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Abstract: Large scale isolation—in gram quantities—of dissolved organic matter (DOM) from natural
waters is necessary for detailed investigation of its role in chemical and microbial processes driving
carbon cycling under conditions of global climate change. The best candidate for a use in these
large-scale experiments is a bulk sorbent Bondesil PPL, which has the same modification as the
widely used Bond Elut PPL sorbent. There have been no studies so far reported on interchangeability
of these sorbents with regard to DOM isolation. This work was devoted to comparative studies on
sorption efficiency and molecular selectivity of these two sorbents—Bond Elut PPL and Bondesil PPL
with regard to DOM components. Fulvic acids (FA) from peat water leachate were used as a model
DOM. Laboratory solid phase extraction (SPE) setup was used for monitoring sorption recovery
and extraction yield. It included three parallel experiments on pre-packed Bond Elut PPL cartridges
(500 mg/3 mL) and three self-packed Bondesil PPL cartridges (500 mg/3 mL). Fourier transform
ion cyclotron resonance mass spectrometry (FT ICR MS) and 13C/1H nuclear magnetic resonance
(NMR) spectroscopy were used for determination of molecular and structural group compositions
of the FA isolates obtained with a use of two different sorbents. The results of this study allowed a
conclusion on interchangeability of the two sorbents used in this study for the purposes of DOM
isolation from natural waters. This conclusion was backed up by similarity of sorption behavior of
the peat FA components on both sorbents and by high similarity of molecular compositions and
carbon distribution among the main structural groups.

Keywords: dissolved organic matter (DOM); fulvic acids; solid phase extraction; large scale isolation;
Bond Elut PPL; Bondesil PPL; FT ICR MS; NMR; molecular composition; sorption selectivity

1. Introduction

Dissolved organic matter (DOM) significantly influences photoinduced, chemical,
microbial, and geochemical processes, which take place in natural waters. These processes
include complexation with heavy metals and microelements, electron transfers, solubi-
lization of pesticides and hydrocarbons, electron shuttling within microbial communities,
and others [1–3]. DOM represents a global reservoir of organic carbon. Information on
molecular composition of DOM is indispensable for understanding its role in chemical and
microbial processes driving carbon cycling under conditions of global climate change [4,5].
Large scale isolation—in gram quantities—of dissolved organic matter (DOM) from sea wa-
ters is necessary for detailed investigation of relationships between molecular compositions
and functions of DOM in marine environments. This step is necessary due to extremely
low content of dissolved organic carbon (DOC) in the sea water varying from 0.1 to 5 g/L
and high content of salts [6].
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There are several methods of DOM isolation from aquatic systems including sorption
onto Amberlite resins (e.g., XAD-8, XAD-4) recommended by International Humic Sub-
stances Society (IHSS) as a standard procedure [7–9], reverse osmosis/electrodialysis [10,11],
and solid phase extraction (SPE) using prepacked cartridges [11–14]. Currently, the most
widely accepted method of DOM isolation is SPE [15]. Its major advantage over the resin
extraction is a use of methanol for elution of the sorbed DOM, which enables for skip-
ping desalting of the DOM extract—obligatory step in XAD-resin isolation protocol [7].
The best efficiency of SPE cartridges was achieved for Bond Elut PPL and reached up to
60–70% [12,16], which is higher than the corresponding values for XAD-8 resin (up to
40–50%) [9]. The Bond Elut PPL represents a modified co-polymer of polystyrene and
divinylbenzene, which was created for sorption of phenols, and performs particularly well
under conditions of high content of salts typical of marine waters [6,12]. Application of
Bond Elut PPL cartridges for isolation of the Suwannee River DOM gave DOC recovery
results of 89% [16]. Comparison of three types of sorbents (C-18, PPL, and HLB) was
reported for DOM and lignin-phenols [17]. It showed that DOC recovery was the best for
PPL (60% for rivers and 47% for coastal DOM). Rapid SPE technique developed for DOM
isolation showed the maximum DOC recovery of 78% [13].

Along with the clear advantages, a use of the prepacked cartridges (e.g., Bond Elut
PPL) has substantial limitations for the DOM isolation due to limited sorption capacity.
This is because the largest prepacked cartridges contain only 5 g of sorbent per 60 mL tube
(Bond Elut PPL MegaPack, Agilent Technologies, USA). At the same time, for large scale
filtration aimed to isolate gram quantities of DOM, much bigger amounts of sorbent are
needed. The regular approach for solving this problem is to use bulk sorbent for packing
custom-size column or cartridges. However, Agilent Technologies does not provide Bond
Elut PPL as a bulk sorbent. Instead, the company’s catalogue offers Bondesil PPL sorbent.
There is no information provided what kind of polymeric base has this sorbent. The
safety data sheet only reports that it is 100% polymeric. The producer catalogue provides
the info on the bead size of 125 µm, the pore size of 150 Å, specific area of 600 m2·g−1.
The large surface area promises good sorption characteristics, whereas large pore size is
preferential for high desorption recovery. Still, there are no reports available on either
performance assessment of Bondesil PPL versus Bond Elut PPL with regard to isolation
of DOM, or on the comparison of the quality of the SPE-DOM isolated with a use of
those two sorbents. The latter problem is of extreme importance due to complexity of
molecular composition of DOM, which is widely used as an indicator and predictor of the
global environmental processes, e.g., inflow of terrestrial DOC into marine environments,
mapping the origin of river plumes. In this case a change in molecular composition of the
DOM isolate, which was brought about by a purely methodical bias (molecular selectivity
of the new sorbent) can lead to erroneous conclusions and interpretations with regard to
the course of environmental processes. The existence of molecular selectivity is numerously
reported [17,18]. Our previous studies have shown [18] that a use of Bond ELut PPL
cartridges versus Amberlite XAD-8 resin gave very different samples of DOM from the
same water: the former were enriched with aliphatic components, whereas the latter were
rich in aromatic structures. This is why it is very important to exclude methodological bias
from interpretation of geochemical and environmental processes which are based on the
molecular composition of NOM.

The aim of this work was to assess sorption properties of Bondesil PPL with regard to
DOM, to compare extraction performance of self-packed Bondesil PPL cartridges versus
prepacked Bond Elut PPL cartridges, and to compare molecular composition and structural
characteristics of the obtained isolates using Fourier Transform Ion Cyclotron Resonance
Mass Spectrometry (FT ICR MS) and NMR spectroscopy. FT ICR MS technique has been
proven extremely useful for characterization of specific molecular features of DOM from
different sources [19–24]. Another powerful technique for structural characterization of HS
and DOM is NMR spectroscopy [25–28], and particular advantages were achieved with
a combined use of FT ICR MS and NMR analyses [studies of DOM] a combined use of
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FT ICR MS and NMR spectroscopy [29–32]. This motivated us for a use of both FT ICR
MS and NMR techniques for achieving the unambiguous results on characterization of
potential molecular selectivity of the SPE sorbents used in this study.

2. Materials and Methods
2.1. Materials

Commercially available sample of fulvic acids (FA) under the trade name “FulvAgra”
was provided by Humintech Ltd. (Grevenbroich, Germany). The source of this commercial
FA is water leachate of underground peat deposit. It was used without further purification.
High grade purity HCl (Chimmed, Russia) was used for acidification. High-purity deion-
ized water was prepared from feed distilled water using a Milli-Q Simplicity 185 water
purifying system (Merck, Darmstadt, Germany). HPLC grade methanol (JT Baker, Avantor,
Radnor, PA, USA) was used for elution of the sorbed FA from the cartridges. Hypergrade
methanol (for LC-MS LiChrosolv, Merck, Darmstadt, Germany) was used for DOM elution
and samples dilution for FT ICR MS analysis. The SPE cartridges were Bond Elut PPL
(500 mg per 3 mL) (Agilent Technologies, Waldbronn, Germany). The bulk sorbent was
Bondesil PPL (Agilent Technologies, Waldbronn, Germany). The empty cartridges (3 mL
tubes) were purchased from Agilent Technologies, Waldbronn, Germany).

2.2. TOC Measurements

Concentrations of the initial FA solutions and permeates were determined according
to [33] using a high temperature combustion total organic carbon analyzer (TOC-L CSN,
Shimadzu, Japan). For this purpose, aliquotic parts of permeates and eluates (500 µL
and 100 µL, respectively) were evaporated and redissolved in 1 mL of MiliQ water for
analysis. After every 5 DOC measurements, the measurements of a blank sample with
MiliQ water and a standard solution of potassium phthalate were performed. The data
were blank corrected and standard deviations between replicate sample injections (n = 3)
were calculated.

2.3. SPE Extraction Protocol

The SPE extraction was performed with a use of a vacuum manifold (Phenomenex,
Torrance, CA, USA) equipped with a vacuum pump Portlab N86KTE 18 (Knauer, Berlin,
Germany). Six volumes of feed FA solution (6 × 2 L) were prepared at a concentration of
50 mg/L by dissolving a weight of dry FA sample (0.1 g) in 2 L of Milli-Q water. Prior to
extraction, the FA solutions were acidified until pH 2 by using 20% HCl and degassed using
vacuum pump. Three SPE cartridges were packed with a 0.5 g weight of Bondesil PPL
sorbent each by placing a weight into a 3 mL empty SPE tube. Three prepacked Bond Elut
PPL cartridges were used for extraction of FA. The prepared cartridges were used for three
parallel extraction experiments which included a use of one prepacked cartridge Bond Elut
PPL and one cartridge self-packed with Bondesil PPL. The two cartridges were mounted
into a vacuum manifold equipped with a vacuum pump. The extraction protocol followed
the method described by Dittmar et al. [12]. It included preconditioning of the SPE sorbent
with a use of one cartridge volume of MeOH followed by two volumes of water acidified
to pH 2. A 2 L sample of FA was discharged through each preconditioned cartridge by
500 mL portions at the rate of 15–20 mL/min using a vacuum pump. The solution at the
exit of cartridge was collected into the glass vessel for absorption measurements, which
is necessary for sorption efficiency determination. The measurements were made after
passage of each 500 mL portion. After discharge of all four 500 mL volumes of the FA
solution, the loaded SPE cartridge was desalted by passing two cartridge volumes of
acidified water at pH 2 and dried thoroughly with air flow. DOM elution was conducted
with a use of 8 mL of methanol. The DOM eluates in methanol were rotor-evaporated,
redissolved in Milli-Q water and lyophilized using a freeze drier Scientz-18ND Top Press
multi-manifolds (Scientz, Ningbo, Zhejiang, China). The round-bottom glass flasks were
used for lyophilization. They were combusted prior to use for 4 h at 450 ◦C. The dry
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samples were transferred into a glass screwed vial and kept in refrigerator at 4 ◦C in
the dark.

2.4. Determination of Sorption and Extraction Efficiencies for DOM Isolation

The sorption efficiency of both sorbents was estimated using UV-Vis measurements
(the absorbance at 254 nm) of FA solutions before and after they passed through the
sorbents. The concentration of FA was calculated using calibration curve plotted from the
values of optical density (OD) measured at 254 nm at FA concentrations of 1, 5, 10, 20, 25,
50 mg/L at pH 2. The calibration solutions were prepared by appropriate dilutions of the
FA stock solution of 100 mg/L (0.01 g of FA per 100 mL of acidified water at pH 2). The
equation of calibration curve was linear with a slope of 0.0137 L/mg FA. The amount of the
sorbed FA was calculated as a difference between the initial and exited concentrations of the
FA solutions multiplied with a 2 L volume of discharged FA. It was divided with a weight
of the dissolved FA (0.1 g) and expressed in percentage using the following equation:

R =
DOCext

DOCinit
× 100%, (1)

where R is the sorption recovery, DOCext is a weight of the FA extracted by the sorbent
and DOCinit stands for the weight of the discharged FA. The elution of DOM from the
loaded cartridge was conducted after desalting and thorough drying of the cartridge. The
extraction efficiency was calculated as a ratio of the eluted to the discharged mass of FA.
The eluted mass was determined gravimetrically. The discharged mass was calculated
from initial concentration of the FA solution and its discharged volume.

2.5. UV-Vis Measurements

UV-Vis measurements were carried out using a Carry 400 Probe spectrophotometer
(Varian, Palo Alta, CA, USA) in the range from 200 to 500 nm in a 1 cm quartz cell. Specific
ultraviolet absorbance (SUVA254) was calculated as a ratio of the OD value at 254 nm
to a concentration of total organic carbon [17,18]. All measurements were conducted
in triplicate.

2.6. NMR Analysis

Quantitative 1H and 13C solution state NMR spectra were acquired using Avance-400
spectrometer (Bruker BioSpin, Ettlingen, Germany) operating at 400 MHz proton frequency
on the samples dissolved in 99.9% D2O at a concentration of 45 mg/mL. The conditions
for quantitative measurements of carbon distribution were set as described in [34,35].
To exclude the Nuclear Overhauser effect while recording 13C NMR spectra, the pulse
technique INVGATE was used. For complete carbon nuclei relaxation, pulse delay for 13C
NMR spectra recording was set to 8 s, the number of scans averaged was 4500. All NMR
spectra were acquired after centrifugation using a 5-mm broadband probe.

2.7. FT ICR MS Analysis and Data Treatment

Ultrahigh-resolution mass spectra were acquired on a Bruker solariX 15 T FT ICR
mass spectrometer (Bruker Daltonics, Bremen, Germany) equipped with a 15 Tesla super-
conducting magnet and an Apollo II source located at the user facilities of the Zelinski
Institute of Organic Chemistry of RAS. The acquisition conditions applied in this study
followed those described in [31]. The samples were injected with a constant flow rate of
120µL/h, nebulizer gas pressure of 2.2 bar, and drying gas pressure of 4 bar at 200 ◦C.
Accumulation time was 0.4 sec. The ESI voltages were 3600 V for the capillary voltage and
−500 V (the end plate offset). The spectra were acquired using a time transient of 4 MW.
MS parameters were optimized to reach a maximum of sensitivity in the m/z range of
150–1000. The resulting transfer optic parameters were ToF 0.6 msec, frequency 4 MHz,
and RF amplitude of 175 V. In this case, 300 scans were acquired for each sample.
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The molecular formulae assignments were made using lab-made Transhumus software
developed by Anton Grigoriev. The mass accuracy window was set at a value of <0.5 ppm
(Da/MDa), and the chemical constraints were used as described in [36], nominally: the
value of O/C ratio was ≤1, the value of H/C laid between 0.3 and 2.2, the amount of C
atoms topped 120, the amount of H atoms topped 200, the amount of O atoms laid between
1 and 60, the amount of N atoms was 0 or 1. The acquired mass list was recalibrated using
unambiguous identifications and total mass difference statistics (TMDS) analysis [37]. The
obtained molecular assignments were used for calculation of H/C and O/C ratios, which
were plotted as Van Krevelen diagrams represented by a relationship of H/C versus O/C
values as described by Kim et al. [38].

Similarity assessment of molecular compositions assigned to mass lists of all SPE
isolates under study was conducted in accordance with the statistical procedures described
in [39]. Firstly, the Jaccard similarity indices (J index) were calculated for each pair of
samples [40,41]. The J index can be formally defined as an amount of formulae in the
intersection of two sets of formulae related to the total number of formulae in the two
samples. The mathematical representation of the J index for the two samples (1 and 2) is
written as:

J(A, B) =
|A∩ B|
|A∪ B| =

|A∩ B|
|A|+ |B| − |A∩ B| , (2)

where A and B are the sets of the formulae assigned to the samples 1 and 2, respectively,
the numerator is the number of common formulae in the molecular composition of the
samples 1 and 2, and the denominator is the total number of formulae assigned to the
samples 1 and 2.

For correlation analysis, the quantitative treatment of the Van Krevelen diagrams was
conducted using a cell-partitioning algorithm as described by Perminova [42]. It implies
binning of the Van Krevelen diagram area into 20 cells followed by calculation of population
distribution based on occupational densities. For this purpose, the intensity-weighted
occupational density was calculated for each cell (Dk) using the following equation:

Dk =
∑Nk

i=1 Ii

∑N
j=1 Ij

, k = 1, 2, ..., n (3)

where Dk is the intensity weighted occupational density of the cell k (k = 1...n), Ii is the
peak intensity in mass list assigned with this specific formula (Nk formula), and Ij is the
sum intensity of all peaks with assigned formulae (N formulae).

The obtained values of occupational densities comprised 20-dimensional vectors
(D1–D20), which were further used as quantitative descriptors of the molecular composition.
The squared values of correlation coefficients between all pairs of vectors were calculated
and used as a measure of the similarity of the samples (Cell Correlation). J indices and
cell correlations for all pairs of the FA Bond Eut and FA Bondesil isolates were plotted in
similarity heatmaps. For the three sets of samples (FA_BE, FA_BS, FA_initial), average
values and standard deviations were calculated for the occupational densities (D1–D20).
The average values and standard deviations were displayed on bar plots distributed on the
van Krevelen diagram in accordance with the location of the corresponding cells (1–20).
The mapping of Van Krevelen diagram with regard to the eight chemotypes was according
to [42,43].

3. Results and Discussion
3.1. Comparison of Sorption Recoveries of the Bond Elut PPL and Bondesil PPL Sorbents

The main question of this study was whether Bond Elut PPL (BE) and Bondesil PPL
(BS) sorbents could be considered as interchangeable ones with regard to SPE extraction
of DOM from natural waters. For answering this question, we had to compare, first of
all, the extensive parameters characteristic to quantity of the isolated sample, such as
sorption and elution recoveries with regard to the FA sample used in this study. Secondly,
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we had to compare “intensive parameters” such as similarity of molecular composition
of the isolates extracted with different sorbents and their similarity to the parent DOM.
The results of comparative studies on the sorption recoveries of BE- and BS-sorbents are
shown in Figure 1. It shows the values of sorption recovery of both sorbents at the growing
loadings of the sorbent with DOM in the form of the FA sample used in this study. Each
data point corresponds to the value of sorption efficiency after passage of each 500 mL
portion of FA solution through the cartridge.
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Figure 1 demonstrates the dependence of DOC concentration (mg/L) in permeate
and of the sorption recovery (%) of sorbents on the discharged volume of the FA solution,
which is proportional to the loading of the sorbent. The maximum sorption recoveries for
both BE- and BS-sorbents were reached at the minimum loading—after the passage of the
first 500 mL portion of the 50 mg/L FA solution (the loading equaled to 12.5 mg FA or 5 mg
DOC per 500 mg of sorbent). The maximum sorption recovery values were (75 ± 4)% and
(58 ± 3)% for Bond Elut PPL and Bondesil PPL, respectively. Hence, the value of sorption
recovery of Bond Elut PPL was about 15% higher as compared to the corresponding value
for the Bondesil PPL. After the second portion of FA, the sorption recoveries dropped
down substantially—down to 55% for Bond Elut PPL, and much more—down to 40%—for
Bodesil PPL. After the third and fourth portions, the sorption recovery for Bond Elut PPL
continued to decrease gradually down to 50%, and then—to 40%, respectively. At the same
time there was no further drop observed in sorption recovery of Bondesil PPL: it leveled
off at the value of 40%. As a result, after passage of the final—fourth portion of the FA
solution, which corresponded to the loading of 100 mg FA (or 40 mg DOC) per 500 mg of
the sorbent, the sorption recovery of the both sorbents became comparable and accounted
for (40 ± 3)% and (38 ± 3)% for the Bond Elut PPL and for the Bondesil PPL, respectively.

The obtained data are very similar to the trends reported in [16] where an impact of the
DOM loading was studied on sorption recovery of Bond Elut PPL cartridges. Same as in our
studies, the authors observed the similar trends, which differ substantially from the classical
breakthrough curve: it should be independent on the loading [44]. For explanation of the
experimental data, Li et al. [16] suggested that the least strongly absorbed DOM molecules
were substituted with more aromatic and aliphatic compounds under overloading of the
sorbent. This phenomenon could explain non-classical character of the breakthrough curve
of DOM on the Bond Elut PPL sorbent. Thus, the cartridge loading consists only 40% of
initial FA concentration. The differences in DOC recovery were also demonstrated in [13],
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where the recovery value R ranged from 31% to 57% depending on the DOM source, its
composition and structure. The authors considered overloading as one of the main factors
which influenced the sorption recovery of DOM.

For determination of extraction recovery, the dry isolated DOM samples were weighted
and the obtained value was divided with the weight of the discharged FA and expressed
in percentage. Unfortunately, two glass flasks with the Bondesil PPL isolates cracked in a
freeze dryer, we could not assess the yield quantitatively for the samples FA-Bondesil 2
and FA_Bondesil 3. As a result, the needed estimate was obtained only for FA_Bondesil_1.
The data on extraction recovery of the sorbents used in this study are shown in Figure 2
and highlighted in colors.

Water 2021, 13, x FOR PEER REVIEW 7 of 16 
 

 

The obtained data are very similar to the trends reported in [16] where an impact of 

the DOM loading was studied on sorption recovery of Bond Elut PPL cartridges. Same as 

in our studies, the authors observed the similar trends, which differ substantially from the 

classical breakthrough curve: it should be independent on the loading [44]. For explana-

tion of the experimental data, Li et al. [16] suggested that the least strongly absorbed DOM 

molecules were substituted with more aromatic and aliphatic compounds under over-

loading of the sorbent. This phenomenon could explain non-classical character of the 

breakthrough curve of DOM on the Bond Elut PPL sorbent. Thus, the cartridge loading 

consists only 40% of initial FA concentration. The differences in DOC recovery were also 

demonstrated in [13], where the recovery value R ranged from 31% to 57% depending on 

the DOM source, its composition and structure. The authors considered overloading as 

one of the main factors which influenced the sorption recovery of DOM. 

For determination of extraction recovery, the dry isolated DOM samples were 

weighted and the obtained value was divided with the weight of the discharged FA and 

expressed in percentage. Unfortunately, two glass flasks with the Bondesil PPL isolates 

cracked in a freeze dryer, we could not assess the yield quantitatively for the samples FA-

Bondesil 2 and FA_Bondesil 3. As a result, the needed estimate was obtained only for 

FA_Bondesil_1. The data on extraction recovery of the sorbents used in this study are 

shown in Figure 2 and highlighted in colors. 

 

Figure 2. Extraction efficiency of Bond Elut PPL (n = 3) and the Bondesil PPL after passage of 100 

mg FA (2 L of 50 mg/L FA solution) per 500 mg sorbents. One Bond Elut PPL cartridge was charac-

terized with higher-than-average results—it is marked with a star. The solid columns refer to the 

extraction efficiency values normalized to the total amount of the discharged FA (100 mg). The 

striped columns refer to the extraction efficiency values normalized to the real loading of sorbents. 

Figure 2 shows that for the high loading used in this study (100 mg of FA were dis-

charged through 500 mg of the sorbet) the extraction efficiency accounted for 25% and 

21% for the Bond Elut PPL cartridges and the self-packed Bondesil PPL columns, respec-

tively. The striped histograms show the extraction efficiency normalized to the expected 

loading of the column (100 mg FA or 40 mg DOC per 500 mg) and the solid columns show 

extraction efficiency normalized to the factual amount of the sorbed FA. The average val-

ues for the “real” extraction efficiencies were 46% and 50% for Bond Elut PPL and Bonde-

sil PPL, respectively. These low values might be indicative of the high losses of the DOM 

sample due to irreversible adsorption on the sorbent. In general, the obtained data show 

loading-dependent sorption of DOM of both sorbents used in this study. Bond Elut PPL 

has preferential sorption recovery with regard to DOM when low loadings are used. How-

ever, under conditions of high loading the recoveries of both sorbents become compara-

ble. From this point of view, both sorbents could be used for DOM isolation. 

  

Figure 2. Extraction efficiency of Bond Elut PPL (n = 3) and the Bondesil PPL after passage of 100 mg
FA (2 L of 50 mg/L FA solution) per 500 mg sorbents. One Bond Elut PPL cartridge was characterized
with higher-than-average results—it is marked with a star. The solid columns refer to the extraction
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refer to the extraction efficiency values normalized to the real loading of sorbents.

Figure 2 shows that for the high loading used in this study (100 mg of FA were
discharged through 500 mg of the sorbet) the extraction efficiency accounted for 25%
and 21% for the Bond Elut PPL cartridges and the self-packed Bondesil PPL columns,
respectively. The striped histograms show the extraction efficiency normalized to the
expected loading of the column (100 mg FA or 40 mg DOC per 500 mg) and the solid
columns show extraction efficiency normalized to the factual amount of the sorbed FA. The
average values for the “real” extraction efficiencies were 46% and 50% for Bond Elut PPL
and Bondesil PPL, respectively. These low values might be indicative of the high losses of
the DOM sample due to irreversible adsorption on the sorbent. In general, the obtained
data show loading-dependent sorption of DOM of both sorbents used in this study. Bond
Elut PPL has preferential sorption recovery with regard to DOM when low loadings are
used. However, under conditions of high loading the recoveries of both sorbents become
comparable. From this point of view, both sorbents could be used for DOM isolation.

3.2. FT ICR Mass Spectrometry of the Fulvic Acids (Pure and Isolated with Bond Elut PPL and
Bondesil PPL Cartridges)

Along with the sorption recovery, the potential molecular selectivity of the sorbent
with regard to specific components of the complex mixtures is another important issue
which should be considered. The existence of this problem for DOM extraction was
substantiated by our previous studies [18] as well as by other researchers [16]. This is
why all SPE isolates were examined for identity of both molecular and structural group
compositions using FT ICR MS and NMR spectroscopy, respectively. The obtained data
were also compared to the compositional space of the parent FA. For the purpose of this
study, we have acquired FT ICR MS data for three sets of samples: three BE isolates of FA
(FA_BE1, FA_BE2, FA_BE3), three BS isolates of FA (FA_BS1, FA_BS2, FA_BS3), and two
spectra of the parent FA (FA1 ad FA2). The FT ICR MS data were processed by assigning
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molecular formulae (CxHyOzNn) as described in the Experimental section. The general
characteristics of the FT ICR MS spectra obtained in this study are summarized in Table 1.

Table 1. An overview of the FT ICR MS data obtained for the FA isolates in this study.

FA_BE1 FA_BE2 FA_BE3 FA_BS1 FA_BS2 FA_BS3 FA1 FA2

Formulae, total 4749 5398 4243 4308 4178 4702 5280 4509
CHO, number 4526 5217 4178 4231 4149 4475 5091 4150

CHON, number 223 181 65 77 29 227 189 359
CHO, % 95 97 98 98 99 95 96 92

CHON, % 5 3 2 2 1 5 4 8
Mn *, Da 570 609 569 548 518 554 574 560

DBEn 13.0 15.0 14.5 13.1 12.6 12.4 12.3 12.3
(H/C)n 1.12 1.07 1.03 1.09 1.08 1.16 1.17 1.14
(O/C)n 0.42 0.42 0.41 0.41 0.41 0.39 0.42 0.44

* Subscript “n” indicates number-averaged values.

All three sets of samples were characterized by similar amount of assigned formulae
(4797 ± 472) for FA_BE, (4396 ± 223) for FA_BS, (4895 ± 386) for the parent FA, and by
the dominant contribution of CHO compositions (95%). For the set of FA_BS samples,
the lower values of the number-averaged molecular weight were observed (540 ± 16) as
compared to those for the FA_BE samples (583 ± 19) and for the FA replicas (567 ± 7).
Much larger variations were observed for the number-averaged values of DBE: on average,
the molecular components of the FA_BE isolates were characterized with the larger DBE
values both as compared to the FA_BS isolates (1.5 DBE) and the parent FA (1.9 DBE). In
sync with the trend observed for the DBE values, the highest values of H/C ratio were
seen for the parent FA (1.14–1.17), whereas both groups of SPE isolates were characterized
with the lower H/C values: (1.03–1.12) for the FA_BE samples and (1.08–1.16) for the
FA_BS samples. This trend is indicative of the more saturated character of the parent FA as
compared to both types of isolates. This phenomenon can be explained by higher affinity of
aromatics-enriched FA components for the sorbent material as compared to more saturated
components, of particular, containing hydrophilic carbohydrates.

The values of H/C and O/C ratios calculated for all individual peaks were plotted
in the corresponding Van Krevelen diagrams (Figure 3). Figure 3 shows that the Van
Krevelen diagrams of the isolates derived with Bond Elut PPL and Bondesil PPL cartridges
(Figure 3a–f) are very similar. They are characterized by the most densely populated area
within the range of values: 0.6 < H/C < 1.4, 0.25 < O/C < 0.75, which are characteristic
for condensed oxidized and more saturated ligninic compounds. The molecular compo-
sition of the parent FA sample (Figure 3g,h) is visually different from the SPE isolates: it
is characterized by the presence of considerable amount of highly oxidized components
(O/C > 0.75) and by the higher content of low oxidized aliphatic components (H/C > 1.4,
O/C < 0.25). To quantify the similarities and differences of the obtained molecular compo-
sitions, the Jaccard similarity indices (J index, Equation (2)) were calculated for each pair of
mass spectra. The results are shown as a heatmap in Figure 4.

The values of the J index for the FA_BE set of samples were in the range from 0.59
to 0.61, for the FA_BS set of samples—from 0.56 to 0.67, and for the parent FA—0.64. The
obtained data are indicative of closer similarity of the FA_BS samples to one another as
compared to the FA_BE samples. At the same time, the identity within the triplicates of FA
isolates was less as compared to two spectra of the same sample of the parent FA, which
could be expected. On average, the similarity between the FA_BE and FA_BS sets was on
the same level as the internal similarity of these sample sets. The values of the J indices
between the SPE samples (FA_BE and FA_BS) and the parent FA were in the range from
0.48 to 0.66, and, in general, lower as compared to the pairs from the FA_BE and FA_BS
sets. It can be concluded that a use of Bond Elut PPL and Bondesil PPL cartridges yields
the molecular compositions of isolates which are same identical as if the only one type of
cartridges was used.
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Figure 4. The heatmap from the values of J index calculated for each pair of the samples used in this
study as an intersection of shared molecular formulae to the total number of formulae in the pair of
samples. The color bar refers to the value of the J indices and the Cell Correlations (R2). The heatmap
is divided into blocks corresponding to the number of samples in each set: FA_BE (Bond Elut PPL,
3 samples), FA_BS (Bondesil PPL, 3 samples), and FA (2 samples).
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For all pairs of the investigated samples, the value of J index did not exceed 0.69,
which means that even the most similar samples shared not more than 69% of formulae
found in both samples. For comparison, Mosher et al. studied molecular composition of
three DOM samples from the same stream using FT ICR MS, and obtained J index values in
the range from 0.74 and 0.8 [45]. The maximum value of J index of 0.57 (the best match) was
reported for the interlaboratory study of molecular compositions of six HS samples with
a use of five different mass spectrometers [39]. The same study demonstrated that much
more robust and convincing results were obtained for similarity analysis conducted with
a use of the occupation density descriptors. The corresponding descriptors can be easily
calculated as described by Perminova (2019) [42] by binning the Van Krevelen diagram
into 20 cells and computing occupation density of each cell with a use of Equation (3). As a
result, molecular composition of each sample can be described with 20-dimensional vector
(Equation (2)) defined by values of 20 occupational densities (D1–D20) corresponding to
20 cells of the Van Krevelen diagram. In this case, the samples similarity can be judged
based on a value of the determination coefficient (R2) between each pair of vectors (Cell
Correlation). The obtained results are shown in heatmap in Figure 5.
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Figure 5. The heatmap for the values of Cell Correlations (R2) calculated for each pair of the samples
used in this study. The color bar refers to the value of the Cell Correlations (R2). The heatmap is
divided into blocks corresponding to the number of samples in each set: FA_BE (Bond Elut PPL,
3 samples), FA_BS (Bondesil PPL, 3 samples), and FA (2 samples).

It can be seen that a use of occupational densities resulted in much higher similarity
of the samples (R2 close to 1) as compared to the calculation of J indices. Comparison of
the obtained values of internal correlations within the sets of FA_BE, FA_BS and FA and
those for the pairwise correlations between the sets of FA_BS and FA_BE corroborated well
the conclusions made on the basis of the J index values. Nominally, the prevailing majority
of FA_BE and FA_BS pairs (7 out of 9) turned out to be as (or more) similar to each other as
the samples extracted by the same type of sorbent (R2 ≥ 0.95), and 4 pairs—as two spectra
of rhe same FA sample (R2 ≥ 0.98). In general, the SPE isolates were less similar to the
parent FA than to each other (0.82 ≤ R2 ≤ 0.97).

For better illustration of the similarities and differences in the distribution of occupa-
tional densities on the Van Krevelen diagram within the three sets used in this study, the
average values and standard deviations for D1–D20 were displayed as bar plots and placed
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on the Van Krevelen diagram in accordance with the location of the corresponding cells
(1–20) (Figure 6).
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Figure 6. Mean values and standard deviations of the occupational densities of 20 cells in the split Van Krevelen diagram
(D1–D20) for FA_BE set (the columns are highlighted in blue), for FA_BS set (the columns are highlighted in red), and for
the parent FA (the columns are highlighted in black). The plots are arranged in accordance to the cells’ location in the Van
Krevelen diagram (1–20). The background colors refer to the seven main chemotypes depicted by the chemical formulae:
condensed tannins (gray), phennylisopropanoids (lignins) (lilac), terpenoids (green), lipids (turquoise), peptides (yellow),
carbohydrates (light gray), hydrolysable tannins (pink).

The resulting plots show that the values of all 20 occupational densities (D1–D20) are very
similar (within the standard deviations) for the isolates obtained by the two PPL-sorbents
(FA_BE and the FA_BS isolates). At the same time, substantial differences can be seen
between the SPE isolates and the parent FA. The SPE isolates contain the smaller portion of
oxidized aromatic components of “hydrolysable tannins” chemotype (D13, D17–D18) and
lower portion of oxidized lipid- and terpenoid-like aliphatics (D4, D5) along with the higher
content of condensed tannins and lignin-like components (D7–D8).

The obtained data allowed us a conclusion about identity of the molecular composi-
tions of the SPE isolates obtained with a use of two different PPL sorbents—Bond ELut PPL
and Bondesil PPL. The molecular compositions of both isolates deviate in the same way
from molecular composition of the parent FA. For proving whether the same conclusions
are supported by the data on structural group composition, we ran the NMR studies on
the same set of samples.

3.3. NMR Results

Structural-group composition of the SPE isolates and the parent FA was determined
with a use of 13C and 1H NMR analysis. The distribution of hydrogen and carbon atoms
among the main structural fragments characteristic to HS was determined by integration
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of the corresponding spectral regions. The assignments of spectral regions were made
after [35]. The data obtained are shown in Figure 7.
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in the upper row of the Figure) in the parent FA and the FA isolates obtained with a use of the Bond Elut PPL sorbent
(FA_BE) and Bondesil PPL sorbent (FA_BS). The data are measured by 13C NMR (A) and 1H NMR (B) spectroscopy.

Figure 7A shows the values of partial integrals of the eight common spectral regions
in the 13C NMR spectra of one FA sample and five SPE isolates used in this study. The
data indicate substantial similarity among all five SPE isolates obtained with a use of Bond
Elut PPL and Bondesil PPL sorbents. At the same time, the remarkable difference can be
observed between the parent FA and the both FA-isolates with regard to the content of
non-substituted aliphatic structures (CHn), the content of carbohydrate carbon (CHnO)
and non-substituted aromatic carbon (Car). The parent FA is characterized with the higher
content of hydrophilic carbohydrate carbon, whereas the FA isolates are enriched with
more hydrophobic structures such as non-substituted aliphatic and aromatic groups. It
should be noted that the above trends in structural-group compositions revealed by 13C
NMR spectroscopy for the samples used in this study are in very good agreement with
the trends in molecular compositions revealed for the same samples by FT ICR MS. The
obtained 13C NMR data also corroborate well the reported values for FA [35,46–48].

The 1H NMR spectra were obtained in D2O and represented distribution of non-
exchangeable protons in the samples used in this study (Figure 7B). The data demonstrate
close similarity of all samples—including all SPE isolates and the parent FA—one to another.
All spectra are characterized with prominent intensity of α-aliphatic region (1.6–3.1 ppm).
The presence of lesser-substituted aromatic components and abundance in carbohydrates is
a characteristic feature of FA according to the reported 1H NMR data [49–51]. Distribution
of non-exchangeable protons was much less characteristic of peculiar structural features of
the parent FA versus its SPE isolates and did not reveal the differences, which could be
clearly seen from the 13C NMR data.

4. Conclusions

The results of comparative studies on sorption efficiency and molecular selectivity of
two commercial sorbents—Bond Elut PPL ad Bondesil PPL with regard to DOM compo-
nents allow us to conclude on interchangeability of these two sorbents for the purposes
of DOM isolation from natural waters. This conclusion is backed up by revealed very
similar sorption behavior of the peat FA which was used as a model of DOM, on both
sorbents and by high similarity of molecular compositions and carbon distribution among
the main structural groups. The major difference between the sorbents was displayed in
the lower extraction efficiency of the Bondesil PPL as compared to Bond Elut PPL. The
maximum sorption efficiencies of the sorbents accounted for 60 and 75%, respectively.
These differences could result from variation in the composition or morphology of the
polymeric base of the both sorbents, nominally, from higher contribution of pore-filling
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mechanism in case of Bond Elut PPL as compared to the Bondesil PPL sorbent. It could be
also responsible for much more gradual decrease in sorption efficiency of Bond Elut PPL
as compared to Bondesil PPL. At the same time, both sorbents yielded the same sorption
affinity for molecular components of DOM. The slightly higher affinity of the both sorbents
for more hydrophobic aromatics-enriched components of molecular ensemble of DOM
was demonstrated by FT ICR MS. It is in sync with the apolar hydrophobic character of
the sorbents. The revealed trend in molecular selectivity of both sorbents was supported
by the data of 13C NMR which demonstrated higher content of hydrophilic carbohydrate
structures in the parent FA and less content of non-substituted aromatic and aliphatic
groups as compared to those in the FA isolates derived with a use of both Bondesil PPL
and Bond Elut PPL. In general, the conducted studies show good prospects for a use of
bulk sorbent Bondesil PPL, which was newly applied in this study for the DOM isolation,
for large-scale treatments aimed at gram-quantity isolation of DOM from natural waters.
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