in the source area of the Changbai
Mountains [19]. In recent decades, the snowpack of Changbai Mountain has changed
considerably with climate change. In general, the snow depth showed a trend of decreasing
and then increasing during 1961~2018; it was at a minimum value in the 1980s, which has
been proven by Li and Ke [20]. In terms of space, the area of snow cover with an annual
average of more than 70 mm has been expanding since the 1990s (Figure 3). Temporally,
snow depth showed a trend of increasing and then decreasing during 1961–2018. This
finding was consistent with the existing research results [21–23]. However, previous studies
have lacked the heterogeneity of snow depth variation at different altitudes. The most
significant increase in snow depth was observed at lower altitudes (−8~200 m), but the
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increased value was greater at higher altitudes than in other regions (600~2738 m) in
December, January and February (Figure 4) during 1961~2018. The duration of snow cover
also first increased and then decreased at different altitudes. The duration increased before
1980 and then decreased. The spring snowpack melted significantly faster in the 2010s
compared with that of the 1960s.

4.2. Climatic Drivers for Changes in Snow Depth

Changbai Mountains are a mountainous area with little human activity; thus, snow
depth is mainly influenced by climate change [22]. In recent decades, significant changes
in climate factors have occurred in the Changbai Mountains [24]. Wind speed has de-
creased year by year (Figure 7a), snowfall has increased (Figure 7b), ET has increased
(Figure 7c), SH has decreased (Figure 7d), RH has decreased (Figure 7e) and Tm has in-
creased (Figure 7f) at different altitudes over the past few decades. It has been found that
there is a negative relationship between snow depth and average temperature [20]. Another
study concluded that snowfall has a greater effect on snow depth than temperature [21].
We found that the dominant factors affecting snow depth variability were not consistent
across different months at different altitudes. The snowpack variation was mainly in-
fluenced by snowfall in November at −8~200 m during 1961~2018 (Table 1). However,
the dominant factor was ET0 from December to March of the next year, and RH in April
(Table 1). Variations in snow depth from 200 m to 400 m and 400 m to 600 m are mainly
influenced by ET0 and RH (Tables 2 and 3); the gradual increase in altitude temperature
has become an important factor affecting the variation in snow depth. As shown in Table 4,
the dominant factor affecting snow depth variability was Tm in December, March and
April at 600~2738 m. At this time, a significant negative correlation was observed between
snow depth and temperature.
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5. Conclusions

This study identified the trend in changes in the snowpack at different altitudes during
recent decades and their driving factors in a high-latitude water tower. Based on these
findings, the following conclusions can be drawn:

(1) Altitude gradient characteristics of the snow distribution were identified in the Chang-
bai Mountains. Snow depth was greater in the higher altitude areas than in the lower
elevation areas at different times of the year. Compared with other years, the area
with a snow over 70 mm deep increased significantly in the 2010s.

(2) The changing trend in snow depth is not consistent under each altitude gradient.
Increasing trends were observed at different altitudes from December to March of
the next year during 1960~2018. The most significant change was in April, which
presented a significant decreasing trend except for at 600–2378 m.

(3) The Changbai Mountains are a seasonal frozen soil area, and the snow cover duration
at different altitudes showed a trend of first increasing and then decreasing from 1960
to 2018. The date of maximum snow depth appeared to become more lagged as the
altitude increased. In addition, the spring snowpack melted significantly faster in the
2010s compared with that of the 1960s. Meanwhile, the change was different with
increasing altitudes.

(4) Snowpack variation in low-altitude regions is mainly influenced by ET and relative
humidity. However, the mean temperature gradually became an important factor,
affecting the snow depth variation with an increase in altitude.
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