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Abstract: Sediment transport in rivers is a nonlinear natural phenomenon, which can harm the
environment and hydraulic structures and is one of the main reasons for the dams’ siltation. In
this paper, the following artificial intelligence approaches were used to simulate the suspended
sediment load (SSL) during periods of flood events in the northeastern Algerian river basins: artificial
neural network combined with particle swarm optimization (ANN-PSO), adaptive neuro-fuzzy
inference system combined with particle swarm optimization (ANFIS-PSO), random forest (RF),
and long short-term memory (LSTM). The comparison of the prediction accuracies of such different
intelligent system approaches revealed that ANN-PSO, RF, and LSTM satisfactorily simulated the
nonlinear process of SSL. Carefully comparing the results, the ANN-PSO model showed a slight
superiority over the RF and LSTM models, with RMSE = 67.2990 kg/s in the Chemourah basin and
RMSE = 55.8737 kg/s in the Gareat el tarf basin.

Keywords: SSL; artificial intelligence; LSTM; PSO; ANFIS; random forest

1. Introduction

Many significant threats to water resources arise primarily from human activities,
including pollution, climate change, urbanization, and landscape changes. Each one has
specific impacts, and most are often directly on ecosystems with repercussions on water
resources [1]. In sedimentology, sediment transport in a river is a nonlinear and complex
phenomenon, is more active during flood periods that cause a more significant amount
of sediment, and is very varied in space and time. The geological, hydrological, and
morphological parameters of a river basin have substantial implications on the sediment
activity inside a river [2]. According to Zounemat-Kermani et al. (2016) [3], suspended
sediment load (SSL) and bed sediment load (BSL) are the two significant parts of sediment
load. Still, the SSL has a complex behavior compared to BSL and can be considered the
most crucial part of the sediment load [4]. In hydraulic engineering, before installing
hydraulic structures, such as dams and reservoirs, the study and estimation of the volume
of sediment transported constitutes an important issue and is of particular interest in the
final decision [2,5]. The economic life of a reservoir is expressed through dead storage
by the incoming sediments. A poor estimate of the sediment volume results in insuffi-
cient dam capacity [5], requiring maintenance and cleaning procedures, such as dredging.
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However, those procedures are costly and sometimes even exceed the cost of rebuilding
the structure itself. Toumi and Remini (2018) [6] highlight an accumulated silt deposit
of more than 650,106 m3 in more than 110 Algerian dams. For example, a silt volume
equal to 100 million m3 is currently at the bottom of the Sidi M’hamed Ben Aouda dam
(Algeria), representing a filling rate equal to 42%. This value places it among the dams
most threatened by siltation [7].

Traditionally, the relationship between discharge and sediment concentration, for
example, has been based on setting up a simple linear regression model. This linear rela-
tionship based on empirical equations does not represent reality due to the spatiotemporal
variability of the data; the notable disadvantage of these equations leads to estimates
with a considerable margin of error [8]. Although, since the end of the 1980s, this linear
relationship seems to be an up-and-coming technique to model the runoff–sediment load
relationship to improve water resources infrastructure planning, a new concept of nonlinear
empirical and conceptual models based on artificial intelligence seems to constitute an
innovative approach to model complex systems [9]. The success of artificial intelligence
techniques to model complex systems, since the first use of classical models of artificial
neural networks (ANN), has led researchers to develop robust systems. Some examples
are the intelligent hybrid systems that combine optimization and probabilistic reason-
ing techniques, known universally as soft computing [10]. The significant advantage of
these systems is reasoning and learning in an imprecise and uncertain environment [11].
In the context of SSL, the following works can be mentioned: [12–25]. Meshram et al.
(2019) [25] used the two-phase feed-forward neuron network particle swarm optimization
gravitational search algorithm (FNN-PSOGSA), the single-phase feed-forward neuron net-
work particle swarm optimization (FNN-PSO), feed-forward neuron network (FNN), and
adaptive neuro-fuzzy inference system (ANFIS) to estimate monthly sediment load. The
authors found that the FNN-PSOGSA model was superior to the other models. Kumar et al.
(2016) [26] used the machine learning approach for daily SSL simulation in the Kopili River
basin (India). The assessment indicates that the least square support vector regression
(LS-SVR) and ANN offer more insight than decision tree models such as the M5 model tree
and classification and regression tree (CART). Based on ANN, ANFIS, and support vector
machine (SVM) models, SSL in the Coruh River (Turkey) was estimated by Buyukyildiz
and Kumcu (2017) [19]. Yilmaz et al. (2019) [23] used hybrid artificial intelligence tech-
niques combining ANN with teaching–learning-based optimization (TLBO) and artificial
bee colony (ABC) for SSL prediction. The results of ANN-TLBO and ANN-ABC models
are more promising than the classical ANN model for SSL prediction. For suspended
sediment concentration (SSC) prediction, Kisi and Yaseen (2019) [21] have documented the
effectiveness of the hybrid evolutionary fuzzy (EF) intelligence model. The conjunction
between subtractive clustering (SC), grid partition (GP), and fuzzy c-means (FCM) models
with an adaptive neuro-fuzzy inference system (ANFIS) indicates the high qualification of
the proposed models to be a brilliant approach for SSC prediction. Nourani et al. (2019) [22]
used a wavelet-based data mining technique for SSL simulation. The different modeling
approaches found that the Wavelet-M5 tree model predicts SSL with high reliability com-
pared with Wavelet-ANN (WANN) and M5 tree models. Adnan et al. (2019) [27] used
dynamic evolving ANFIS (DENFIS), ANFIS-FCM, and multivariate adaptive regression
splines (MARS) for SSL prediction, in Guangyuan and Beibei (China). The comparison
between different approaches demonstrates that the DENFIS can be the best approach for
the accurate estimation of SSL. Banadkooki et al. (2020) [28] used ANN models based on
ant lion optimization (ALO), bat algorithm (BA) and particle swarm optimization (PSO)for
SSL prediction. The results indicates that the ANN-ALO improved the accuracy RMSE of
the ANN-BA and ANN-PSO models by 18% and 26%, respectively. In three rivers in Idaho
(United States), an assessment of sediment load forecasting using ANN was performed
with different sensitivity analysis methods and 263 processed datasets. Applying the
nine sediment variables and different measured flows with sensitivity analysis indicated
no good relationship between suspended load and predicted bedload [24]. Salih et al.
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(2020) [4] used newly developed data mining models for river SSL prediction based on
M5P, M5Rule (M5R), attribute selected classifier (AS M5P), and K Star (KS). Overall, the
results obtained achieved excellent forecasting of the SSL process. The results obtained
show good reliability for different use approaches. Kaveh et al. (2020) [29] used long
short-term memory (LSTM) for daily SSC prediction in Schuylkill River (United States).
The comparison was made between the ANN, ANFIS, and LSTM models. The results show
that the LSTM could be very satisfactory for SSC time series prediction.

In Algeria, the population faces a water shortage situation [30], with a capital of
less than 500 m3/inhabitant/year [31]. Therefore, it is well below the threshold that
separates countries in the red from those with relative sufficiency [31]. Despite the various
development programs carried out in the early 2000s, a considerable breakthrough has been
achieved in constructing mobilization works, including more than 94 dams in operation,
and 5 in progress, for a total capacity of 8.4 billion m3. The situation in terms of the
protection and control of storage volumes and dead volumes of these structures, for
example, is not under control. This situation requires a national emergency response
program to optimize water resource mobilization structures [32]. Suspended sediments
transported across rivers are a significant cause of this situation and other environmental
impacts, which is well explained by Buyukyildiz and Kumcu (2017) [19]. The studies
carried out in the context of SSL at the basin level in Algeria are not sufficient by comparing
with its area and the number of dams in operation (e.g., [7,33–38]).

For example, in the Sacramento River (California), Nakato (1990) [36] tested a set of
sediment-transport formulas, i.e., the Ackers–White Einstein–Brown, Engelund–Fredsoe,
Engelund–Hansen, Inglis–Lacey, Karim, Meyer–Peter and Mueller, Rijin, Schoklitsch,
Toffaleti, and Yang formulas. The study results clearly show how difficult it is to predict
the sediment discharge in natural rivers. In the Yellow River, China, Baosheng et al.
(2008) [33] evaluated the applicability of the sediment transport methods developed by
Engelund and Hansen, Ackers and White, Yang et al., and van Rijn, and compared with
the Wuhan methods. The results show that the best possible predictions were obtained
by the Yang et al., Wuhan, and modified Wuhan methods. Acceptably good predictions
were also obtained by the van Rijn method. Several studies predict SSL based on artificial
intelligence systems, as ANN models are the most widely used intelligent models in this
field [39–42]. This paper assessed four approaches, ANN-PSO, ANFIS-PSO, RF, and LSTM,
for estimating SSL at Chemourah and Gueiss wadis. This analysis was performed in
an information-scarce environment, which is what the researcher and practitioner suffer
in Algeria. Therefore, the main aim of this study was to make essential decisions with
scant information.

2. Materials and Methods
2.1. Artificial Neural Networks

ANN can be defined as a reasoning model inspired by biological neural networks
based on the human brain. It is a relatively nonlinear technique that belongs to the black box
model category. ANN is a set of interconnected artificial neurons that perform nonlinear
mathematical functions for information processing. Many distinct neural networks are
characterized by their activation function and how interconnection is achieved between
neurons. Among these types is the multilayer perceptron (MLP). The MLP is a neural
network among the most popular models of ANN [43], and is a feedforward network
with multiple layers. It consists of an input layer, one or more hidden layers, and an
output layer. Each layer contains neurons’ propagated signals (connections) in a forward
direction layer by layer since there is no connection to neurons from the same layer. In
Figure 1 is shown the structure of the multilayer perceptron. The learning of MLP is
supervised by minimizing the cost function, which is the sum of squared errors that
represent the differences between the observed and simulated values of the network.
Backpropagation was the selected algorithm for training MLP to measure the difference
between the observed and simulated values of the network and propagate. The problem
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of the slowness of classical backpropagation led to the emergence of several different
algorithms. Among these is the Levendberg Marquardt backpropagation (LMBP). In the
context of our work, we use the LMBP algorithm because of its efficiency [44,45].

Figure 1. Structure of multilayer perceptron neural networks.

2.2. Neuro-Fuzzy Inference Systems

The adaptive neuro-fuzzy inference system (ANFIS) is an intelligent hybrid model
combining ANN and fuzzy inference systems. It is a black box nonlinear mathematical
technique capable of forming relationships between the inputs and outputs of a system,
which was first introduced by Jang (1993) [46]. ANFIS is an MLP neural network equivalent
to a fuzzy system structure, i.e., ANFIS applies the learning mechanism of ANN (back-
propagation learning) on fuzzy inference techniques. ANFIS is a neuro-fuzzy inference
model of the Sugeno type [47,48]. It can define parameters of membership functions and
fuzzy rules (if, then) from the inputs and outputs of the system, as described in Figure 2a.

Rule 1 : If x is A1 and y is B1, then Z1 = a1x + b1y + c1 (1)

Rule 2 : If x is A2 and y is B2, then Z2 = a2x + b2y + c2 (2)

where Ai and Bi are fuzzy sets and ai, bi, and ci are the consequent parameters determined
during the learning process [49,50].

As shown in Figure 2b, the architecture of the ANFIS model has five layers: the
fuzzification layer, the rules layer, the normalization layer, the defuzzification layer, and
the summation layer.

2.3. Particle Swarm Optimization

Particle swarm optimization (PSO) is a metaheuristic optimization algorithm that
is somewhat similar to evolutionary computations. It was first invented by Kennedy
and Eberhart (1995) [51]. PSO is an optimization algorithm that relies on a population of
candidate solutions (called particles) to develop the optimal solution of the problem. It
was initially inspired by the living world, specifically by simulating the social behavior
of animals, such as flocks of birds, fish, or bees. This algorithm aims to graphically
simulate the graceful and unpredictable choreography of bird individuals. Each individual
in the swarm is represented by a vector in the multidimensional search space. This
vector also has a custom vector that defines the subsequent movement of the particle,
called the velocity vector. In addition, each particle contains a memory that allows it to
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remember its best performance in value and location and the best performance achieved
by neighboring particles.

Figure 2. (a) Sugeno fuzzy reasoning and (b) architecture of ANFIS.

At the start of the algorithm, each particle is placed in the search space. The movement
of particles for each iteration is affected by three components:

1. The current velocity.
2. The best performance.
3. The best performance in its neighborhoods.

The general principle of PSO functioning is illustrated in Figure 3.

2.4. Random Forest

Random forests (RF) or forest of decision trees are techniques that provide predictive
models for classification and regression. To do this, they combine many decision trees
in a bagging-type approach. This technique was introduced by Leo Breiman [52], who
suggested it earlier under the name of CART trees (1984). RF implements binary decision
trees (CART). It performs parallel learning on multiple decision trees built randomly and
trained on different data subsets. In statistical terms, if the trees are decorrelated, it helps
reduce the forecasts’ variance. The working principle of the RF technique is illustrated in
Figure 4.
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Figure 3. Structure of the ANN-PSO and ANFIS-PSO models.

Figure 4. Flowchart of the RF functioning.

The following equation represents the output of the regression model, which is the
average of all the predicted values of the decision trees:

h(X) =
1
K

K

∑
k=1

h(x, θk) (3)

where K is the number of regression trees (k = 1, 2, . . . , K), x is a subset of the training
dataset X (input series), θ are normally distributed random variables (with zero mean and
unity variance) of the combined classifier, and h(x, θk) is the generated decision tree based
on x and θk.
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2.5. Long Short-Term Memory Networks

Long short-term memory networks (LSTM) (Figure 5) are an extension for recurrent
neural networks (RNN), which expands their memory. Therefore, they are well suited for
learning from essential experiences, which have very long delays in between. The units of
an LSTM that have internal memory are used as building units for the layers of an RNN,
which is then often referred to as an LSTM network. This unit consists of a numeric value
that the network can drive based on situations.

Figure 5. Flowchart of the LSTM functioning.

An LSTM neuron comprises an internal memory controlled by three gates: an input
gate, an output gate, and a forget gate. The input gate decides whether or not to let a new
entrance input, and the forget gate decides whether to delete the information and reset the
unit contents to 0. The output gate determines whether the unit contents must influence
the neuron’s output at the current time. Figure 4 shows a schematic of an LSTM neuron.
The type of algorithm for learning LSTM is backpropagation through time (BPTT), as in
classic recurrent networks, by unfolding the recurrent network over time.

2.6. Data Sources

For a good SSL estimation, several parameters must be used. In this study, a great lack
of necessary information and data was faced. However, it was possible to use the liquid
flow and solid flow data recorded during flood periods.

The flows and SSL data were obtained from Foum El Gueiss and Chemourah gauging
stations in the Gareat el tarf and Chemorah basins, respectively, provided by the National
Agency of Hydraulic Resources. Foum El Gueiss gauging station provides 26 years of data,
and the Chemourah station provides only 13 years of data recorded during flood periods.

3. Study Area

The Gareat el tarf and Chemorah basins are located in the northeastern part of Algeria,
at the extreme east of the high steppe plains between the Tellian Atlas in the north and the
Saharan Atlas in the south. It is a part of the basins of Constantine’s highlands, according
to the National Agency of Hydraulic Resources (ANRH). The Gareat el tarf basin is located
between the northern latitudes 35◦22′ and 35◦56′ and the eastern longitudes 06◦49′ and
07◦34′, where Oued Chemora is situated at 35◦39′52” N and 6◦38′41” E. The Gareat el tarf
basin covers an area of 2432 km2 [53], whereas the Chemorah basin has an area of 755 km2.

The Gareat el tarf and Chemorah basins (Figure 6) are limited to the north by the Sidi
Reghis and Aamamet El Kebir massifs, to the south by the Feraoun, Aurès, and El Aoud
mountains, to the east by the Fedjidjet, Bou Tokhma, Tafrennt, and Chettaia massifs, and
to the west by the Fedjoudj and Tarf mountains. The Gareat el tarf basin constitutes a
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pervasive and relatively high endorheic depression, about 960 m, receiving all the erosion
inputs from the surrounding reliefs. Most of the rivers in the basin flow towards the lake
of Gareat el tarf. In general, two types of climate characterize the Gareat el tarf basin: The
north is covered by a semiarid climate, and the south is affected by cold and humid air
currents from the Aurès, resulting in a temperate climate [53]. The Chemorah basin has
almost the same characteristics as the Gareat el tarf basin, as they are affected by a semiarid
Mediterranean climate with a cold and wet winter and dry and hot summer.

Figure 6. Geographic location of (a) Northern Algeria and (b,c) the main basins used in this study.

In this study, we used the hydrometric series of gauging stations of Foum El Gueiss
coded 07-07-02 by ANRH. The data correspond to 1002 observations of flows and SSL
of the Gueiss River during the flood events from 17 September 1971 to 11 January 1996,
whereas the hydrometric series of the gauging station of Chemorah basin coded 07-04-03,
also during the flood period, are from 17 August 1985 to 11 June 1997. Table 1 shows an
example of the data used in this research. Note that the flow (Ql) is obtained from the rating
curve and the SSL (Qs) is the product of Ql by the corresponding suspended sediment
concentration. The main statistical parameters for the data used in this study are presented
in Table 2. According to Table 2, it can be said that the statistical characteristics of the data
represented by the mean, standard deviation (STD), coefficient of variation (CV), minimum
value (Min), and maximum value (Max) are relatively similar, with a slight difference in
both Chemorah and Gareat el tarf basins.
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Table 1. Example of the data used in this research.

Year Month Day Hour Height (m) Ql (m3/s) Qs (kg/s)

1972 5 24 19:15 32 27.300 25.662
1972 5 25 06:30 17 0.966 0.985
1972 6 10 05:00 17 0.270 1.220
1972 6 11 06:00 17 0.270 0.837
1972 6 12 06:50 9 0.270 0.772
1972 7 17 05:40 8 0.098 0.632
1972 7 18 06:15 7 0.079 0.021
1972 7 19 19:00 32 0.062 0.786

Table 2. The statistical characteristics of river flow and SSL used in the study.

Basin Statistical
Parameters Mean STD CV Min Max

Chemourah
Ql (m3/s) 4.7282 9.4349 1.9955 0 74.3000
Qs (kg/s) 71.1296 150.1295 2.1106 0 955.0040

Garaet el tarf
Ql (m3/s) 3.4225 7.3479 2.1470 0 69.5000
Qs (kg/s) 64.3165 162.9772 2.5340 0 957.6070

4. Evaluation Criteria

Models are generally evaluated in the training and validation phases by calculating the
error between simulated and observed values using statistical parameters. The statistical
parameters used in this research are root mean square error (RMSE), Theil’s inequality
coefficient (U2) [54], the Nash–Sutcliffe efficiency coefficient (E) [55], and the correlation
coefficient (R) [56]. The following equations define these criteria:

RMSE =

√√√√√ N
∑

i=1
(Qsi − Q̂si)

2

N
(4)

U2 =

N
∑

i=1
(Qsi − Q̂si)

2

N
∑

i=1
Qs2

i

(5)

E = 1−

N
∑

i=1
(Qsi − Q̂si)

2

N
∑

i=1
(Qsi −Qsi)

2
(6)

R =

N
∑

i=1
(Qsi −Qsi)(Q̂si − Q̃si)√

N
∑

i=1
(Qsi −Qsi)

2 N
∑

i=1
(Q̂si − Q̃si)

2
(7)

where Qsi is the measured value of SSL; Q̂si is the calculated SSL by the model; Qsi is
the measured average SSL; Q̃si is the calculated average SSL, and N is the number of
data points.
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5. Models Development

In this study, the neuro-particle swarm (ANN-PSO), neuro-fuzzy-particle swarm (ANFIS-
PSO), RF, and LSTM models were used to estimate the SSL in the Gueiss and Chemourah
rivers. Due to the lack of sufficient information in this study, flows with lag time t, t −–1, and
t − 2 (Ql(t), −Ql(t − 1) and −Ql(t − 2)) and SSL with lag time t − 1 (Qs(t − 1)) were used as
input vectors for the models, which are values observed during periods of flood events.
The outputs of the models are the current calculated SSL (Qs(t)) using water discharge and
suspended sediment concentration.

The available database was divided into two sets to adjust model parameters and
achieve optimal performance: a set for the training phase contains 70% of the data, and a
set for the validation phase includes 30% of the data. Table 3 illustrates the combinations
of the proposed input vectors to simulate the SSL by the ANN-PSO, ANFIS-PSO, RF, and
LSTM models. For the ANN-PSO and ANFIS-PSO models, MLP and ANFIS were used in
conjunction with the PSO optimization algorithm, as shown in Figure 3.

Table 3. The combinations of the proposed input vectors for ANN-PSO, ANFIS-PSO, RF, and LSTM.

Input Models Number of Input Output

(1) Ql(t) 1 Qs(t)
(2) Ql(t) and –Qs(t − 1) 2 Qs(t)
(3) Ql(t) and −Ql(t − 1) 2 Qs(t)
(4) Ql(t), −Ql(t − 1) and −Qs(t − 1) 3 Qs(t)
(5) Ql(t), −Ql(t − 1) and −Ql(t − 2) 3 Qs(t)
(6) Ql(t), −Ql(t − 1), −Ql(t − 2) and −Qs(t − 1) 4 Qs(t)

ANN-PSO development is carried out by determining the optimum number of neurons
in the hidden layer for different combinations of the proposed input vectors. This procedure
was carried out by error testing by modifying the number of hidden neurons to obtain the
structure that gives maximum performance. ANFIS-PSO was developed by performing
error tests with variations in the number of rules for the input vector combinations provided.
The rules that produced the slightest performance error were chosen to develop ANFIS-
PSO to estimate SSL. We used the early stopping algorithm to avoid the over-fitting and
under-fitting problem for the models used in this research (ANN-PSO and ANFIS-PSO).
The early stopping algorithm determines the number of iterations and stops learning before
the algorithm converges. It involves specifying the number of iterations used in training,
checking for errors based on validation, and stopping training as soon as the error begins to
increase. We follow the same process by error-testing the validation dataset of different sets
of combinations input vectors proposed to develop RF and LSTM models to obtain the best
possible performance for estimating SSL.

6. Results and Discussion

After developing ANN-PSO, ANFIS-PSO, RF, and LSTM models for different combina-
tions of input vectors, they were evaluated according to RMSE error. In Chemourah basin,
the ANN-PSO and LSTM models gave the lowest values for RMSE with a combination of
input vectors (4 vectors). In contrast, the ANFIS-PSO model gave the highest values of
RMSE for input vectors (4 vectors) for the two basins (Figure 7a). According to Figure 7b,
in the Gareat el tarf basin, ANN-PSO and LSTM models had the lowest RMSE values with a
combination of 4 input vectors, while RF and ANN-PSO models showed the lowest values
for the combination of 2 and 3 input vectors, respectively.

Table 4 presents the results obtained by the optimal models of ANN-PSO, ANFIS-
PSO, RF, and LSTM in the training and validation phases. According to Table 4, the
ANN-PSO model provided the best results in estimating the SSL for both basins in the val-
idation phase, i.e., RMSE = 67.2990 kg/s in Chemourah basin and RMSE = 55.8737 kg/s
in Gareat el tarf basin. In contrast, the ANFIS-PSO model provided the worst results in
both basins, i.e., RMSE = 158.2035 kg/s in Chemourah basin and RMSE = 165.3653 kg/s
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in Gareat el tarf basin. The RF and LSTM models always gave acceptable results in the
validation phase. In Chemourah basin, the RF model gave RMSE = 74.5747 kg/s and the
LSTM model gave RMSE = 69.4178 kg/s, while in the Gareat el tarf basin the RF model
gave the result of RMSE = 58.9957 kg/s and the LSTM model gave RMSE = 64.8888 kg/s.
According to Kaveh et al. (2021) [29], the LSTM algorithm could satisfactorily predict
SSC compared to ANN and ANFIS. Al Dahoul et al. (2021) [57] reported that LSTM out-
performed other models such as linear regression, MLP, and extreme gradient boosting
for SSL prediction. Sharafati et al. (2020) [58] applied new ensemble machine learning
models for daily SSL prediction based on gradient boost regression (GBR), AdaBoost
regression (ABR), and RF regression. This shows that the RF model has a slight lead in
prediction performance.

Figure 7. Evaluation of RMSE based on the different combinations of input vectors s for ANN-PSO, ANFIS-PSO, RF, and
LSTM models in the validation phase.

Figures 8 and 9 show the superiority of the ANN-PSO, RF, and LSTM models over
the ANFIS-PSO model. This superiority is translated by the results reported for the
RMSE, U2, E, and R statistical parameters (Table 4). In an in-depth comparison, the
ANN-PSO model provides the best performance compared with the other models with
low values of RMSE and U2, and high values of E and R. Similarly, Mohammadi et al.
(2021) [59] concluded that ANN-PSO is the best algorithm in terms of accurate predic-
tion of SSL with a lower number of input parameters compared to radial basis function
(RBFNN) and SVM. Hanoon et al. (2021) [60] revealed that ANN provided a superior
performance to that of the gradient boost regression (GBT), RF, and SVM for SSL pre-
diction for some case studies in Malaysia. Idrees et al. (2021) [61] concluded that the
ANN is better compared to the ANFIS, RBFNN, SVM , and GP in terms of SSL prediction
capabilities. Nhu et al. 2020 [62] tested the predictive ability of a random subspace (RS),
RF, two SVM models using a radial basis function kernel (SVM-RBF) and a normalized
polynomial kernel (SVM-NPK) model for monthly SSL estimation. The results show
the superiority of the RS model compared to SVM-RBF, SVM-NPK, and RF models.
Ehteram et al. 2021 [63] optimized ANN by multi-objective whale algorithm (MOWA)
for predicting daily SSL. The ANN-MOWA model showed the best accuracy for pre-
dicting daily SSL, compared with other models. The main statistical characteristics of
mean, standard deviation (STD), coefficient of variation (CV), minimum value (Min),
and maximum value (Max) of the observed and estimated SSL by the optimum models
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of ANN, ANFIS, ANN-GA, and ANN-PSO in the training and validation phases are
shown in Table 5. Figures 10 and 11 show comparisons between observed and estimated
SSL values using the optimal ANN-PSO, ANFIS-PSO, RF, and LSTM models (training
and validation phases). These figures demonstrate the efficacy and superiority of the
ANN-PSO, RF, and LSTM models compared to ANFIS-PSO. The poor results obtained
by ANFIS-PSO are due to the complexity of the fuzzy rules, which led the model to not
find a well-defined relationship between inputs and outputs.

Figure 8. Violin diagram of different machine learning models in the training and validation phases.

From Table 4 and Figures 10 and 11, the ANN-PSO model has provided more efficient
results than the RF, LSTM, and ANFIS-PSO models for estimating SSL. Comparing the
obtained results with those presented by Bouzeria et al. (2017) [64], using data from
northeastern Algeria to predict sediment loads in the Mellah catchment with an ANN, the
present results are very satisfactory, despite the lack of sufficient information and the use
of only recorded flood data.
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Table 4. The results obtained by ANN-PSO, ANFIS-PSO, RF, and LSTM for the training and valida-
tion phases.

Basin Models Phases RMSE U2 E R

Chemourah

ANN-PSO
Training 78.1193 0.1828 0.7663 0.8755

Validation 67.2990 0.3274 0.6346 0.8003

ANFIS-PSO
Training 201.5912 1.2171 −0.5561 0.0051

Validation 158.2035 1.8090 −1.0195 −0.0012

RF
Training 77.1006 0.1780 0.7724 0.8845

Validation 74.5747 0.4020 0.5513 0.7458

LSTM
Training 62.0405 0.1153 0.8526 0.9239

Validation 69.4178 0.3483 0.6112 0.7824

Garaet el tarf

ANN-PSO
Training 88.7852 0.2009 0.7564 0.8706

Validation 55.8737 0.2904 0.6971 0.8392

ANFIS-PSO
Training 239.5296 1.4647 −0.7753 −0.0235

Validation 165.3653 2.5346 −1.6440 −0.0394

RF
Training 80.1885 0.1639 0.8013 0.8974

Validation 58.9957 0.3237 0.6624 0.8157

LSTM
Training 68.6353 0.1201 0.8544 0.9273

Validation 64.8888 0.3916 0.5915 0.7706

Figure 9. Taylor diagram of different machine learning models in the training and validation phases.
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Figure 10. Comparison between observed and estimated SSL of Chemourah basin by the different machine learning models
in the training and validation phases.

Table 5. Characteristics of statistical parameters of observed and estimated SSL for ANN-PSO, ANFIS-PSO, RF, and LSTM.

Basin Models Phases Flow Mean STD CV Min Max

Chemourah

ANN−PSO
Training Observed 85.2852 161.9096 1.8984 0 955.0040

Simulated 87.2012 142.5901 1.6352 0.0567 819.1319

Validation
Observed 37.9759 111.8170 2.9444 0 647.2060
Simulated 42.6991 82.3302 1.9282 0.1968 500.3120

ANFIS−PSO
Training Observed 85.2852 161.9096 1.8984 0 955.0040

Simulated 71.0791 120.7254 1.6985 −0.0036 884.2506

Validation
Observed 37.9759 111.8170 2.9444 0 647.2060
Simulated 56.9000 109.9396 1.9322 0.0252 670.2476

RF
Training Observed 85.2852 161.9096 1.8984 0 955.0040

Simulated 81.5454 127.4940 1.5635 0.0486 622.4522

Validation
Observed 37.9759 111.8170 2.9444 0 647.2060
Simulated 42.5403 77.0234 1.8106 0.0486 365.7755

LSTM
Training Observed 85.2852 161.9096 1.8984 0 955.0040

Simulated 84.1479 144.4213 1.7163 −52.7124 843.7532

Validation
Observed 37.9759 111.8170 2.9444 0 647.2060
Simulated 41.4518 87.9488 2.1217 −17.5058 512.4590
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Table 5. Cont.

Basin Models Phases Flow Mean STD CV Min Max

Garaet el tarf

ANN−PSO
Training Observed 82.9021 180.0103 2.1714 0 957.6070

Simulated 89.6066 154.6680 1.7261 0.0427 859.5337

Validation
Observed 21.0568 101.7052 4.8301 0 909.5410
Simulated 27.2904 79.4557 2.9115 0.0310 776.1455

ANFIS−PSO
Training Observed 82.9021 180.0103 2.1714 0 957.6070

Simulated 64.5640 153.1941 2.3727 −111.9880 931.0246

Validation
Observed 21.0568 101.7052 4.8301 0 909.5410
Simulated 45.9378 124.2811 2.7054 −0.0695 1.1821

RF
Training Observed 82.9021 180.0103 2.1714 0 957.6070

Simulated 82.6496 150.0450 1.8154 0.0721 687.6447

Validation
Observed 21.0568 101.7052 4.8301 0 909.5410
Simulated 26.3224 81.1212 3.0818 0.0721 641.6942

LSTM
Training Observed 82.9021 180.0103 2.1714 0 957.6070

Simulated 79.1898 154.0421 1.9452 −32.8914 739.1696

Validation
Observed 21.0568 101.7052 4.8301 0 909.5410
Simulated 21.2770 73.5315 3.4559 −39.5889 711.1299

Figure 11. Comparison between observed and estimated SSL of Gareat el tarf basin by the different machine learning
models in the training and validation phases.
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7. Conclusions

In this study, four different machine learning approaches, ANN-PSO, ANFIS-PSO,
RF, and LSTM, were examined for estimating SSL in the Chemourah and Gareat el tarf
basins using observation data of flood events of the Chemourah and Gueiss rivers. This
paper also shows that the ANN-PSO, RF, and LSTM models have given a better accuracy
of simulations compared to the ANFIS-PSO model. Model performances were measured
using RMSE, U2, E, and R, between the estimated and observed SSL values. The results
indicate that the ANN-PSO model is slightly better than the RF and LSTM models for
estimating SSL in the Chemourah and Gareat el tarf basins. We concluded from this study
that the ANN-PSO, RF, and LSTM models can always give good results compared with the
ANFIS-PSO model. The ANN-PSO, RF, and LSTM models can decrease the complexity
of runoff and SSL relationships and increase the estimation accuracy. These encouraging
results lead us to experiment and use other machine learning systems and hybrid models to
estimate SSL in rivers, and encourage the installation of flumes that enable more accurate
measurements in the basin outlet sections to take even more advantage of such new
computational techniques.
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3. Zounemat-Kermani, M.; Kişi, Ö.; Adamowski, J.; Ramezani-Charmahineh, A. Evaluation of data driven models for river

suspended sediment concentration modeling. J. Hydrol. 2016, 535, 457–472. [CrossRef]
4. Salih, S.-Q.; Sharafati, A.; Khosravi, K.; Faris, H.; Kisi, O.; Tao, H.; Yaseen, Z.-M. River suspended sediment load prediction based

on river discharge information: Application of newly developed data mining models. Hydrol. Sci. J. 2020, 65, 624–637. [CrossRef]
5. Kisi, Ö. Multi-layer perceptrons with Levenberg-Marquardt training algorithm for suspended sediment concentration prediction

and estimation/Prévision et estimation de la concentration en matières en suspension avec des perceptrons multi-couches et
l’algorithme d’apprentissage de Levenberg-Marquardt. Hydrol. Sci. J. 2004, 49, 1025–1040. [CrossRef]

6. Toumi, A.; Remini, B. Perte de la capacité de stockage d’eau au barrage de Beni Haroun, Algérie. Loss of water storage capacity
at the Beni Haroun dam, Algeria. Syst. Agric. Environ. 2018, 2, 80–97.

7. Remini, B.; Bensafia, D.; Mekhatri, A. Sidi M’hamed Ben Aouda’s Dam (Algeria): Acceleration to the silting! LARHYSS 2018, 33,
221–252.

8. Yilmaz, B.; Aras, E.; Kankal, M.; Nacar, S. Prediction of suspended sediment loading by means of hybrid artificial intelligence
approaches. Acta Geophys. 2019, 67, 1693–1705. [CrossRef]

www.greenfacts.org/fr/ressources-eau/
http://doi.org/10.1016/j.ijsrc.2018.09.001
http://doi.org/10.1016/j.jhydrol.2016.02.012
http://doi.org/10.1080/02626667.2019.1703186
http://doi.org/10.1623/hysj.49.6.1025.55720
http://doi.org/10.1007/s11600-019-00374-3


Water 2021, 13, 3539 17 of 19

9. Zerouali, B.; Chettih, M.; Abda, Z.; Mesbah, M.; Djemai, M. The use of hybrid methods for change points and trends detection in
rainfall series of northern Algeria. Acta Geophys. 2020, 68, 1443–1460. [CrossRef]

10. Abda, Z.; Chettih, M. Forecasting daily flow rate-based intelligent hybrid models combining wavelet and Hilbert–Huang
transforms in the mediterranean basin in northern Algeria. Acta Geophys. 2018, 66, 1131–1150. [CrossRef]

11. Abda, Z.; Chettih, M.; Zerouali, B. Assessment of neuro-fuzzy approach based different wavelet families for daily flow rates
forecasting. Model. Earth Syst. Environ. 2020, 7, 1523–1538. [CrossRef]

12. Bajirao, T.S.; Kumar, P.; Kumar, M.; Elbeltagi, A.; Kuriqi, A. Superiority of Hybrid Soft Computing Models in Daily Suspended
Sediment Estimation in Highly Dynamic Rivers. Sustainability 2021, 13, 542. [CrossRef]

13. Cimen, M. Estimation of daily suspended sediments using support vector machines. Hydrol. Sci. J. 2008, 53, 656–666. [CrossRef]
14. Ghorbani, M.A.; Khatibi, R.; Singh, V.P.; Kahya, E.; Ruskeepää, H.; Saggi, M.K.; Sivakumar, B.; Kim, S.; Salmasi, F.;

Kashani, M.H.; et al. Continuous monitoring of suspended sediment concentrations using image analytics and deriving inherent
correlations by machine learning. Sci. Rep. 2020, 10, 1–9.

15. Azamathulla, H.M.; Cuan, Y.C.; Ghani, A.A.; Chang, C.K. Suspended sediment load prediction of river systems: GEP approach.
Arab. J. Geosci. 2013, 6, 3469–3480. [CrossRef]

16. Lafdani, E.K.; Nia, A.M.; Ahmadi, A. Daily suspended sediment load prediction using artificial neural networks and support
vector machines. J. Hydrol. 2013, 478, 50–62. [CrossRef]

17. Olyaie, E.; Banejad, H.; Chau, K.W.; Melesse, A.M. A comparison of various artificial intelligence approaches performance for
estimating suspended sediment load of river systems: A case study in United States. Environ. Monit. Assess. 2015, 187, 1–22.
[CrossRef] [PubMed]

18. Shamaei, E.; Kaedi, M. Suspended sediment concentration estimation by stacking the genetic programming and neuro-fuzzy
predictions. Appl. Soft. Comput. 2016, 45, 187–196. [CrossRef]

19. Buyukyildiz, M.; Kumcu, S.Y. An estimation of the suspended sediment load using adaptive network based fuzzy inference
system, support vector machine and artificial neural network models. Water Resour. Manag. 2017, 31, 1343–1359. [CrossRef]

20. Elahcene, O.; Bouznad, I.E.; Bouleknaft, Z. Erosion and solid transport processes in the Isser Wadi watershed, Algeria. Euro-
Mediterr. J. Environ. Integr. 2019, 4, 1–10. [CrossRef]

21. Kisi, O.; Yaseen, Z.M. The potential of hybrid evolutionary fuzzy intelligence model for suspended sediment concentration
prediction. Catena 2019, 174, 11–23. [CrossRef]

22. Nourani, V.; Molajou, A.; Tajbakhsh, A.D.; Najafi, H. A wavelet based data mining technique for suspended sediment load
modeling. Water Resour. Manag. 2019, 33, 1769–1784. [CrossRef]

23. Nourani, V.; Andalib, G. Daily and monthly suspended sediment load predictions using wavelet based artificial intelligence
approaches. J. Mt. Sci. 2015, 12, 85–100. [CrossRef]

24. Asheghi, R.; Hosseini, S.A.; Saneie, M.; Shahri, A.-A. Updating the neural network sediment load models using different
sensitivity analysis methods: A regional application. J. Hydroinf. 2020, 22, 562–577. [CrossRef]

25. Meshram, S.G.; Ghorbani, M.A.; Deo, R.C.; Kashani, M.H.; Meshram, C.; Karimi, V. New approach for sediment yield forecasting
with a two-phase feedforward neuron network-particle swarm optimization model integrated with the gravitational search
algorithm. Water Resour. Manag. 2019, 33, 2335–2356. [CrossRef]

26. Kumar, D.; Pandey, A.; Sharma, N.; Flügel, W.A. Daily suspended sediment simulation using machine learning approach. Catena
2016, 138, 77–90. [CrossRef]

27. Adnan, R.-M.; Liang, Z.; El-Shafie, A.; Zounemat-Kermani, M.; Kisi, O. Prediction of suspended sediment load using data-driven
models. Water 2019, 11, 2060. [CrossRef]

28. Banadkooki, F.B.; Ehteram, M.; Ahmed, A.N.; Teo, F.Y.; Ebrahimi, M.; Fai, C.M.; Huang, Y.K.; El-Shaife, A. Suspended sediment
load prediction using artificial neural network and ant lion optimization algorithm. Environ. Sci. Pollut. Res. 2020, 27, 38094–38116.
[CrossRef] [PubMed]

29. Kaveh, K.; Kaveh, H.; Bui, M.-D.; Rutschmann, P. Long short-term memory for predicting daily suspended sediment concentration.
Eng. Comput. 2020, 37, 2013–2027. [CrossRef]

30. Zerouali, B.; Chettih, M.; Abda, Z.; Mesbah, M.; Santos, C.A.G.; Neto, R.M.B.; da Silva, R.M. Spatiotemporal meteorological
drought assessment in a humid Mediterranean region: Case study of the Oued Sebaou basin (northern central Algeria). Nat.
Hazards 2021, 108, 689–709. [CrossRef]

31. Touati, B. Les Barrages et la Politique Hydraulique en Algérie. 2010. Available online: https://bu.umc.edu.dz/theses/sc-terre/
TOU5850.pdf (accessed on 5 July 2021).

32. Zerouali, B.; Chettih, M.; Alwetaishi, M.; Abda, Z.; Elbeltagi, A.; Augusto Guimarães Santos, C.; Hussein, E.E. Evaluation of Karst
Spring Discharge Response Using Time-Scale-Based Methods for a Mediterranean Basin of Northern Algeria. Water 2021, 13,
2946. [CrossRef]

33. Baosheng, W.U.; Van Maren, D.S.; Lingyun, L.-I. Predictability of sediment transport in the Yellow River using selected transport
formulas. Inter. J. Sediment Res. 2008, 23, 283–298.

34. Benkhaled, A.; Remini, B. Variabilité temporelle de la concentration en sédiments et phénomène d’hystérésis dans le bassin de
l’Oued Wahrane (Algérie). Hydrol. Sci. J. 2003, 48, 243–255. [CrossRef]

35. El Mahi, A.; Meddi, M.; Bravard, J.P. Analyse du transport solide en suspension dans le bassin versant de l’Oued El Hammam
(Algérie du Nord). Hydrol. Sci. J. 2012, 57, 1642–1661. [CrossRef]

http://doi.org/10.1007/s11600-020-00466-5
http://doi.org/10.1007/s11600-018-0188-0
http://doi.org/10.1007/s40808-020-00855-1
http://doi.org/10.3390/su13020542
http://doi.org/10.1623/hysj.53.3.656
http://doi.org/10.1007/s12517-012-0608-4
http://doi.org/10.1016/j.jhydrol.2012.11.048
http://doi.org/10.1007/s10661-015-4381-1
http://www.ncbi.nlm.nih.gov/pubmed/25787167
http://doi.org/10.1016/j.asoc.2016.03.009
http://doi.org/10.1007/s11269-017-1581-1
http://doi.org/10.1007/s41207-019-0113-1
http://doi.org/10.1016/j.catena.2018.10.047
http://doi.org/10.1007/s11269-019-02216-9
http://doi.org/10.1007/s11629-014-3121-2
http://doi.org/10.2166/hydro.2020.098
http://doi.org/10.1007/s11269-019-02265-0
http://doi.org/10.1016/j.catena.2015.11.013
http://doi.org/10.3390/w11102060
http://doi.org/10.1007/s11356-020-09876-w
http://www.ncbi.nlm.nih.gov/pubmed/32621196
http://doi.org/10.1007/s00366-019-00921-y
http://doi.org/10.1007/s11069-021-04701-0
https://bu.umc.edu.dz/theses/sc-terre/TOU5850.pdf
https://bu.umc.edu.dz/theses/sc-terre/TOU5850.pdf
http://doi.org/10.3390/w13212946
http://doi.org/10.1623/hysj.48.2.243.44698
http://doi.org/10.1080/02626667.2012.717700


Water 2021, 13, 3539 18 of 19

36. Nakato, T. Tests of selected sediment-transport formulas. J. Hydraul. Eng. 1990, 116, 362–379. [CrossRef]
37. Hasbaia, M.; Paquier, A.; Herizi, T. Hydrological modeling of sediment transport in the semiarid region, case of Soubella

watershed in Algeria. In Water Resources in Arid Areas: The Way Forward; Springer: Cham, Switzerland, 2017; pp. 251–266.
38. Tachi, S.E.; Bouguerra, H.; Derdous, O.; Djabri, L.; Benmamar, S. Estimating suspended sediment concentration at different time

scales in Northeastern Algeria. Appl. Water Sci. 2020, 10, 1–8. [CrossRef]
39. Bouguerra, H.; Tachi, S.-E.; Derdous, O.; Bouanani, A.; Khanchoul, K. Suspended sediment discharge modeling during flood

events using two different artificial neural network algorithms. Acta Geophys. 2019, 67, 1649–1660. [CrossRef]
40. Boukhrissa, Z.A.; Khanchoul, K.; Le Bissonnais, Y.; Tourki, M. Prediction of sediment load by sediment rating curve and neural

network (ANN) in El Kebir catchment, Algeria. J. Earth Syst. Sci. 2013, 122, 1303–1312. [CrossRef]
41. Salhi, C.; Touaibia, B.; Zeroual, A. Les réseaux de neurones et la régression multiple en prédiction de l’érosion spécifique: Cas du

bassin hydrographique Algérois-Hodna-Soummam (Algérie). Hydrol. Sci. J. 2013, 58, 1573–1580. [CrossRef]
42. Tachi, S.E.; Ouerdachi, L.; Remaoun, M.; Derdous, O.; Boutaghane, H. Forecasting suspended sediment load using regularized

neural network: Case study of the Isser River (Algeria). J. Water Land Develop. 2016, 29, 75–81. [CrossRef]
43. Wu, C.L.; Chau, K.W.; Fan, C. Prediction of rainfall time series using modular artificial neural networks coupled with data-

preprocessing techniques. J. Hydrol. 2010, 389, 146–167. [CrossRef]
44. Kim, R.J.; Loucks, D.P.; Stedinger, J.R. Artificial neural network models of watershed nutrient loading. Water Resour. Manag. 2012,

26, 2781–2797. [CrossRef]
45. Rezaeianzadeh, M.; Tabari, H.; Yazdi, A.-A.; Isik, S.; Kalin, L. Flood flow forecasting using ANN, ANFIS and regression models.

Neural Comput. Appl. 2014, 25, 25–37. [CrossRef]
46. Jang, J.S. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685. [CrossRef]
47. Sugeno, M.; Kang, G.T. Fuzzy modelling and control of multilayer incinerator. Fuzzy Set Syst. 1986, 18, 329–345. [CrossRef]
48. Takagi, T.; Sugeno, M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern.

SMC 1985, 1, 116–132. [CrossRef]
49. Akrami, S.A.; El-Shafie, A.; Jaafar, O. Improving rainfall forecasting efficiency using modified adaptive neuro-fuzzy inference

system (MANFIS). Water Resour. Manag. 2013, 27, 3507–3523. [CrossRef]
50. Awan, J.A.; Bae, D.H. Improving ANFIS based model for long-term dam inflow prediction by incorporating monthly rainfall

forecasts. Water Resour. Manag. 2014, 28, 1185–1199. [CrossRef]
51. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural

Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948.
52. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
53. Naouel, D.; Zouini, D.; Breil, P. Contribution to flood risk management by the IRIP method at the level of Gareat El Taref

catchment, Constantine’s highlands, North-East of Algeria. J. Water Land Develop. 2018, 38, 95–104. [CrossRef]
54. Hauduc, H.; Neumann, M.B.; Muschalla, D.; Gamerith, V.; Gillot, S.; Vanrolleghem, P.A. Efficiency criteria for environmental

model quality assessment: A review and its application to wastewater treatment. Environ. Modell. Soft. 2015, 68, 196–204.
[CrossRef]

55. Abda, Z.; Chettih, M.; Zerouali, B. Efficiency of a neuro-fuzzy model based on the Hilbert-Huang transform for flood pre-
diction. In Advances in Sustainable and Environmental Hydrology, Hydrogeology, Hydrochemistry and Water Resources; Springer:
Cham, Switzerland, 2019; pp. 401–404.
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