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Abstract: Changes in the climate and landcover are the two most important factors that influence
terrestrial hydrological systems. Today, watershed-scale hydrological models are widely used to
estimate the individual impacts of changes in the climate and landcover on watershed hydrology.
The Minjiang river watershed is an ecologically and economically important, humid, subtropical
watershed, located in south-eastern China. Several studies are available on the impacts of recent
climate change on the watershed; however, no efforts have been made to separate the individual
contributions of climate and landcover changes. This study is an attempt to separate the individual
impacts of recent (1989–2018) climate and landcover changes on some of the important hydrological
components of the watershed, and highlight the most influential changes in climate parameters
and landcover classes. A calibrated soil and water assessment tool (SWAT) was employed for
the study. The outcomes revealed that, during the study period, water yield decreased by 6.76%,
while evapotranspiration, surface runoff and sediment yield increased by 1.08%, 24.11% and 33.85%
respectively. The relative contribution of climate change to landcover change for the decrease in the
water yield was 95%, while its contribution to the increases in evapotranspiration, surface runoff
and sediment yield was 56%, 77% and 51%, respectively. The changes in climate parameters that
were most likely responsible for changes in ET were increasing solar radiation and temperature and
decreasing wind speed, those for changes in the water yield were decreasing autumn precipitation and
increasing solar radiation and temperature, those for the increase in surface runoff were increasing
summer and one-day maximum precipitation, while those for the increasing sediment yield were
increasing winter and one-day maximum precipitation. Similarly, an increase in the croplands at
the expense of needle-leaved forests was the landcover change that was most likely responsible for
a decrease in the water yield and an increase in ET and sediment yield, while an increase in the
amount of urban land at the expense of broadleaved forests and wetlands was the landcover change
that was most likely responsible for increasing surface runoff. The findings of the study can provide
support for improving management and protection of the watershed in the context of landcover and
climate change.

Keywords: Minjiang river watershed; SWAT model; climate change; landcover change; hydrology;
soil erosion

1. Introduction

A watershed is a complex system that encompasses a variety of subsystems, each
with distinct vegetation–biogeochemical–hydrological interactions. Any systematic change
in its components produces direct as well as indirect impacts that propagate throughout
the system [1]. Climate and landcover are essential components in a watershed system.
In response to climate change, the hydrological cycle is expected to alter as increasing
temperatures accelerate evaporation [2]. Changes in the climate can cause chronic and
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periodic water shortages [3]. Climate change is reported to impact the quality, quantity
and availability of water. It can alter the flow regime and change nutrient and sediment
yield [4]. The rising temperatures that are associated with precipitation can trigger stress in
the water balance, resulting in wetter and drier rainy seasons, and increase the number and
intensity of extreme flashfloods and droughts [3]. Changes in the landcover can produce
impacts on the quality and quantity of water and surface runoff [5].

According to the Intergovernmental Panel on Climate Change [6], each of the last four
decades has been successively warmer than any decade that has preceded it, while, globally,
average precipitation over land has increased. According to the Food and Agriculture
Organization [7], global population growth, urbanization and increasing demand for
food are leading to large-scale landcover transformations. By the year 2050, to meet food
demand, agricultural production will have to increase by 60 percent from 2005/2007 levels.
Therefore, highlighting the consequences of recent changes in the climate and landcover
on watershed systems is vital for sustainable watershed management.

The Minjiang river watershed is a humid, subtropical, forest-dominated watershed,
and is one of the largest watersheds in China. It is an abundant water resource and plays
a great role in socio-economic development and provides opportunities for generating
hydroelectricity, navigation, irrigation, fishing, recreation and biodiversity conservation [8].
Frequent conversions of different forest covers into non-forest land occurred in the water-
shed, with non-forest classes gaining land from coniferous forest areas [9]. The occurrence
of flash floods has risen sharply since 1988 [10]. The watershed has been suffering from
large-scale environmental, social and economic damage due to flooding and soil erosion
since the 1990s. Flooding and water pollution in the watershed are thought by the local
population to be caused by the overlogging of natural forests and the discharge of un-
treated waste into the water bodies [8]. Research on the influence of climate change has
been conducted using river gauge data in the past [11]. However, understanding the effects
of climate change on hydrology requires a quantitative separation of the influencing factors,
including landcover, reservoir/dam management, etc.

To separate and quantify the individual impacts of changes in landcover and climate,
researchers can use spatially distributed hydrological models, such as the soil and water
assessment tool (SWAT). The SWAT is a watershed-scale, physically based, continuous-time
hydrologic and water quality model. A large body of literature on the applicability and
performance of the model in different watersheds of the world is available. Recently, many
researchers have employed the SWAT model to evaluate the individual impacts of changes
in landcover and climate on watersheds around the globe, for example, the authors of [12]
quantified the impacts of land-use changes on runoff and soil erosion using the SWAT
model on the Yanhe River Basin in the Loess Plateau, and found a reduction in river flow
and sediment load due to the conversion of croplands to forests. While using the SWAT
model, Lotz et al. [13] found that surface runoff and evapotranspiration (ET) were mainly
determined by landcover. The authors of [14] used the SWAT model to assess the effects of
landcover changes on the hydrology of the Andalien river of Chile, and found an increasing
trend in ET and surface flows with a significant decrease in percolation and lateral flow.
They reported that the exotic plantations are the reason for these trends. The authors of [15]
used the SWAT model on the Jinsha River Basin to study the response of the runoff to
climate and landcover changes, and reported that landcover changes had little effect on
the hydrological processes compared to climate change. The authors of [16] investigated
the impacts of landcover changes on the water balance of the Jhelum River Basin using
SWAT, and found that afforestation has reduced the water yield and surface runoff, while
enhanced ET and increased snow cover in some subbasins caused an increase in water
yield. The authors of [17] analyzed the impacts of landcover changes on surface runoff
and sediment yield in the upper Tapi River subbasin, India, using SWAT, and found that
landcover changes resulted in an increase in surface runoff, water yield, and sediment yield.
The authors of [18] assessed the impacts of climate and landcover changes on streamflow
in the Xinanjiang Basin, in east China, with SWAT, and found that the impacts of climate
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and land-use changes on monthly mean streamflow were sensitive to the impervious areas.
Besides SWAT, other hydrological models are also employed by various researchers for this
purpose, such as INVEST [19–21], HEC_HMS [22,23], and VIC [24], etc. However, no such
study has been conducted on the Minjiang river watershed. Therefore, this study aims to
employ the SWAT model to evaluate and quantify the influence of changes in landcover and
climate that have occurred during the past few decades on the hydrology of the Minjiang
river watershed, and further highlight the changes in climate parameters and landcover
classes which were most likely responsible for changing the watershed’s hydrology.

2. Materials and Methods
2.1. Minjiang River Watershed

The Minjiang river watershed is located between 116◦30′ and 119◦30′ E and 25◦20′ and
28◦25′ N, in the Fujian province of China (Figure 1). It covers an area of about 60,900 km2.
The elevation ranges from 0 to 2158 m, with a mean value of 528. The Minjiang river
watershed has a humid, subtropical climate, and is influenced by the east Asian monsoons.
The mean annual temperature ranges from 5−10 ◦C in January and 25−30 ◦C in July.
Abundant rainfall occurs between March and June. The soil type of the watershed is mainly
red soil, and the terrain is hilly and steep, meaning that it is prone to soil erosion and
landslides. More than 50% of the land is covered by coniferous forests.
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Figure 1. Location map of Minjiang river watershed.

2.2. SWAT Model Input Data

The input data used to construct the SWAT model database for the watershed are
given in Table 1, and discussed below:

(1) The digital elevation model (DEM) used in this study is from SRTM (30 m resolution).
Subbasin, river formation, and slope classification was performed using the DEM.

(2) The meteorological data used in this study is “China Meteorological Assimilation
Driving Datasets for the Soil and Water Assessment Tool” (CMADS) version L-V1,
downloaded from the website www.cmads.org, accessed on 5 July 2020. It is a reanal-

www.cmads.org
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ysis dataset, consisting of daily precipitation, maximum and minimum temperature,
wind speed, solar radiation and relative humidity. Data sources for the CMADS
series include 40,000 regional automatic stations under China’s national automatic
and business assessment centers [25–27].

(3) The soil map used in this study is the harmonized world soil database (HWSD)
from the Food and Agriculture Organization [7]. Most of the soil properties were
available in the database. Soil erodibility factor (USLE k) was calculated using the
soil erodibility equation (values ranging from 0.13–0.18). Bulk density (BD), available
water capacity (Sol AWC) and soil hydraulic conductivity were calculated using the
SPAW hydrology model.

(4) The landcover maps used in this study are satellite-based remote sensing data from the
European Space Agency’s climate change initiative (CCI-LC). This dataset describes
37 original landcover categories, classified based on the United Nations landcover
classification system. The spatial resolution of the CCI-LC is 300 m and the estimated
accuracy is 75.4% [28]. Recently, many studies have used the ESA CCI-LC for explor-
ing the landcover information worldwide on different scales [29–31]. The Minjiang
river watershed consists of nine landcover categories. Default parameter values of the
SWAT model database were used. The landcover classes and some of the important
parameter values, i.e., cover factor of the universal soil loss equation (c factor), leaf
area index (LAI) and leaf conductance (GSI), are given in Table 2.

(5) Thirty-eight reservoirs were included in the model. Most of the reservoirs were
operational before our study period but some reservoirs were built in the middle, e.g.,
the large Shuikou reservoir in Mingqin county became operational in 1993.

Table 1. SWAT model Input data, types and sources.

Data Type Source

DEM SRTM_30m USGS_earthexplorer.com (accessed on 5 July 2020)
Soil map HWSD FAO.org (accessed on 5 July 2020)

Landcover maps ESA-LC_300m European Space Agency (https://climate.copernicus.eu/ accessed on 5 July 2020)
Meteorological data Daily CMADS.org (CMADS. L, 1979–2018) accessed on 5 July 2020

Table 2. Landcover classes in the watershed and some of the vegetation parameters.

Landcover Categories Acronyms C Factor LAI GSI

Cropland CRL 0.2 3.5 0.005
Crop-woodland (cropland < 50%) CRW 0.003 4 0.004

Evergreen broadleaved forests FOB 0.001 5 0.002
Needle-leaved forests FON 0.001 5 0.002

Mixed forests FOM 0.001 5 0.002
Shrub-grassland SRB 0.003 2 0.002

Wetland WTL 0.001 5 0.002
Urban areas (medium density) URL - - -

Water bodies WTR - - -

2.3. SWAT Model Setup and Calibration

The SWAT model is GIS based with interfaces for ArcGIS and QGIS. Structurally, the
model divides a watershed into subbasins, with input values for each subbasin grouped
into climate, hydrologic response units (HRUs), main channel and ponds/reservoirs. The
HRUs are lumped land areas which are the product of a distinct combination of land use,
slope and soil type within the subbasin. We used the ArcGIS version of SWAT. Four raster
images of the years 1992, 2004, 2010 and 2018, with a spatial resolution of 300 m, were
used in this study (Table 2). Unique combinations of land use, soil and slope classes were
calculated for each land-use raster on a yearly basis (Table 3) using SWAT-LUT software [32].
The Minjiang river watershed was divided into 35 subbasins and 4100 HRUs.

USGS_earthexplorer.com
FAO.org
https://climate.copernicus.eu/
CMADS.org
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Table 3. Weight of the landcover maps when updating the HRUs using SWAT-LUT.

Year 1979 1993 1994 1995 1996 1997 1998 1999 2004 2005

Landcover 1992 2004 2004 2004 2004 2004 2004 2004 2004 2010
weight 1 0.08 0.17 0.25 0.33 0.42 0.5 0.58 1 0.08

The calibration process of the model consist of changing sensitive parameter values to
minimize the difference between the observed and simulated values for flow, sediments
and other modeled parameters [33]. The calibration and validation period was 1989–2018
with a warmup period of ten years (1979–1988). We used monthly observed streamflow
data for one location (FZ), and yearly data for four locations (YT, SC, SM, JN) (Figure 1).
Moreover, yearly sediment loading data for the abovementioned five stations within
the watershed were used to assess the model performance when simulating soil erosion
and sediment transport. The observed stream flow and sediment loading data were
provided by the Fujian department of water resources. Sequential uncertainty fitting
(SUFI-2) algorithm, which is part of the SWAT-CUP software [34], was used for sensitivity
analysis and calibration of the model. The SUFI-2 algorithm enables the sensitivity analysis,
calibration, validation and uncertainty analysis of SWAT simulations. The sensitivity
analysis of the SWAT input parameters can be carried out using either local or global
sensitivity. Local sensitivity analysis allows a single parameter to change while keeping the
other parameters constant. Global sensitivity analysis means changing all of the parameters
together. In SUFI-2, a multiple regression system regresses the Latin hypercube-generated
parameters against an objective function to determine the sensitivity of the parameters.
In this study, we used the global sensitivity analysis for calibration and two objective
functions for evaluating the performance, i.e., the coefficient of determination (R2) and
Nash–Sutcliffe efficiency [35].

2.4. Evaluating the Influence of Climate and Landcover Changes
2.4.1. Separating the Influence of Climate and Landcover Changes

To evaluate the influence of climate and landcover changes, we followed two steps. In
the first step, we separated the influence of changes in the climate and changes in landcover
by running the SWAT model with two different scenarios. In the first scenario, we used
the 1992 landcover map in the years 1992, 2004, 2010 and 2018. In the second scenario, we
used the landcover maps of 1992, 2004, 2010 and 2018 in their respective years using the
SWAT-LUT tool. The variation in the first scenario was caused by climate change, because
there was no landcover change, while that in second scenario was caused by climate and
landcover change combined. To isolate the influence of landcover change, we subtracted
the variation in the first scenario from the variation in the second. To calculate the variation,
we can use (1) trend analysis, or (2) divide the study period into two equal parts and obtain
the difference. Both approaches will lead us to the same results (Figure 2). We used the
second approach because of its simplicity.
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In the second step, we identified the most influential changes in the climate parameters
and landcover classes by correlating the variations in the hydrological parameters of the
subbasins with changes in the climate parameters and landcover classes (Figure 3). This
step is a comparison of the subbasins regarding, for example, the degree to which water
yield increased in the watershed in response to landcover change. Once the change is
confirmed, we need to identify the landcover change that is responsible for this increase.
For this purpose, we can compare the landcover changes of the two subbasins with the
highest increase and the lowest increase. This way we can identify the landcover change
that is associated with water yield in the watershed.
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2.4.2. Hydrological Parameters

We selected four hydrological parameters to be simulated by the SWAT model: evapo-
transpiration (ET), water yield, surface runoff and sediment yield. ET is the loss of water
to the atmosphere. Three different methods for the estimation of ET are available in the
SWAT model. We selected the Penman–Monteith method, which is widely used, because it
considers the effects of precipitation, wind speed, temperature, solar radiation and relative
humidity. Water yield is the water leaving the watershed in the form of surface, lateral
and groundwater flow. Surface runoff or overland flow is the water flowing over soil,
vegetation or other ground cover instead of infiltrating the ground. The SWAT model uses
the SCS curve number method for surface runoff estimation. Sediment yield refers to the
amount of sediment that is exported along with flowing water by a watershed over a given
period. The SWAT model uses the modified universal soil loss equation (MUSLE) for the
estimation of soil erosion. A detailed description of the methods and equations used in the
SWAT model is given in the SWAT theoretical documentation [36].

2.4.3. Climate Parameters and Landcover Classes

The primary motivation of the study was to determine the causes of changes in the hy-
drological parameters; hence, our intention was to first analyze changes in the hydrological
parameters and then attribute them to changes in the climate and landcover as discussed
in Section 2.4.1. The method used to analyze the changes in the climate parameters and
landcover classes was the same as that used to analyze the changes in the hydrological pa-
rameters, i.e., the study period was divided into two equal parts, and to analyze changes in
the landcover, the study period was divided into two landcover maps. Moreover, a spatial
correlation analysis was carried out to highlight the relationships between the differences
between the two periods relating to the hydrological parameters, the differences between
the two periods relating to the climate parameters and the differences in the landcover
classes of the two landcover maps. The climate parameters that were considered in this
study were average temperature, solar radiation, wind speed, relative humidity, one-day
maximum precipitation and seasonal precipitation, i.e., spring (March–April), summer
(May–August), autumn (September–October) and winter (November–February). Similarly,
all the landcover classes were considered except water bodies (Table 2). Water bodies were
excluded because of no change.
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3. Results and Discussion
3.1. SWAT Model Calibration and Performance

The river flow data from all of the stations mostly matched using the default param-
eters, therefore a validation step was not needed. The performance of the model when
simulating the sediment loading was affected by the reservoirs, because these artificially
managed structures disturb the natural stream flow and thus limit the amount of sediment
that is transported. We used the observed data for the years 1989–2009 for calibration, and
the years 2011–2018 for validation. We selected the sensitive parameters using the SUFI2
algorithm from the SWAT-CUP software to find the best fitted values. The parameter de-
scriptions and fitted values are given in Table 4. All of the parameters belonged to the main
channel except two, i.e., ADJ_PKR and CH_NI, which belonged to the tributary channels.
The most sensitive parameters were the normal concentration of sediments (RES_NSED)
in the reservoir and the peak rate factor (PRF) of the main channel. RES_NSED ranged
from 50 (FZ) to 142 mg/L in YT. The difference among the stations may be related to
the capacity of the reservoir. The authors of [37] set the value at 15 mg/L of RES_NSED
to calibrate sediment concentration in the upper Danube basin. The peak rate factor of
the main channel ranged from 0.55 in FZ to 1.16 in SC. Since this parameter is mostly
influenced by the reservoirs that regulate the high flows, the variation among the stations
can be attributed to the size of the reservoir and the amount of the river discharge. The
third most sensitive parameter was CH_N2, which ranged from 0.015 in YT to 0.036 in SC.
This parameter denotes the roughness of the main channel. Since the river flows through
dense forests and vegetation in the uplands of SC, this could be the cause of the variation
among the stations.

Table 4. Calibrated (sensitive) parameter descriptions and fitted values.

Parameter Description
Fitted Value

YT FZ SM SC JN

Peak rate adjustment factor (tributary channels) 0.56 0.56 0.56 0.56 0.56
Maximum reentrainable quantity of sediments 0.0002 0.0001 0.0002 0.0001 0.0001

Exponent for sediment routing calculation 1.07 1.5 1.5 1.47 1.28
Peak rate adjustment factor (main channel) 0.78 0.55 1.09 1.16 0.67

Manning’s “n” value (main channel) 0.015 0.018 0.022 0.036 0.021
Erodibility factor (main channel) 0.68 0 0.29 0.38 0.44

Cover factor (main channel) 0.39 0 0.25 0.29 0.31
Manning’s “n” value (tributary channels) 0.07 0.1 0.08 0.11 0.09

Normal sediments concentration (reservoirs) 142 50 92 195 70
Hydraulic conductivity (reservoirs) 0.33 0.33 0.2 0.28 0.37

After calibration, we found that there was good agreement between the observed
and simulated sediment loading values during the calibration and validation in all of the
stations. The highest agreement between the observed and simulated sediment loading
values was in JN with an NSE value of 0.71 for calibration and 0.82 for validation. The
lowest agreement was found in YT with an NSE value of 0.6 in calibration and 0.7 for
validation (Table 5). The differences in the levels of agreement among the stations can be
caused by the number and distance of the reservoirs from the monitoring station, because
reservoirs are managed artificially, hence it is not possible for the model to simulate. In
addition, the agreement among the flow data influences the sediment calibration. The
year 2010 was skipped from calibration, because the model highly underestimated the
sediment loading values in all of the stations except YT. It is possible that the watershed
experienced large-scale landslides in the watershed in 2010, and the SWAT model cannot
simulate landslides and mudflows, as mentioned by other researchers [37,38].
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Table 5. Calibration results.

Station
River Flow Sediment Loading

R2 NSE R2 NSE

Cal. Val. Cal. Val.
YT 0.8 0.7 0.6 0.8 0.6 0.7
SM 0.9 0.9 0.8 0.9 0.6 0.8
SC 0.9 0.9 0.7 0.9 0.6 0.8
JN 0.8 0.8 0.7 0.8 0.6 0.7
FZ 0.9 0.9 0.8 0.9 0.7 0.8

Uncertainties in hydrological simulations are widely reported [39–41], especially as
they affect the calibration of the model, which sometimes becomes difficult when using
a single value for the sensitive parameters. Therefore, experts recommend using a range
of parameter values rather than a single value. However, in our case, the streamflow
data matched without calibration, and during the sediment calibration, the most sensitive
parameters were mostly related to the main channel and the reservoirs. Additionally,
the parameters which we are intended to study for the impacts of climate and landcover
change are all subbasin parameters, and hence they are not affected by these two kinds of
parameters, i.e., the main channel and reservoirs. Moreover, reporting uncertainties in the
calibration parameters becomes very important when observed data from a single station
is used for the calibration of large watersheds because different parts of the watershed
may have differences in the input parameters. However, in our study, we used observed
data from five different locations across the watershed, and a separate calibration process
was carried out for each location. Thus, we obtained five different parameter values for
most of the calibrated parameters, which reveals the uncertainty in the parameters within
the watershed.

3.2. The Impacts of Climate and Landcover Change

On average, the watershed receives about 1688 mm precipitation every year, and the
water balance is mainly dominated by water yield (60%). Approximately 40% of the pre-
cipitation water is evaporated back into the atmosphere in the form of evapotranspiration
(ET). Changes in the climate and landcover (during 1989–2018) caused an increase in ET
and a decrease in water yield. The watershed experienced a 1.08% increase in ET, of which
0.61% and 0.47% was due to changes in climate and landcover, respectively. Water yield
decreased by −6.76%, of which −6.41% was due to climate change and −0.35% was due to
landcover change. The influence of landcover changes on ET and water yield was smaller
than that of climate change in the watershed (Figure 4).
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Surface runoff or overland flow refers to the water flowing over soil, vegetation or
other ground cover instead of infiltrating the ground. The Minjiang river watershed is
highly forested, and thus has a high infiltration rate. On average, about 200 mm (20%) of
the total water yield (1000 mm) flows into the river channels in the form of surface runoff,
while the remaining 80% of the water yield is in the form of lateral and groundwater flow
through infiltration. The watershed yields about 12.5 t/ha of sediments per year. Surface
runoff and sediment yield increased during the study period. Surface runoff increased
by 24.11%, of which 18.65% was due to changes in the climate, while 5.46% was due to
landcover change. Sediment yield increased by 33.85%, of which 17.42% was due to climate
change and 16.43% was due to landcover change (Figure 5).
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3.2.1. Contribution of Different Climate Parameters

Figure 6 reveals the spatial variation in the influence of climate change on the hy-
drological parameters. Generally, the southern side of the watershed experienced greater
impact than the northern side. ET and water yield showed opposite trends to each other,
i.e., water yield largely increased in those subbasins where ET decreased. Similarly, surface
runoff largely increased in those subbasins where water yield increased, however surface
runoff increased in all of the subbasins, unlike water yield. Sediment yield showed a
different pattern to the other hydrological parameters (Figure 6). The variation in the
spatial patterns of different hydrological parameters indicates that they were influenced
differently by changes in the climate parameters, or that the influencing climate parameters
for different hydrological parameters were different.

Average precipitation in summer and winter increased by 0.47% and 137%, while in
spring and autumn it decreased by 10.5% and 11.25% respectively. One-day maximum
precipitation increased by 6.31%. Temperature and solar radiation increased by 0.31◦C and
1.68 MJ/m2, respectively. Wind speed and relative humidity decreased by 0.21 m/s and
0.25 fr, respectively (Figure 7).

A correlation analysis of the climate and hydrological parameters revealed that ET
was positively correlated to all of the climate parameters, with the highest correlation to
wind speed, solar radiation and temperature (Figure 8). It reveals that solar radiation and
temperature were the climate parameters that were most likely responsible for increasing ET
in the watershed because wind speed decreased during the study period and the literature
report that wind increases ET because it enhances the vapor pressure deficit by removing
the humid air that accumulates around leaves through ventilation and bending [42,43].
Similarly, with an increase in solar radiation and temperature, the rate of transpiration
increases, because vegetation reduces the amount of accepted radiation through emission,
heat convection and transpiration [44]. This indicates that increases in solar radiation and
temperature increased ET in those areas of the watershed where wind speed decreased
comparatively less or increased, and thus wind speed acted as a reducing factor for ET,
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while temperature and solar radiation acted as enhancing factors in the watershed. On the
other hand, a decrease in water yield was positively correlated to summer and autumn
precipitation and negatively correlated to wind speed and solar radiation, which indicates
that water yield decreased due to a decrease in autumn precipitation and an increase in ET.
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Figure 7. Changes in different climate parameters in the watershed during the study period.
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Similarly, variation in the influence of climate change on surface runoff was positively
correlated to summer, autumn and maximum precipitation, while sediment yield was
significantly correlated to winter, autumn and maximum precipitation (Figure 8). It indi-
cates that surface runoff increased due to increases in summer precipitation because the
watershed receives more precipitation in summer than the other seasons, while sediment
yield increased due to the increase in winter precipitation because the temperature in
winter is not suitable for plant growth and bare land is prone to soil erosion. The high
correlation of autumn and maximum precipitation to both of the hydrological parameters
indicates that they were also influenced by increase in the intensity of heavy precipitation,
which mostly occurs in the watershed during the autumn season.

3.2.2. Contribution of Different Landcover Classes

The influence of landcover changes on ET and water yield was very small in all of
the subbasins and the patterns of both were the opposite of each other, i.e., water yield
decreased in subbasins where ET increased. There was a clear difference in the patterns
of changes for surface runoff and sediment yield, and both were different from ET and
water yield (Figure 9). This indicates that these hydrological parameters were influenced
by different landcover changes.
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Among the landcover classes, broadleaved and needle-leaved evergreen forests and
wetland decreased by 292, 5891 and 16 km2, respectively, while cropland, crop-woodland
(mixed vegetation), mixed forests, and urban land increased by 800, 3338, 1434 and 658 km2,
respectively (Figure 10).

Variation in the influence of landcover changes on ET was positively correlated to crop-
land and crop-woodland, while negatively correlated to needle-leaved forest (Figure 11).
The parameters that can largely influence ET of the different vegetation classes are leaf
area index and maximum stomatal conductance. Leaf area index (LAI) was higher in the
forest classes than cropland, but maximum stomatal conductance (GSI) was higher for
croplands. It indicates that the difference in leaf conductance between the forests and
croplands caused an increase in ET, leading to a decrease in the water yield. Maximum leaf
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conductance for broadleaved herbaceous crops is 500, for cereals is 450 and for coniferous
forests is 234 mmol m−2 s−1 [45]. Our study is in agreement with [46], which reported
an increase in ET due to a decrease in forest cover in a humid, subtropical watershed.
In contrast to our results, Verstraeten et al. [47] reported more transpiration from forest
than agricultural land in a temperate climate. Abundant precipitation keeps the soil water
suitable for crop growth in the Minjiang river watershed. It means that a watershed with
low precipitation will experience less ET from croplands than forests, because forest trees
have better accessibility to the groundwater than crops.
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Variation in the influence of landcover changes on surface runoff was positively
correlated to urban land, while negatively correlated to wetland and broadleaved forests
(Figure 11). It indicates that urban expansion in the watershed was mainly in the areas
covered by wetlands and broadleaved forests. Increases in urban land at the cost of forest
and wetland leads to increases in surface runoff because of the increase in impervious
areas. Sediment yield was positively correlated to the presence of crop-woodland, while
negatively correlated to the presence of needle-leaved and broadleaved forests. It should
be noted that ‘crop-woodland’ is a mosaic vegetation category, containing forests and
croplands. The cropland in this category has less than a 50% share [28], but it has a large
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influence on sediment yield compared to pure cropland. The reason is that the increase
in the crop-woodland category was about four times larger than that for croplands. Thus,
it can be concluded that the increase in the amount of cropland (crop-woodland and
pure cropland) in the watershed increased sediment yield. The parameter which largely
influenced sediment yield between forest and cropland is the crop factor of universal soil
loss equation (the c factor). A higher c factor for cropland is due to agricultural activities,
such as tillage, the removal of natural vegetation, and removing the residues of vegetation.
Moreover, agricultural soil has less infiltration capacity than forests because it has less
organic matter, a smaller number of microorganisms, a smaller number of roots, barren
land in the non-growing season, etc. [48].

3.2.3. Implications for Watershed Management

On a global scale, about 60% of the land precipitation water is evaporated back to
the atmosphere [49]. An increase in ET as a result of changes in the climate can cause
chronic and periodic water shortage [3]. The authors of [50] reported an increase in the
occurrence probability of extreme drought events in the Fujian province. The authors
of [51] reported extreme drought conditions across south China during the late spring in
2018 with record-breaking hot days in May. Other studies also reported drying trends in
late spring in south China [52,53].

The Minjiang river watershed receives abundant precipitation, and the water balance
is mainly dominated by water yield. Thus, a small decrease in average water yield may
not be a good indicator from the perspective of watershed management. However, during
extreme dry years, e.g., 2003, 2004, 2009, 2011 and 2018, ET dominated the water balance.
During 2018, the proportion of ET was the highest, followed by 2011 and 2007 (Figure 12).
This indicates that periodic water shortages (hydrological droughts) in the watershed
intensified due to decreasing precipitation and increasing ET, which occurred mainly due
to changes in the climate.
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Figure 12. Annual water balance components with linear trend in ET, water yield and extreme low
water yield in the watershed.

Extreme weather events pose a serious threat to ecosystems and human communities
worldwide, with more life and economic losses from flash floods than any other climate
change related problems. Flash floods that are associated with storm runoff are predicted
to become more intense and frequent globally due to human activities and global warm-
ing [54]. The occurrence of flash floods in the province has risen sharply since 1988 [10].
Fujian is the province that has experienced the most severe flash flood disasters in China;
about 84% of the population are directly threatened by flash floods [55]. An increase
in surface runoff in the watershed indicates that the damage risk during high intensity
precipitation events in the watershed has increased. Therefore, adaptation measures should
be devised for storm water management, especially in urban areas and floodplains.

Soil erosion is a severe challenge for the productivity of land throughout the world [56].
About 75 billion tons of soil is eroded from terrestrial ecosystems across the world each
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year [57]. Heavy metals, nonpoint nutrient contaminants and chemicals are transported
with soil particles due to erosion, and this causes water eutrophication and the disturbance
of aquatic ecosystems [58]. In addition to degrading soil and water quality, sediments
reduce the storage capacity and disturb the operations of hydroelectric power projects [59].
In the developing world, a growing population and increasing demands for food put
an ever-increasing pressure on agricultural lands, which is leading to land exploitation
and soil erosion [60]. Humid, subtropical zones, particularly hilly areas, are commonly
overexploited for agricultural activities, which can lead to severe soil erosion during heavy
precipitation events due to the steeply sloping land in these areas [61]. Soil erosion in
the Minjiang river watershed increased due to increases in the amount of cropland and
high-intensity precipitation, especially during the winter season. The reforestation of
evergreen species, along with other mitigation measures, should be promoted especially
on the steep slope areas to decrease soil and water degradation.

4. Conclusions

To investigate the impacts of recent (1989–2018) climate and landcover changes on
the hydrological components of the Minjiang river watershed, this study used the SWAT
model to quantitively separate the individual contribution of climate variability and land-
cover change. The performance of the model in simulating the streamflow was assessed
using monthly observed streamflow data from one location, and yearly data from four
locations. Moreover, yearly sediment loading data from five stations within the watershed
were used to assess the model’s performance when simulating soil erosion and sediment
transportation. Overall, the performance of the model was within the acceptable range
according to the statistical criteria described in previous studies, i.e., the R2 and NSE values
for streamflow ranged from 0.8–0.9 and 0.7–0.9, respectively, and for sediment loadings
ranged from 0.6–0.8 and 0.6–0.7 during calibration and 0.7–0.9 and 0.7–0.9 during valida-
tion, respectively. The performance was higher when simulating streamflow than sediment
loadings, which were largely influenced by the reservoirs.

To evaluate the impacts of climate and landcover changes, a scenario method was
employed, i.e., one scenario for climate and landcover each. Then, the study period,
i.e., 1989–2018, was divided into two equal periods. Afterwards, a comparison between
the two periods revealed that water yield decreased by 6.76%, while evapotranspiration,
surface runoff and sediment yield increased by 1.08%, 24.11% and 33.85%, respectively.
The contribution of climate change relative to landcover change in decreasing the water
yield was 95%, and in increasing evapotranspiration, surface runoff and sediment yield
was 56%, 77% and 51%, respectively.

To develop a better understanding of the relationship between climate and landcover
changes and the hydrology of the area, a correlation analysis was carried out to identify the
most influential changes for different climate parameters and landcover classes. It revealed
that the changes in climate parameters that were most likely responsible for changes in
ET were increasing solar radiation and temperature and decreasing wind speed, those for
changes in water yield were decreasing autumn precipitation and increasing solar radiation
and temperature, those for increases in surface runoff were increasing summer and one-day
maximum precipitation, while those for increasing sediment yield were increasing winter
and one-day maximum precipitation. Similarly, increases in amount of cropland at the
expense of needle-leaved forests was the landcover change that was most likely responsible
for decreases in the water yield, and increases in ET and sediment yield, while an increase
in the amount of urban land at the expense of broadleaved forests and wetlands was the
landcover change that was most likely responsible for increasing surface runoff.

The Minjiang river watershed is an important water resource, and it is facing serious
problems in the form of frequent floods and soil erosion. This study revealed that these
problems, along with periodic extreme dry events, intensified during the past few decades,
largely due to changes in the climate. Therefore, effective management strategies should be
adopted in these areas, including storm water management, urban runoff, landslide protec-
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tion, drought management and soil protection, especially in agricultural lands. Moreover,
further studies should be conducted to predict the impacts of future climate change.
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