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Abstract: The bulk of water pipes experience major degradation and deterioration problems. This
research aims at estimating the condition of water pipes in Shattora and Shaker Al-Bahery’s water
distribution networks, in Egypt. The developed models involve training the Elman neural network
(ENN) and feed-forward neural network (FFNN) coupled with particle swarm optimization (PSO),
genetic algorithms (GA), the sine cosine algorithm (SCA), and the teaching-learning-based optimiza-
tion (TLBO) algorithm. For the Shattora network, the inputs to these models are pipe characteristics
such as length, wall thickness, diameter, material, lining and coating, surface type, traffic distribution,
cathodic protection, flow velocity, and c-factor. For the Shaker Al-Bahery network, the data gathered
include length, material, age, diameter, depth, and wall thickness. Three assessment criteria are used
to evaluate the suggested machine learning models, namely index of agreement (IOA), correlation
coefficient (R), and root mean squared error (RMSE). The results reveal that coupling FFNN with
the TLBO algorithm outperforms other prediction models. Therefore, the FFNN-TLBO model can
be a valuable tool for simulating the water network pipe condition. This study could help the
water municipality allocate the available budget effectively and plan the required maintenance and
rehabilitation actions.

Keywords: teaching-learning-based optimization; optimized neural network; machine learning;
optimization algorithm; condition prediction

1. Introduction

The water supply system is the cornerstone of the nation’s resources. Environmental,
physical, and operational factors compromise the integrity, reliability, and serviceability of
water pipes around the world [1,2]. The fundamental physical factors that govern water
pipe failures (e.g., breaks, bursts, leaks, and circumferential and longitudinal cracks) include
its material, length, diameter, thickness, and vintage [3,4]. However, these failures are
exacerbated by external factors such as climate conditions, traffic loads, and soil type and
temperature [5–7]. Finally, operational conditions related to water quality and hydraulic
pressure play an essential role in developing water pipeline failures [1,6]. Water network
malfunction skews access to clean drinking water in urban areas. Furthermore, it often
results in infrastructure disruption, traffic and business disturbances, and other disasters
in the surrounding area [8,9].

Most water pipes are approaching or have already reached the end of their useful
lives [10]. The ASCE 2021 Report Card rated the condition of infrastructure assets a grade
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of “C-” for almost two decades. However, the average American household would spend
$3300 a year by 2039 to pay for America’s overdue infrastructure bill. Furthermore, the
drinking water systems were assigned a “C-” grade. The report estimated the occurrence
of water main breaks every two minutes, resulting in the loss of 6 billion gallons of water
in the United States. The cumulative investment needs for this asset were predicted to
be $1045, but only $611 were available, resulting in a funding gap of $434 during the
period of 2020–2029 [11]. Meanwhile, 41% of North America’s water infrastructure was
subjected to an increasing breakage rate of 40% over the same period [12]. According
to the 2019 Canadian Infrastructure Report Card, 30% of water infrastructure was in
extremely good condition, 40% was in good condition, and 25% was in average, bad, or
very poor condition [13]. The current funding in the management of water infrastructure
was reported to be inadequate to satisfy increasing demands [12].

The degradation of water assets in developing countries is also costing them millions
of dollars. Leakages and water losses account for roughly 25% of the water supply in
Qatar [14]. Meanwhile, non-revenue water accounts for 35 to 50% of the total water produc-
tion in Malaysia [15]. This problem imposes a financial burden on the water municipalities.
Egypt has a water scarcity of about 7 billion cubic meters per year [16]. According to the
Central Agency for Public Mobilization and Statistics (CAPMAS), the percentage of water
losses was 29.7% in 2017–2018 [17]. As stated by the National Water Resources Plan of
Egypt 2037 and the Ministry of Water Resources and Irrigation, drinking water usage is
estimated to be approximately 10 billion m3 per year. Each year, about 3.5 billion m3 of
treated water is lost due to leakage from distribution networks, theft, and poor metering,
with a projection of 35% of water losses in the system. Based on the Holding Company for
Water and Waste Water (HCWW), the overall yearly loss to water utilities is estimated to
be 4.5 billion Egyptian pounds. Without any further expenditure, saving half of this money
would provide water to an additional 11 million people [18]. The Egyptian government
has set aside $57.55 billion for water management projects over the next 20 years [19]. This
highlights that water infrastructure assets are being heavily invested in both developed
and developing countries. Therefore, it is necessary to establish a new approach for moni-
toring and maintaining these networks for the benefit of the population and society [20].
This could lead to enhanced asset performance, improved customer service, lower asset
outage times, decreased operation and maintenance costs, and greater profitability for the
municipality [21,22].

In response to network failures, water service providers either use reactive or proactive
maintenance and rehabilitation techniques [23]. Reactive solutions focus on testing the
water pipes daily or reporting failures by consumers. Proactive approaches, on the other
hand, assess the likelihood of water pipe failure. This allows water municipalities to
plan for possible circumstances, such as traffic disruption and breakdown effects [24].
Municipalities have been undertaking monitoring plans and strategic actions to reduce
the water network breaks. However, it is impossible to prevent all pipe failures. This
emphasizes the importance of developing predictive models by government bodies in
order to optimize water system repair and restoration operations [22,25].

The major objective of this research is to estimate the structural condition of pipes in
Shattora and Shaker Al-Bahery water distribution networks, Egypt, using Elman neural
networks (ENN) and optimized feed-forward neural network (FFNN) models. The op-
timization algorithms involve the particle swarm optimization (PSO) algorithm, genetic
algorithms (GA), sine cosine algorithm (SCA), and teaching-learning-based optimization
(TLBO) algorithm. The forecasting capabilities of the models are examined using three
assessment criteria, namely: the index of agreement (IOA), correlation coefficient (R),
and root mean squared error (RMSE). The proposed model acts as an assistance tool for
water municipalities to track and monitor the condition of water pipes, plan the required
intervention strategies, and manage the allocated budget efficiently.
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2. Literature Review

Water breakage, condition, remaining useful life, and risk assessment models have
been reviewed in the literature [26]. In the last two decades, transient test-based techniques
(TTBTs) have been proposed for fault detection in pressurized pipe systems. Such tech-
niques are based on the properties of pressure waves propagating in a pressurized flow.
Accordingly, the measured pressure response can be used to determine the location and size
of the fault (e.g., leak, partial blockage, and wall deterioration). Precisely, this approach is
based on the behavior of the negative pressure wave created by a fault and its location can
be determined from the wave arrival times observed at two or more measurement sections.
TTBTs have been used successfully not only in the lab but also in real pipe systems [27–31].

Focused on the water supply suspension risk, Kim et al. [32] proposed a framework for
estimating the benefits of water pipe renewal. Some value assessment approaches were less
direct and descriptive than the suggested approach based on five benefit items. In addition,
a technique for calculating the optimum renewal point was proposed based on the pipe
failure rate. This research could be used to establish potential water pipe replacement
plans. Kim et al. [33] researched how to boost the water delivery system efficiency. The
pipes were first divided into three groups: no strengthening, increased pipe longevity, and
installing valves on both ends. Then, two rules were applied, which improved the pipe
with the lowest reliability and decreased the number of consumers that were out of service.
Considering the small budget and site conditions, the proposed framework paved the way
for improving network performance.

Failure prediction and risk management models for water pipes have attracted sig-
nificant attention from researchers. Machine learning predicts new samples by building a
model from input variables and learning the trend between inputs and outputs. It has also
gained popularity for simulating dynamic nonlinear interactions between input attributes
and outcomes [34]. Diverse research studies predict the residual life for pipelines, which
could be defined as the estimated time before a pipe experiences a failure mode that makes
its use impossible or impractical [35]. Cortez [36] chose the linear regression model devel-
oped by Clark et al. [37] to evaluate the time from installation to the first failure. The reason
was that the required data for this model are usually available through the municipality.
The model included data on the pipe age, expected service life, diameter, material, length,
internal pressure, percent covered by residential areas, percent covered by industrial areas,
and breakage history. The model attempted to incorporate additional factors to alleviate
uncertainty in a pipe’s service life. However, the inclusion of more exhaustive data such
as soil pH might render the assessment infeasible. Zangenehmadar and Moselhi [38]
developed an artificial neural network (ANN) model based on the Levenberg–Marquardt
backpropagation method to estimate the residual lives of water pipes. The model incorpo-
rated data on the pipe length, diameter, material, condition, breakage rate, and age. The
results revealed that the most relevant parameters in predicting remaining useful life were
pipeline length, age, material, condition, diameter, and breakage rate.

Using multiple machine learning algorithms, Elshaboury and Marzouk [39] predicted
the structural condition of water pipes using feed-forward and general regression neural
networks (GRNN), multiple linear regression, and support vector regression. The specified
input parameters for model development were pipe length, diameter, and wall thickness.
Cross-validation was used to assess the performance of the aforementioned models by
evaluating the coefficient of determination and root mean squared error. The GRNN
outperformed the other models in terms of the evaluation metrics. To forecast the pipe
failure probability, Zhang and Ye [40] compared the regression analysis, machine learning,
genetic algorithms, and data mining approaches. A tree-based optimization approach was
proposed as a data mining technique. Environmental and physical characteristics as well
as failure records were taken into account in these methods. A high fitting degree was
achieved, indicating the ability of the proposed model to forecast failure risks.

Fan et al. [41] built machine learning models to detect water network leakages. The
findings showed that a neural network could reliably distinguish leaking and non-leaking
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conditions. The results affirmed the high accuracy of the autoencoder (AE) neural network
model in detecting leaks occurring in monitored pipes. However, it was difficult for a
real water network to operate under normal service conditions. This observation would
serve as a reference for placing tracking sensors in the desired area. Jara-Arriagada and
Stoianov [42] determined the impact of pressure control on minimizing pipe breaks using
logistic regression and a sensitivity analysis. This approach was developed and validated
using a broad dataset of historic pipe breaks. By lowering the mean load, pipe failures
could be decreased by 18 to 30%. Reduced pressure ranges might have a greater effect on
all pipe materials. These results indicated that measuring hydraulic pressure proactively
may significantly impact network performance.

Poisson regression and spatiotemporal clustering methods were used by Martínez
García et al. [43] to examine the influence of pipe material, diameter, and internal pressure
on pipe integrity. The maximum pressure parameter was statistically significant in some
districts, while the material parameter was statistically significant in all districts. Ravichan-
dran et al. [44] used machine learning approaches to detect leaks for water mains. In a
supervised learning technique, several detection functions originating from acoustic signals
were used. The preferred method involved a multi-strategy ensemble learning (MEL) using
a gradient boosting tree (GBT) classification model. This method improved the efficiency in
optimizing the detection rate compared to k-nearest neighbor and neural networks. Several
GBT classifiers were integrated to achieve further enhancements. The suggested MEL
solution showed a dramatic increase in efficiency, resulting in a one-order-of-magnitude
decrease in false-positive results.

Optimization algorithms have emerged to address water infrastructure asset problems.
Awe et al. [45] developed an optimization algorithm to determine the least cost system
parameters while satisfying the hydraulic and heuristic rules and constraints. The model
was simulated using different pipe diameters and pressure head characteristics. The results
yielded the optimum reservoir height and pipe diameter that reduced the total cost of
installation, operation, and maintenance of the network. Elshaboury et al. [46] optimized
the maintenance and rehabilitation strategies for water pipelines using the GA and PSO
algorithm. The optimization model aimed at minimizing the costs of intervention actions
and maximizing the network structural condition. The results indicated that the PSO
algorithm yielded better results compared to GA. In another study, Elshaboury et al. [47]
prioritized the required intervention strategies for water pipelines using a set of meta-
heuristic algorithms. These algorithms include the PSO, modified invasive weed opti-
mization, shuffled frog leaping, and artificial bee colony algorithms. The results revealed
that the proposed modified algorithm exhibited better results when compared to the
aforementioned algorithms.

Some of the previous deterioration models overlooked some important attributes
like environmental and operational factors. However, these attributes exert considerable
influence on the performance condition of water pipes. Furthermore, conventional machine
leaning models such as backpropagation ANN and ENN are highly vulnerable to local
minima entrapment and poor convergence which hinder their search abilities. In an attempt
to address these shortcomings, the major contributions of this research are identified
as follows:

1. Incorporating physical, environmental, and operational factors to estimate the condi-
tion of water pipelines.

2. Estimating the network condition using conventional and hybrid prediction models
(i.e., machine learning models coupled with optimization algorithms).

3. Reducing the error reported by the optimized FFNN, ENN, and GRNN in the litera-
ture by more than 1%, 19%, and 80%, respectively.
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3. Materials and Methods
3.1. Elman Recurrent Neural Network

The Elman neural network (ENN) is characterized by changeable feed-forward con-
nections and fixed recurrent connections. The connections are mostly feed-forward, but
there are a few feedback connections that allow the network to retain recent cues. The
inclusion of a feedback loop has a significant impact on the network’s learning capability.
The network also has several user-controlled features, such as training functions and the
number of nodes in each layer. As shown in Figure 1, an input layer, an output layer,
a hidden layer, and a context layer make up the network architecture. The input layer
is split into two parts: true input units and context units, which store a duplicate of the
hidden units’ activations from the previous time step. Backpropagation can be used to train
the feed-forward connections because the feedback connections are fixed. The network
can recognize sequences and can construct short continuations of previously recognized
sequences [48].
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3.2. Feed-Forward Neural Network

ANN is an area of machine learning in which the algorithms are based on the anatomy
of the human brain. The FFNN architecture is shown in Figure 2. This network is fed
with input data that are processed using hidden layers to produce the desired output.
It is composed of layers of neurons [49]. The input layer receives the input while the
output layer predicts the outcome [50]. The hidden layers execute most of the required
computations by the network. Channels connecting neurons of successive layers are
assigned initial weights. The inputs are multiplied by the weights assigned to them, and
the sums are transmitted to the hidden layer neurons. Aside from that, each of these
neurons has a bias value that is applied to the input total. This value is then passed through
an activation/transformation function which determines the activation status of the neuron.
Over the channels, an active neuron communicates data to the neurons of the following
layer. The data are forward propagated in this fashion until the result is presented in
the last layer. By comparing the projected output to the actual outcome, the network is
trained. The weights are then modified based on the backpropagation of the prediction
error. The processes of forward and backward propagation are iteratively performed until
the network can properly anticipate the output [51]. In summary, the benefits of ANN
include the ability to train and adjust the network using historical data. On the other hand,
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where the structure and network architecture are not specific, the network training speed
is slow [52,53].
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3.3. Optimization Algorithms

In this research, the FFNN is trained using four optimization algorithms: GA, PSO,
SCA, and TLBO. A brief description of each algorithm is provided in the next sub-sections.

3.3.1. Genetic Algorithm

GA has proved its capability to explore and navigate search spaces looking for optimal
combinations of solutions. In another way, it is a vast optimization tactic that looks for a
robust solution against fitness criteria. It is a search and optimization technique based on
Darwin’s principle of natural selection [54]. The procedure begins with a population of
randomly formed chromosomes. Selection is the population improvement or survival of
the fittest operator; it duplicates individuals with the highest fitness functions and deletes
parents with the least fitness functions. In this biological model, a chromosome is filled with
genes. In each generation, parents mate and create new chromosomes for their children
through cross-over events that mix and match the genes from the parents’ chromosomes.
This leads to the survival of the best individuals and their selection to pass on their genes.
Otherwise, individuals that are poorly suited to the environment are thrown out over a
large number of generations. In this way, nature optimizes a population to best suit the
environment it lives in. In order to preserve generational diversity, mutation creates new
individuals that are similar to current ones with a small pre-specified probability. Finally,
the chromosomes of the last population are chosen as the best solution [47].
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3.3.2. Particle Swarm Optimization

PSO is considered one of the well-known evolutionary algorithms. In addition, it has
been widely used in a variety of applications in science and industry fields. This algorithm
mimics the navigation and movement of a school of fish or flock of birds [55]. It finds a
global optimum by creating a population of particles/solutions in the search space. Each
particle is composed of three vectors that record the particle’s current location, the best
location in the whole swarm, and the traveling direction for each particle. The movement of
a particle is affected by its optimal local location and the experience of its neighbors. When
neighboring particles find better locations in the search space, the global best position
in the solution space is modified. This serves as a reference to help the swarm find the
best solution [56]. Finally, the current best location of the particles in the last movement
iteration is regarded as the optimum solution.

3.3.3. Sine Cosine Algorithm

SCA is inspired by the mathematical features of sine and cosine trigonometric func-
tions. It includes the primary two approaches (i.e., local and population search strategies)
for creating an intelligent algorithm that can successfully search using the local exploitation
and global exploration search strategies. The major six steps of this algorithm are listed as
follow: (1) initialize a set of candidate solutions, (2) evaluate the fitness of each candidate
solution, (3) initialize the algorithm parameters, (4) update each solution using the search
equation, (5) update the control parameter, and (6) memorize the destination point [57].
This algorithm is characterized by strong features, including powerful neighborhood search
characteristics, outperformance when combined with other algorithms, a high convergence
velocity, and a robust global search technique. Therefore, SCA is widely applied in various
optimization problems because it is simple, flexible, and straightforward to implement.
However, it has certain shortcomings, such as a lack of theoretical convergence, premature
(early) convergence, and generational probability configuration changes [58].

3.3.4. Teaching-Learning-Based Optimization

TLBO, proposed by Rao et al. [59], is motivated by the behavior of teachers and
students in the classroom. The teacher is determined to be the knowledgeable and most
experienced one who receives the highest score in the class, according to the teaching-
learning concept. The teacher is in charge of instructing the students and raising the
class average score (known as the teacher phase). However, students receive grades on
their acquired information based on the quality of the teacher and students in the class.
Meanwhile, each student/learner communicates and mutually interacts with another
learner randomly to gain knowledge (known as the student phase). The population in
this algorithm is made up of many students. Furthermore, the various topics/subjects
are similar to the optimization variables. The learner results are used to assess the fitness
function of the optimization problem. Finally, the teacher is chosen as the best answer in
the whole population [60]. Except for the population size and the maximum number
of iterations, the TLBO algorithm does not require any additional parameters for its
functioning. Furthermore, when compared to the abovementioned algorithms, such as GA
and PSO, the algorithm is simple to construct and uses less processing memory [61].

3.4. Performance Metrics

The performance of machine learning models can be measured using a variety of
metrics. In this research, IOA, R, and RMSE metrics are applied to evaluate the models, as
illustrated in the following sub-sections.

3.4.1. Index of Agreement

IOA is a standardized measure of the model’s prediction error and it is determined by
multiplying the mean square error to the potential error ratio by the number of data points
and subtracting one as per Equation (1). Due to the squared differences in the formula, this
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index is very sensitive to extreme values. It is worth mentioning that a higher IOA value
reflects that the predicted and observed values are in good alignment, and vice versa [62].

IOA = 1−
[

∑n
i=1(pi − oi)

2

∑n
i=1(|pi − o|+ |oi − o|)2

]
(1)

where oi and pi represent the observed and predicted values, respectively. In addition, oi
and pi represent the mean observed and predicted values, respectively.

3.4.2. Correlation Coefficient

R is a measure of how closely two models are related as per Equation (2). This metric
expresses the direction and strength of a relationship between variables with a value
ranging from −1 to +1, with −1 and +1 indicating negative and positive correlations,
respectively. Meanwhile, a value of 0 indicates no relationship between the variables [63].

R =
∑ (oi − o)(pi − p)√

∑ (oi − o)2 ∑ (pi − p)2
(2)

3.4.3. Root Mean Squared Error

RMSE is a measure of the residuals’ standard deviation, where residuals (prediction
errors) measure the distance/closeness between observed and predicted data points as per
Equation (3). In other words, it indicates how densely the data are clustered around the
best fit line. The lower the RMSE value, the better the model’s prediction accuracy and vice
versa [64].

RMSE =

√
1
n

n

∑
i=1

(oi − pi)
2 (3)

4. Model Development

The flowchart for applying machine learning models for predicting water pipe net-
work condition is illustrated in Figure 3. The flowchart starts with preparing the database
that comprises the input and output parameters. The data are then divided into training
and testing sets to evaluate the models. After selecting the machine learning algorithm and
initializing the model parameters, the neural network models are developed and evaluated
using performance evaluation metrics to conclude the optimum prediction model.

Pipe characteristics (i.e., input factors) are used to estimate pipe condition (i.e., output
factor) using different machine learning models. Equation (4) is used to compute the
condition indices of water pipes by multiplying the weight of each factor by the score
associated with this factor [65]. The weight reflects the importance of the factor from the
expert’s perspective. Questionnaire surveys are undertaken to determine the weight of
importance of the condition assessment factors. The experts express their preferences
linguistically according to the Saaty fuzzifying scale [66]. The pairwise comparisons are
conducted on three levels: (a) between the main categories with respect to the overall
condition, (b) between the factors with respect to the main categories, and (c) between the
main categories with respect to each other. A fuzzy analytic network process technique
is applied to accommodate the interdependencies and uncertainties between the factors.
Meanwhile, the contribution of a factor-specific characteristic to the pipe condition index is
measured by the factor effect value. The effect values of the influential factors are collected
from the literature review [1,65,67]. The computational procedures of determining the
condition index are comprehensively described in [68]. This index ranges from 0 to 10,
with 0 denoting the most critical condition and 10 denoting the best.

CIPj = ∑k
i=1 WPi × FVPi (4)
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where CIPj is the pipe’s condition index, WPi is the factor’s weight of importance, and
FVPi is the factor’s score that affects the structural condition of the pipes.
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The initial biases and weights’ values in a traditional ANN have a significant effect
on the network performance [69]. It is worth mentioning that the neural network may
be trained using three approaches [70]: (1) using the fixed network design to manipulate
weights and biases, (2) using heuristic algorithms to figure out the best network structure,
or (3) using an evolutionary algorithm to modify the parameters of the machine learning
model. The PSO, GA, SCA, and TLBO algorithms are used in this research to optimize
the randomly specified weights and biases in the FFNN model. When neural networks
are combined with optimization algorithms, they improve their ability to solve real-world
problems while avoiding overfitting and local minima during training [71]. Figure 4
shows the flowchart of the trained neural network model procedure. To begin training
the network, the optimization algorithms initialize the weights and determine their fitness
functions. The network fitness is interpreted in this study by calculating the mean square
error as per Equation (5). The normalized mean square error is calculated by normalizing
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the mean square error by the mean target variance as per Equation (6). When the global
best solution (i.e., minimal error function) is found, the optimization process ends [72].

MSE(x, y) = ∑i(xi − yi)
2

N
(5)

NMSE(x, y) = MSE(x, y)/MSE(x, 0) =‖ x− y ‖2
2 / ‖ x ‖2

2 (6)

where MSE refers to the mean square error, NMSE refers to the normalized mean square
error, N refers to the number of observations, and xi and yi refer to the actual and forecasted
values, respectively.
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The parameters of various algorithms are summarized as follows: the number of
iterations and the population size are determined as 1000 and 50, respectively, for all the
algorithms. For PSO, the inertia weight, inertia weight damping ratio, personal learn-
ing coefficient, and global learning coefficient are equal to 1, 0.99, 2, and 2, respectively.
Meanwhile, for GA, the fitness limit and tolerance function are equivalent to 1 × 10−5 and
1 × 10−10, respectively. Around 70% and 30% of the data are used for training and testing,
respectively. The number of hidden neurons is presumed to be 10 for optimized FFNN
models. Furthermore, because of its superior performance in solving nonlinear problems,
the Levenberg–Marquardt algorithm is chosen as the network training algorithm [52]. The
author builds the machine learning models using MATLAB R2019a software.

5. Case Study

The proposed models are implemented using two water distribution networks in
Shattora (Sohag Governorate) and Shaker Al-Bahery (Qalyubia Governorate), Egypt (see
Figure 5). The data of the case studies are obtained from the “senior consulting engineers”
office [73]. For the Shattora network, the gathered data include physical factors (i.e., length,
wall thickness, material, diameter, and lining and coating), environmental factors (i.e.,
surface type and traffic distribution), and operational factors (i.e., cathodic protection, flow
velocity, and c-factor). The network consists of 81 pipelines totaling 106,862 m in length.
It shall be noted that the material comprises three different types: uPVC (1), concrete
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(2), and high-density polyethylene (HDPE) (3). The pipe diameters vary from 200 to
1200 mm, and the wall thickness is determined by the manufacturer’s technical aspects.
Moreover, the lining and coating might be lined (1) or unlined (0). For the surface type,
it involves asphalt (1) or unpaved (0). In addition, there might be light (1), normal (2), or
heavy (3) traffic in this area. Meanwhile, the cathodic protection has only yes (0) or no (1)
options. Finally, the c-factor is associated with the pipe material and obtained from the
Egyptian code of practice [74]. The input and output factors for the first five pipelines can
be found in Table 1. Table 2 depicts statistical parameters for the quantitative input and
output variables.
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Table 1. Sample of the input and output factors in the Shattora network.

ID Length Material Diameter Thickness Lining and
Coating

Surface
Type

Traffic
Distribution

Flow
Velocity

Cathodic
Protection C-Factor Condition

Index

1 150 1 400 43 0 1 2 0.07 1 140 6.40

2 2000 2 700 174 1 1 3 0.75 0 120 6.76

3 479 3 500 74.8 0 1 3 1.27 1 120 6.29

4 150 2 600 174 1 1 3 0.14 0 120 6.76

5 2100 2 1200 244 1 1 3 1.06 0 120 6.76

Table 2. Statistical parameters of quantitative input and output parameters for condition prediction in the Shattora network.

Variable Mean Median Maximum Minimum Standard
Deviation Kurtosis Skewness

Length 1319.28 817.00 6100.00 2.00 1407.07 1.52 1.44

Diameter 461.11 400.00 1200.00 200.00 270.65 1.46 1.47

Thickness 76.34 43.00 244.00 21.60 71.20 0.16 1.28

Flow velocity 0.68 0.39 6.92 0.00 0.94 25.85 4.53

Condition index 135.31 140.00 140.00 120.00 8.53 −0.38 −1.28

For the Shaker Al-Bahery water network, the data gathered include physical char-
acteristics of the pipes such as length, material, age, diameter, depth, and wall thickness.
The network consists of 173 pipes totaling 10.3 km in length. The network pipes are all
composed of uPVC and are 1.3 m in depth. They were installed in this neighborhood at
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the age of 12 years old. Their diameters range from 100 to 400 mm, and the wall thickness
is determined by the manufacturer’s technical criteria. Table 3 lists the input and output
factors for five pipelines. The statistical parameters for the input and output variables are
shown in Table 4.

Table 3. Sample of the input and output factors in the Shaker Al-Bahery network.

ID Length Diameter Thickness Condition Index

1 80.72 400 43 6.61

2 32.37 300 30 6.21

3 27.04 300 30 6.52

4 100.03 100 10.6 5.78

5 34.88 200 21.6 6.47

Table 4. Statistical parameters of input and output parameters for condition prediction in the Shaker Al-Bahery network.

Variable Mean Median Maximum Minimum Standard
Deviation Kurtosis Skewness

Length 64.0 46.6 169.4 5.0 46.0 0.2 1.3

Diameter 156.1 100.0 400.0 100.0 73.0 0.1 1.1

Thickness 16.3 10.6 43.0 10.6 7.3 0.0 1.0

Condition index 6.0 5.8 6.6 5.8 0.2 −0.3 0.9

6. Results and Discussion

The performance of the ENN and FFNN models coupled with four optimization
algorithms (i.e., PSO, GA, SCA, and TLBO) is assessed to estimate water pipe condition
in the Shattora network, Egypt. Figures 6 and 7 show a comparison of the actual and
forecasted condition indices using the established machine learning models. The observed
condition indices average 6.25, while the indices of the developed models range from 6.18
to 6.25. Meanwhile, the observed indices have a standard deviation of 0.33, while the
prediction models have a standard deviation between 0.31 and 0.33.

Some statistics on the results of the neural network models are provided in Table 5. It
could be noted that the average of the FFNN-GA, FFNN-PSO, and FFNN-TLBO models
have the same mean condition index as the observed case. Additionally, the median value
of the FFNN-TLBO model (i.e., 6.26) has the closest value to the observed case (i.e., 6.29).
The second in rank is the FFNN-PSO model with a median value of 6.33. Finally, the ENN
model has the farthest median value (i.e., 6.00) from the observed case. This affirms that
the FFNN-TLBO model best simulates and mimics the observed condition of water pipes.

Table 5. Statistics on the results of the neural network models in the Shattora network.

Statistic Measure Observed
Optimized Neural Network Models

ENN
FFNN-GA FFNN-PSO FFNN-SCA FFNN-TLBO

Mean 6.25 6.25 6.25 6.18 6.25 6.24
Median 6.29 6.13 6.33 6.05 6.26 6.00

Standard deviation 0.33 0.31 0.33 0.33 0.33 0.33
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The prediction models are evaluated using three performance metrics (i.e., R, IOA,
and RMSE), as seen in Table 6. In general, higher R and IOA values indicate better model
efficiency. The low RMSE value, on the other hand, shows a high prediction capability of
the model. In terms of the IOA metric, FFNN-TLBO has a value of 1.00, which is greater
than the remaining models. The R-value of the FFNN-TLBO model is 0.999, compared to
0.987 in ENN, 0.939 in FFNN-GA, 0.993 in FFNN-PSO, and 0.924 in FFNN-SCA. Finally,
in terms of the RMSE, the FFNN-TLBO model (RMSE = 0.012) outperforms the other
four models. This value is much lower than the RMSE = 0.07 (i.e., 82% improvement) of
the GRNN model, reported as the best forecasting machine learning model in [39]. This
highlights that training FFNN using the TLBO algorithm enhances the prediction capability
of the model compared to other optimization algorithms. This can be attributed to the
capacity with which TLBO locates the global optimal point [75].
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Table 6. Performance measures of the neural network models in the Shattora network.

Performance
Measure

Optimized Neural Network Models
ENN

FFNN-GA FFNN-PSO FFNN-SCA FFNN-TLBO

IOA 0.968 0.997 0.952 1.000 0.993
R 0.939 0.993 0.924 0.999 0.987

RMSE 0.113 0.038 0.144 0.012 0.054

By trial and error, the optimum number of hidden neurons in each layer for the FFNN-
TLBO model is determined. The number of hidden neurons is changed to 5, 10, 15, and 20.
The prediction accuracy of the various topologies of the FFNN-TLBO model is assessed
using various assessment criteria, as shown in Figure 8. Among all the assessed models,
the network with five hidden neurons is associated with the best predicting accuracy.
This network has the greatest R-value (i.e., 1.00), highest IOA value (i.e., 1.00), and the
smallest RMSE value (i.e., 0.002). Therefore, to maximize the forecasting accuracy of the
FFNN-TLBO model, it is recommended that the network parameters be adjusted to five
hidden neurons.

To test and validate the performance of the FFNN-TLBO model, the performance of
the proposed model is examined against that of the ENN, FFNN-PSO, FFNN-GA, and
FFNN-SCA models in the Shaker Al-Bahery network. Figure 9 compares the actual and
predicted condition indices using established machine learning models. As shown in
Table 7, the prediction models are assessed using three performance metrics (R, IOA, and
RMSE). FFNN-TLBO has a value of 0.957 in the IOA measure, which is higher than the
other models. The FFNN-TLBO model has an R-value of 0.928, compared to 0.896, 0.923,
0.927, and 0.837 for ENN, FFNN-GA, FFNN-PSO, and FFNN-SCA, respectively. Finally,
the FFNN-TLBO model outperforms the other four models in terms of RMSE (0.095). This
affirms that employing the TLBO algorithm to train FFNN improves the model’s prediction
capabilities when compared to other forecasting models.
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Table 7. Performance measures of the neural network models in the Shaker Al-Bahery network.

Performance Measure
Optimized Neural Network Models

ENN
FFNN-GA FFNN-PSO FFNN-SCA FFNN-TLBO

IOA 0.953 0.955 0.894 0.957 0.937
R 0.923 0.927 0.837 0.928 0.896

RMSE 0.098 0.096 0.139 0.095 0.117

7. Conclusions

Most water pipes experience major degradation and deterioration problems. There-
fore, it is of the utmost importance to estimate the condition of water pipes in order to
implement the corrective action plans at the appropriate time to avoid catastrophic failures.
This research examined the condition of water pipes using the Elman neural network (ENN)
and feed-forward neural network (FFNN) coupled with genetic algorithms (GA), particle
swarm optimization (PSO), sine cosine algorithm (SCA), and teaching-learning-based
optimization (TLBO) algorithms. This study contributed to the literature by providing
examples of using four algorithms to improve neural network performance and their appli-
cation in the field of water supply pipe condition assessment. The proposed framework
was validated using two water distribution networks in Shattora and Shaker Al-Bahery,
Egypt. The inputs to these models in the Shattora network were pipe length, wall thickness,
diameter, material, lining and coating, surface type, traffic distribution, cathodic protection,
flow velocity, and c-factor. For the Shaker Al-Bahery network, the input data included
length, diameter, and wall thickness. The prediction models were assessed using three
criteria: index of agreement (IOA), correlation coefficient (R), and root mean squared
error (RMSE).

For the Shattora network, it was found that the FFNN-PSO model (R = 0.993, IOA = 0.997,
and RMSE = 0.038) outperformed the FFNN-GA model (R = 0.939, IOA = 0.968, and
RMSE = 0.113) and ENN model (R = 0.987, IOA = 0.993, and RMSE = 0.054). Meanwhile,
the FFNN model coupled with the SCA algorithm was associated with the worst per-
formance evaluation metrics (i.e., R = 0.924, IOA = 0.952, and RMSE = 0.144). Finally,
combining the FFNN with the TLBO algorithm (R = 0.999, IOA = 1.000, and RMSE = 0.012)
improved the performance metrics in comparison with the other models. The R-value
of the predicted data using FFNN-TLBO was higher than that of the FFNN-GA, FFNN-
PSO, FFNN-SCA, and ENN models by 6.44%, 0.60%, 8.16%, and 1.30%, respectively. As
for IOA, the forecasted data using FFNN-TLBO were higher than that of the FFNN-GA,
FFNN-PSO, FFNN-SCA, and ENN models by 3.30%, 0.30%, 5.04%, and 0.66%, respectively.
Furthermore, the RMSE of the predicted data using FFNN-TLBO was less than that of the
FFNN-GA, FFNN-PSO, FFNN-SCA, and ENN models by 89.64%, 68.92%, 91.85%, and
78.48%, respectively. Furthermore, the RMSE of the FFNN-TLBO model was found to be
less than that which was reported in the literature. Therefore, it can be concluded that the
FFNN-TLBO model outperformed the other developed models and enhanced the accuracy
of modeling the condition of water pipelines.

The optimum number of hidden neurons in each layer for the FFNN-TLBO model
was determined by trial and error. The number of hidden neurons was changed to 5, 10, 15,
and 20. The results confirmed that the network with five hidden neurons had the greatest
R-value (i.e., 1.00), highest IOA value (i.e., 1.00), and the smallest RMSE value (i.e., 0.002).
As a result, it was advised to adjust the number of hidden neurons to five in order to
maximize the forecasting accuracy of the FFNN-TLBO model.

The performance of the FFNN-TLBO model was compared to that of the ENN, FFNN-
PSO, FFNN-GA, and FFNN-SCA models to test and validate its performance in the Shaker
Al-Bahery network. The IOA value for FFNN-TLBO was 0.957, which was greater than the
other models. The R-value for the FFNN-TLBO model was 0.928, compared to 0.896, 0.923,
0.927, and 0.837 for the ENN, FFNN-GA, FFNN-PSO, and FFNN-SCA models. Finally, in
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terms of RMSE, the FFNN-TLBO model (0.095) outperformed the other four models. It
can be concluded that applying the TLBO algorithm to train FFNN improved the model’s
prediction abilities. Integrating neural networks and optimization algorithms improved the
capacity of neural networks to address real-world problems while avoiding overfitting and
local minima during training. The basic concept of the proposed FFNN-TLBO model is to
take full advantage of FFNN’s strong global search ability and TLBO’s quick convergence.
As a result, it has the ability to tackle a variety of optimization challenges. The good results
obtained with this methodology could be an incentive for water companies to record
quality and accurate data of the condition of the network pipes. This study was supposed
to help the water municipality allocate its budget more accurately and effectively, as well
as schedule the required intervention strategies. As for the study limitations, the data
splitting approach for training and testing purposes could be addressed by applying cross-
validation in future studies. This aids in providing a fair comparison of the performance of
the developed models, particularly in addressing underfitting and overfitting.
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