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Abstract: Rainfall–runoff modelling has been at the essence of research in hydrology for a long
time. Every modern technique found its way to uncover the dynamics of rainfall–runoff relation
for different basins of the world. Different techniques of machine learning have been extensively
applied to understand this hydrological phenomenon. However, the literature is still scarce in cases
of extensive research work on the comparison of streamline machine learning (ML) techniques
and impact of wavelet pre-processing on their performance. Therefore, this study compares the
performance of single decision tree (SDT), tree boost (TB), decision tree forest (DTF), multilayer
perceptron (MLP), and gene expression programming (GEP) in rainfall–runoff modelling of the Soan
River basin, Pakistan. Additionally, the impact of wavelet pre-processing through maximal overlap
discrete wavelet transformation (MODWT) on the model performance has been assessed. Through
a comprehensive comparative analysis of 110 model settings, we concluded that the MODWT-
based DTF model has yielded higher Nash–Sutcliffe efficiency (NSE) of 0.90 at lag order (Lo4). The
coefficient of determination for the model was also highest among all the models while least root
mean square error (RMSE) value of 23.79 m3/s was also produced by MODWT-DTF at Lo4. The
study also draws inter-technique comparison of the model performance as well as intra-technique
differentiation of modelling accuracy.

Keywords: machine learning; ANN; single tree boost; decision tree; decision tree forest; Pothohar region

1. Introduction

The predominant role of several nonstationary and nonlinear variables in transforma-
tion of rainfall into runoff makes it difficult to comprehend [1]. Moreover, the spatiotem-
poral variability in rainfall intensity and uniformity adds to the complexity of modelling
basin response to catchment precipitation [2]. However, the direct involvement of rainfall
in runoff generation and runoff in streams, rivers, and even floods, makes it one of the
most focused hydrological phenomena. The natural disasters such as fluvial and pluvial
floods and hydrological droughts are also determined by the rainfall–runoff relationship of
any basin [3]. Therefore, precise and accurate rainfall–runoff modelling is important for
effective management of water resources and prediction and prevention of natural calami-
ties. The relationship between rainfall and runoff is also empirically expressed in the mass
balance equation [4]. From the equation it can be observed that both rainfall/precipitation
(P) and runoff (R) play a decisive role in storage change (dS), while infiltration (I) and
evaporation losses (E) are also to be considered for an accurate estimation of change in
water storage.

dS = P − R − I − E (1)
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Owing to the direct participation of rainfall in the generation of runoff, hydrologists
and researchers worldwide have been trying to understand the exact relationship between
the two hydrological variables. Rainfall–runoff modelling has been the prime focus of
hydrology research for a long time. It has brought the research area to an advanced phase
of maturity and diversity in context of mathematical and methodological background [5].
However, the remaining discrepancy in rainfall–runoff relation and the emergence of
machine learning is promising. These computational techniques either reduce the para-
metric requirement or enhance modelling accuracy, or even serve both purposes [6]. The
rational method of runoff estimation by Mulvaney [7] is often rated as the first attempt of
rainfall–runoff modelling [6]. However, significant advances in different conceptual and
physical models were introduced in the field of hydrology. The mean annual method [8],
unit hydrographs [9] and instantaneous unit hydrographs [10], Stanford Watershed Model
(SWM) [11], and Huggins–Monke model [12] are some of the significant names.

The initial application of machine learning in rainfall–runoff modelling [13] and
rainfall forecasting [14] set modelling in hydrology to a whole new direction. Artificial
neural networks (ANN) gained massive popularity in rainfall–runoff modelling [2,15–22]
and rainfall forecasting [23–29]. Other techniques of machine learning, such as gene
expression programming (GEP), single decision tree (SDT), decision tree forest (DTF) and
tree boost (TB), were also extensively used by researchers [30–32].

Earlier studies compared machine learning techniques with conventional conceptual
or physical-based models while the recent studies probed deeper into machine learning
models for better results. For example, Shoaib et. al [21] compared the performance of
wavelet-based multilayer perceptron neural networks (MLPNN) and radial basis function
neural networks (RBFNN) in rainfall–runoff modelling of the Brosna River basin. The
authors suggested that data pre-processing with wavelet transformation significantly
enhanced modelling efficiency of both techniques. Similarly, Asadi et. al [15] pre-processed
ANN inputs using a standardization process and enhanced the performance of simple
ANN models in the Haughton and Calliope river basins. Kumar et. al [17] contrasted the
performance of emotional neural networks (ENN) and typical ANN models in rainfall–
runoff modelling. The authors concluded that ENN outperformed ANN rainfall–runoff
modelling of Sone command, Bihar. Sharghi et. al [20] also implemented an emotional
artificial neural network (EANN) and compared its performance with wavelet-based ANN
(WANN) models. This study also marked EANN to be better than ANN and WANN in
rainfall–runoff modelling application. In another study, Sharghi et al. [33] coupled EANN
models with wavelet transformation (WEANN). The authors observed that WEANN
outperformed WANN and EANN when applied to the rainfall–runoff modelling problem
of the Trinity River basin. Similarly, Poonia and Tiwari [18] implemented newer variants
of ANN, RBFNN, and feed-forward back propagation model (FFBP) for modelling the
Hoshangabad Basin, Narmada River. The authors observed that RBF yielded higher
modelling as compared to FFBP models.

Contrastingly, other data-driven soft computing techniques, including DTF, TB, SDT,
and GEP, have confined application in rainfall–runoff relation extraction problems. How-
ever, these techniques have been used for different hydrological problems. Aytek et al. [34]
employed GEP models for rainfall–runoff simulation of Juniata River basin in the USA. The
authors contrasted model performance with that of ANN variants, FFBP, and generalized
regression neural networks (GRNN). It was concluded that GEP performed well in compar-
ison with ANN models, and thus could be used as an ANN alternative subject to fulfilment
of parametric requirement. Nourani et. al [35] coupled M5 decision tree with wavelet
transformation for rainfall–runoff modelling and compared its performance with simple
ANN and M5 tree models. In conclusion, the wavelet coupled M5 decision tree model
performed better than both the ANN and M5 tree models. Lee et al. [36] applied DTF and
TB techniques in spatial mapping of flood susceptibility in Seoul, South Korea. It was
observed that the machine learning techniques performed better than other conventional
methods used in the study. Similarly, Raza et al. [37] used SDT, TB, and DTF, to estimate
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reference evapotranspiration in different climate zones of Pakistan. TB models yielded
better results than SDT and DTF in most locations, while in general, machine learning
techniques outperformed conventional methods of evapotranspiration estimation, such as
the Penman–Monteith (FAO-56 method) [38].

A comprehensive literature review of above-cited streamline studies exhibits a clear
gap in terms of an encompassing research work that compares the performance of major
machine learning techniques in rainfall–runoff modelling. Moreover, the effect of data pre-
processing with wavelet transformation on the performance of GEP, TB, SDT, and DTF is
still unclear. To address this research gap, the main objectives of this study are: (1) to apply
the major machine learning techniques ANN, GEP, SDT, TB, and DTF in a single research
work, (2) to couple every technique with wavelet transformation in order to assess the effect
of pre-processing on model performance. This study provides comprehensive research on
machine learning application in rainfall–runoff modelling along with implementation of
wavelet pre-processing. Other machine learning approaches include regression models (lin-
ear and logistic), support vector machine (SVM), k-nearest neighbour (KNN), naive Bayes,
and gradient boosting models, but the selection of abovementioned techniques (ANN,
GEP, SDT, TB, and DTF) for analysis is due to their up-to-date modelling variants, and
overwhelming and continuous application in hydrological and environmental problems.
The selected techniques have been separately studied in hydrological context in earlier
studies of various authors [21,22,25,39,40]. However, basin-wide study encompassing ML
techniques and wavelet transformation in the Pothohar region is a novel attempt provided
in this research report.

2. Methodology
2.1. Study Area and Datasets

Largest of six basins in Pothohar region, the Soan River basin (Figure 1) spans over
9994 km2 in Pakistan’s sub-Himalayan Pothohar region with elevations ranging from 222
to 2261 m (a.s.l.) [41]. Islamabad, Attock, Chakwal, and Rawalpindi subdivisions have ad-
ministration authority over the region. The region has continental and subtropical climate
with scorching summer and relatively cold winters with semiarid climatic conditions. The
coldest month is December, with an average temperature of 9 ◦C, while the hottest month
is June, with an average temperature of 31 ◦C. The average yearly rainfall in the region
varies from 400 mm to more than 1710 mm in hilly areas, with about 65% of it occurring
within the monsoon season. Precipitation and permanent streams held in very small dams
are essential for agricultural practices in the region. Fodder, wheat, oil seeds, chickpea,
millet, peanut, and sorghum are the main crops cultivated in rainfed conditions. According
to land use research, farmland accounts for 10% of the total area, while composite forestry
accounts for 8% of the total land area. The most acreage is occupied by pasture and barren
ground (49%), followed by hilly area featuring brush and shrubs (30%). Domestic areas
account for 2% of the total area, whereas water bodies account for approximately 1% [42].
Soil formation is typically noncalcareous, thick, and diverse in type, ranging from clay
loam to silty clay loam with adequate permeability, and are found on floodplain and
loamy lands. According to the slope categorization, 52% of the region is level to mild
(5◦ slope), whereas 22% is moderate (5–15◦ slope). Steep (15–30◦) and extremely steep
(greater than 30◦) gradients account for 19% and 7% of total area, correspondingly [43,44].
Generally, moist and subhumid climates predominate in the northern portion of the region,
whereas dry and semiarid environments predominate in the centre and southern regions,
correspondingly. The basin is bounded by the Murree and Margalla Hills on north side,
while the southern perimeter is bounded by the Salt Range. The other five river basins
(Haro, Bunha, Kahan, Kashni, and Reshi) of the Pothohar region are also geographically
and environmentally significant for the climatic and hydrologic dynamics of the region.
The selection of Soan River basin over other basins is due to the large area of the basin
and highest number of rain gauge stations. For better understanding of hydrology of the
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region, all the six basins should be studied separately instead of one generalized study of
whole region. Figure 2 presents the elevation model of the study area.
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Data Acquisition

Daily rainfall and runoff data of 19 years (1999–2017) were acquired from three
agencies (Pakistan Meteorological Department (PMD), Water and Power Development
Authority (WAPDA), and Soil and Water Conservation Research Institute (SAWCRI)) in
Pakistan. Rainfall data included the daily recorded data from 10 stations in the basin,
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which were then aggregated to calculate the daily basin rainfall that was used as model
input. The rainfall data from rain gauge stations was preferred over the satellite-derived
rainfall data due to the ease of obtaining data and its reliability with lesser chances of errors
within it. Likewise, daily discharge data (m3/s) recorded at Makhad, Pirpiyahi (gauging
station of Soan River basin), was acquired from WAPDA. Recent observations (2017–2021)
were excluded from the analysis due to various inconsistencies in data at multiple stations
and unavailability at a very few stations. Therefore, including incomplete data would
have affected the reliability of outcomes. However, no significant change in data trend was
observed from 2017 to 2021. Statistical characteristics of the datasets are summarized in
Table 1, while Table 2 presents the summary of rain gauge and gauging station attributes.

Table 1. Statistical characteristics of datasets.

Datasets Min. Max. Mean Mode S.D.

Training (1999–2012)
Rainfall (mm) 0 95.48 2.61 0 5.78
Runoff (m3/s) 2.16 1407.69 25.49 4.90 74.00

Testing (2013–2017)
Rainfall (mm) 0 74.60 3.08 0 6.03
Runoff (m3/s) 1.96 1559.74 33.42 5.89 72.81

Table 2. Attributes of rain gauge and discharge stations.

Serial
No. Station Name Latitude

(◦N)
Longitude

(◦E)
Altitude

(m) Agency

1 Murree 33.9070 73.3943 2025 PMD
2 Rawalpindi 33.5651 73.0169 540 PMD
3 Kotli Sattian 33.8082 73.5255 1352 PMD
4 Chakwal 32.9328 72.8630 522 PMD

5 Fateh Jung 33.5635 72.6375 514 SAWCRI
6 Talagang 32.9172 72.4081 457 SAWCRI

7 Gujjar Khan 33.2616 73.3058 458 WAPDA
8 Pendigheb 33.2452 72.266 310 WAPDA
9 Taxila 33.7463 72.8397 549 WAPDA
10 Khanpur Dam 33.8018 72.9305 545 WAPDA

11 Makhad (gauging station) 33.0281 71.7393 252 WAPDA

The data were divided into two subsets, i.e., 70% of the data, having 5114 observations,
was used for training of models while the remaining 30%, having 1826 observations, was
used for validation, and testing of the developed models with each of the two sets having
15% of the total observations. The training models were first validated against validation
set and then tested against the tested set. This approach limited the chances of an overfitting
problem. This data partition is a simple iteration of the V-fold data division rule [45] and is
generally practiced in this area of research [46–48].

2.2. Single Decision Tree (SDT)

The SDT is a method that displays a dataset’s treelike structure, shown in Figure 3
Because it depicts a multidirectional splitting mechanism, SDT is also regarded as a logical
data model. The SDT’s data flow structure consists of rectangular boxes called nodes. Every
node represents the numbers of rows present in the provided collection of data. Rainfall is
selected as the predictor variable while runoff is designated as the target variable. In the
present study, rainfall is also used as the root node because only one predictor variable is
used. Additionally, entropy (E) and information gain (IG) of rainfall data are calculated
to validate root node selection. After that, nonterminal and terminal nodes are created
from the root node. Next, child nodes are produced by taking the decision of the terminal
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nodes. SDT models are thus finalized to predict the target variable. End block represents
the finalization of model construction when information gain reaches a maximum set
level. The output from the model is simulated runoff in response to the predictor variable
(rainfall), which is then compared with observed runoff for performance evaluation.
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The ID3 algorithm considers “entropy” (E) and “information gain” (IG) estimation to
be a critical and necessary phase. Entropy (E) may be defined as “evaluating training set
impurity” or “assessing the uniformity of a training set,” whereas information gain (IG)
can be defined as “assessing the anticipated decrease in entropy” or “evaluating the clarity
of a training set.” The following equations [37] show the generic empirical formula of E
and IG:

E = −A log2 A − B log2 B (2)

IG = Eb − Ea (3)

where E is the entropy of data and IG is the information gain of the variable. Eb is the
entropy of distribution before the split and Ea is the entropy of distribution after the split,
whereas A and B are the values of two choices for which the decision is made. According
to Kotsiantis [49], SDT is a supervised learning technique that may potentially be used to
solve classification and regression tasks.

2.3. Tree Boost (TB)

In the tree boost technique formulated by Breiman [50], a prediction algorithm is
enhanced by using it on multiple repetitions in the boosting method. Afterward, every
function’s outcome is added together to determine its weight. This step yields greater
accuracy in predictions and removes the inaccuracy that occurs throughout the procedure.
The separation of independent and dependent components is a better characteristic of
this approach. The TB framework is mathematically represented in Equation (4), which is
written as [37]:

Predicted value = R0 + C1 × t1 (X) + C2 × t2 (X) + . . . + Cn × tn (X) (4)

where R0 denotes the initial value of the input series, Cn is the coefficient of tree nodes
ranging from 1 to n, X is the vector of residuals, and tn (X) is the number of trees fitted to
the residual vector.
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The TB model, in the present study, was created using rainfall as the predictor variable
and observed runoff as the target variable. In the boosting procedure, which involves
connecting three sets of trees in sequence, a basic tree ensemble process is thus developed.
Tree 2 receives the residuals produced by Tree 1. Similarly, Tree 3 includes Tree 2’s residuals.
Between Tree 1 and Tree 3, there exists no straight relationship. This procedure repeats
until the whole dataset have actively taken part in the modelling. The number of trees in
series is set to a range of 20 to 400, and the split size is set as 10 with a trimming factor of
0.01. The loss function (Huber M-regression) is used for disregarding the misclassification
error. The threshold cut-off is set between 0.90–0.95, which means the trimming of series
continues until the classification accuracy reaches the set value. After that, the model
output is generated, and the output is compared with the target variable for performance
evaluation. The selected parameters can also be iterated for training new models on
different datasets. Change in split size, trimming factor, loss function, and threshold value
can be used iteratively to formulate new models. The general architecture of a tree boost
model is shown as a flow chart in Figure 4.
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2.4. Decision Tree Forest (DTF)

The DTF is a type of machine learning method that relates to a certain category. It
consists of a number of decision trees that aggregate the predicted values to provide an
overarching prediction for the given dataset. In the DTF method, the numbers of trees
develop in parallel to one another without any connection. The DTF technique is based on
Breiman’s [51] initial concept of the random forest (RF) technique.

First, rainfall is set as the predictor variable from which training set and out-of-bag
(OOB) data sets are generated. Training data actively take part in the analysis while OOB
data do not contribute in it and rather used as a validation set for the model. Observed
runoff is set as the target variable. Assume that the entire set of data consists of N occur-
rences. Given the N occurrences, the desired fraction is selected from the given dataset.
Bagging is the term for this procedure. Since chosen data are utilized multiple times in
the bagging procedure, all of the information may not always engage in the testing. In
general, 67% of the data set values are utilized as data sample, with the remaining 33%
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being “out-of-bag” (OOB) data. The bagging procedure is repeated until all the trees are
created. In the development of the trees, one sample of predictor variables is chosen from
the entire collection of predictor variables. Model parameters involve trees in forest, split
size of each node, and depth of individual trees, which are initially set by default and then
changed by a trial-and-error method. To begin, each tree is given a number of rows within
data set as input data, and then the predictor variable is selected to divide every node of the
tree. When coupled with predicted values, these extra characteristics substantially enhance
the aggregate prediction/forecasting accuracy of the DTF models. The split information of
the predictor variable values indicates the impact of these values on the predicted value.
This outcome is then compared with the target variable for performance analysis of the
model. Figure 5 shows the working flow chart of a general SDT model.
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2.5. Multilayer Perceptron (MLP)

MLP, formulated by Webros [52], is a kind of fully connected feed-forward neural
network (ANN) that is made up of layers of neurons. MLP comprises, at minimum,
three levels: an input layer, one or more hidden layers, and an output layer. The output
layer consists of one neuron, which represents the MLP ANN’s output—in this case, the
estimated runoff in m3/s. The number of neurons in the input layers is equal to that of
inputs in the dataset [53].

MLP works by computing the value of neurons in an active layer through the activated
aggregate of weighted output of neurons linked to the neuron in a preceding layer [54]. The
values of weighted inputs are used as inputs to the neuron activation function, which either
outlines the inputs to outputs instantly (i.e., identity activation function), inside specified
boundaries (i.e., sigmoid, or tanh), or whilst also eliminating unnecessary attributes (i.e.,
ReLU). The weights of the neuron are typically arbitrary, but they are modified via a
backward propagation of error from the output layer to the input layer, and then weights
are modified proportionately to the error. The feed-forward component of the models
allows information to move from input layer to the output layer in a forwarding manner,
while the back-propagation method allows the error to propagate backwards, which
changes and modifies the connection weights [25]. This combination of forward and
backward flow creates a two-way passage for information moving forward and error
moving backward, thus resulting in better outcomes.

An MLP structure with one hidden layer is shown in Figure 6; n denotes the number
of neurons in the input layer. Similarly, h represents the number of hidden layer neurons
while the output layer contains only one neuron that is donated by no. R, Rt-1, Rt-2, . . . ,
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Rt-d, are inputs to the model that resemble the case examined in this study; wH
13 symbolizes

the connection weight of the first neuron in the hidden layer to the third neuron in the
input layer. Likewise, wO

12 is the weight connecting the first neuron in the output layer to
the second neuron in the hidden layer. All the pertinent connection weights are designated
with a particular code, as shown in Figure 6. A generalized MLP model is numerically
articulated by Babs [55] as:

Qt = F2

[
h

∑
j=1

WkjF1

(
n

∑
i=1

Wjixi + bjo

)
+ bko

]
(5)
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Figure 6. Structure of a general multilayer perceptron (MLP) ANN.

Here, Qt is the output of the model that represents the predicted runoff at time t by
using rainfall at time t-d as input variables. Rt-1 to Rt-d is input to the i-th neuron in the
input layer, Qt is the output from the k-th neuron in the output layer, F1 is the hidden
layer activation function and F2 is the output layer linear activation function; bjo and bko
are the bias units of the j-th neuron in input layer and the k-th neuron in the output layer,
respectively, and Wji denotes the connection weight of the i-th neuron in the input layer
and the j-th neuron in the output layer.

2.6. Gene Expression Programming (GEP)

GEP is a technique for creating computing programmes and quantitative models
that are influenced by spontaneous evolution and relies on adaptive computing. It uses
a dataset to provide a result in the shape of tree architecture. Ferreira developed this
technique in 1999 and officially presented it in 2001 [56]. The GEP technique combines the
main views of the two previous inheritance methods (“genetic algorithm” GA and “genetic
programming” GP) in order to solve their flaws. The chromosomal genetic constitution
in this technique is comparable to that of a GA, while the phenotype of a chromosome
is a tree data structure with dynamic range and height, comparable to that of the GP
technique. As a result of eliminating the previous methods’ double function constraint of
a chromosome, the GEP algorithm allows many genetic algorithms to be guaranteed of
the offspring’s chromosomes’ stable viability at a quicker pace than GP. If there are many
parameters, the rational connection between them may constitute a relationship which can
be properly stated.

Employing the GEP method, a collection containing linear chromosomes is initially
generated to determine the connection between parameters a and b and y. Any of the
parameters can be put at every location of the genes on the chromosomes. It is essential
to evaluate the viability of chromosomes once they are produced and respective places
occupied. The chromosomes are represented as “expression tree” (ET) in the GEP method.
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2.7. Maximal Overlap Discrete Wavelet Transformation (MODWT)

Following the initial conceptual development, wavelet transformation has received
a much recognition as a sophisticated type of mathematical signals analysis method [57].
Combining frequency spectrum analyses and temporal encoding of the data, wavelets
are a useful approach for retrieving latent knowledge and characteristics in unprocessed
data sets [22]. It has the potential to uncover underlying characteristics such as patterns,
inconsistencies, extremes, and collapse points in nonstationary data sets. Any alternative
technique will struggle to incorporate these intricate features of nonstationary data [46].
Therefore, wavelet pre-processing extracts additional information from a raw signal that
is then used by the models to generate better results as compared to models with raw
inputs. A wavelet is a short-duration sinusoidal fluctuation with a zero-mean magnitude,
as defined above.

In this research, an improved version of WT called the “maximal overlap discrete
wavelet transformation” (MODWT) was utilized to divide a time series or a specified vari-
able into scaled parts. It has a major advantage over traditional DWT in that it eliminates
down samples [58] and limits the amount of inaccuracies due to time series overtranslation
by rectifying the boundary of the transformed data series [48,59]. As shown in Figure 4, an
unprocessed input (xn) is processed across two complementary filters, a low pass filter (g̃)
and a high pass filter (h̃), before being decomposed into two signals: approximations (a)
and details (d). The low pass filter disregards high frequency components of the time series
and allows only high-scale low-frequency portions only (i.e., approximation components),
which are considered to be more important as they represent the signal’s identity and
shape [60]. Likewise, a high-pass filter accepts low-scale high-frequency components (i.e.,
detail components) that are the white noise and nuance present in the rainfall data. The
original signal can be reconstructed by adding detailed components of each level and
approximation component of the highest level.

Equations (6) and (7) may be used to determine the wavelet coefficient (W̃j) and
scaling coefficient (Ṽ) for the n-th component at the j-th level [48]:

W̃j,t =
L−1

∑
l=0

h̃l Ṽj−1, (t−2j−1l) mod N (6)

Ṽj,t =
L−1

∑
l=0

g̃l Ṽj−1, (t−2j−1l) mod N (7)

where t denotes the time factor and Ṽ0,t represents the original signal. Ṽj,t and W̃j,t are
the scaling and wavelet components of MODWT, correspondingly, and similarly h̃ and g̃,
respectively, relate to the wavelet and scaling filters. L denotes the length of wavelet filter
while N is the module operator. Figure 7 shows the general structure of the MODWT model.
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Other well-known alternative techniques of data/signal pre-processing include Fourier
transform (FT) [61], bootstrapping, clustering, and classification models. The selection of
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wavelet transformation (WT) for data pre-processing is due to the fact that WT is established
to outperform previous methods including FT, as FT modifies data in frequency domain
only while WT uses frequency and time domain analysis to extract more information from
the raw signal.

2.8. Model Selection

In this study, five well-known and established machine learning techniques (SDT, TB,
DTF, MLP, and GEP) were used to perform rainfall–runoff modelling of the Soan River
basin. Daily rainfall and runoff data spanned over 19 years from 1999 to 2017. Data were
divided into two subsets, namely, a training set and testing set. Seventy percent of the
data were used for training and validation of models while 30% was used for testing
of the models. The study also aimed to assess the effects of data pre-processing on all
aforementioned techniques; therefore, two types of models were formed for each technique.
Initially, rainfall at time “t” was used as input and runoff data were used as a training target.
Initial models of each technique were trained and tested using original time series. Then,
multiple models of each technique were generated by lagging the inputs up to lag order
(Lo) 10. Table 3 summarizes the input models based on Lo. Here, Lo1 has input variable
Rt-1 that represents the rainfall lagged one day. Similarly, Lo2 having input variables Rt-1
and Rt-2 that represent the rainfall lagged up to one day and two days. Likewise, Lo10 is
the rainfall time series lagged from day 01 to day 10. The introduction of time lag (in days)
in models was done to study the temporal correlation of rainfall. Selection of optimum
lag order range (from Lo0 to Lo10) was done by trial-and-error method and then further
verified by the partial correlation method for input optimization [62]. Another technique
for Lo optimization is particle swarm optimization emphasized by Ribeiro et al. [63].

Table 3. Input models based on time lag order (Lo).

Lag Order (Lo) Input Variables

Lo0 Rt
Lo1 Rt-1
Lo2 Rt-1, Rt-2
Lo3 Rt-1, Rt-2, Rt-3
Lo4 Rt-1, Rt-2, Rt-3, Rt-4
Lo5 Rt-1, Rt-2, Rt-3, Rt-4, Rt-5
Lo6 Rt-1, Rt-2, Rt-3, Rt-4, Rt-5, Rt-6
Lo7 Rt-1, Rt-2, Rt-3, Rt-4, Rt-5, Rt-6, Rt-7
Lo8 Rt-1, Rt-2, Rt-3, Rt-4, Rt-5, Rt-6, Rt-7, Rt-8
Lo9 Rt-1, Rt-2, Rt-3, Rt-4, Rt-5, Rt-6, Rt-7, Rt-8, Rt-9

Lo10 Rt-1, Rt-2, Rt-3, Rt-4, Rt-5, Rt-6, Rt-7, Rt-8, Rt-9, Rt-10

The input variables of the models (Table 3) depend on the final lag order. Thus, in an
input model with an nth lag order, there would be “n” input variables (Rt-1, Rt-2, Rt-3, . . . ,
Rt-n). Alternatively, input combination can also be formed in such a way that each input
model contains a single variable consisting of the rainfall series lagged to the relevant Lo,
for example, Rt-1 at Lo1, Rt-2 at Lo2, Rt-3 at Lo3, and, similarly, Rt-n at Lon. The selected
combinations ensure that influence of previous events is transferred to the next lag while
the alternative combinations are confined to single-day rainfall events only.

After simple models of each technique were trained and tested, all the inputs in
Table 3 were pre-processed using MODWT. To select the optimum wavelet function and
decomposition level, the initial MODWT-based model was transformed with all wavelet
filters of Daubechies, finding literary support from earlier studies [21,64]. The db4 wavelet
function outperformed other filters, which was then used to select the optimum level
of decomposition using a trial-and-error approach. After comparative analysis of db4
at all decomposition levels, it was observed that db4 at decomposition level 3 was the
optimum wavelet function. It was then used to transform generated inputs for each
technique. Alternative wavelet families are Haar, Symlets, Sine, Spline, and Coiflet, but
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Daubechies (db) is known to outperform other wavelet families in similar hydrologic
problems. Therefore, the db family is selected while wavelet function (db4) is selected
on performance basis. Table 4 presents the summary of all parameters, which were used
during training and testing of all the techniques that were adopted in this study. Optimum
parameters were selected with the combination of trial-and-error and input optimization
techniques that were suggested by earlier studies.

Table 4. Parametric summary of adopted techniques.

ML Technique Parameters

SDT Min. rows in
a node

Min. size node
to split Max. tree levels Cross-validation

trees
Smooth min.

spikes -
5 10 10 10 3 -

TB Max. trees
in series

Min. size node
to split Trimming factor Min. trees

in series
Smooth min.

spikes Random percent
400 10 0.01 10 5 20

DTF Trees in forest Min. size node
to split Max. tree levels Random predictor control -

200 2 50 square root of total predictors -

MLP Hidden layers Min. neurons Max. neurons Cross-validation Max. iteration Alg.
1 2 20 V-fold 10,000 LV–Marquardt

GEP Population size Max. initial pop. Max. generation Gene per
chromosome Gene head length Fitness threshold

50 10,000 2000 4 8 1

2.9. Model Performance Evaluation

The effectiveness of the models established for rainfall–runoff modelling in this re-
search may be determined using a variety of analytical methods. The variety of compu-
tational models used in research, as well as their results, strongly affects the choice of
performance assessment indicators. To assess the effectiveness of our developed models,
we used a combination of empirical measures, such as the coefficient of determination (R2),
root mean squared error (RMSE), and Nash–Sutcliffe efficiency (NSE) [65]. These statistical
measures can be calculated using following equations.

R2 =
[n [∑n

i=1 (Qobs × Qmod)− (∑n
i=1 Qobs) (∑

n
i=1 Qmod)]]

2[
n ∑n

i=1 Qobs
2 − (Qmod)

2
]
−
[
n ∑n

i=1 Qmod
2 − (Qmod)

2
] (8)

RMSE =

√
1
n

n

∑
i=1

(Qobs − Qmod)
2 (9)

NSE = 1 − ∑n
i=1(Qobs − Qmod)

2

∑n
i=1
(
Qobs − Qobs

)2 (10)

where Qobs and Qmod denote the observed and modelled runoff using the developed models,
respectively, while Qobs is the average of observed runoff, and n is number of observations.

Other performance evaluation measures include mean absolute error (MAE), mean
absolute percentage error (MAPE), mean percentage error (MPE), Kling–Gupta efficiency
(KGE), etc. The selection of NSE, RMSE, and R2 is done to cover all three aspects of accuracy
metrics (correlation, error, and efficiency) and to avoid repetends of the evaluation measures.

3. Results and Discussion
3.1. Single Decision Tree (SDT)

Initially, rainfall and runoff datasets were divided into 70% training set (5114 obser-
vations) and 30% testing set (1826 observations) each. Then the rainfall training set was
selected as the predictor variable while the runoff training set was selected as the target
variable. The initial model of SDT was generated without any incorporation of time lags in
input datasets. In the following iterations, lag order (Lo) of input was gradually increased
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from 0 to 10, as shown in Table 3; thus, a total of 11 SDT with each having distinct input
(i.e., Lo0, Lo1, Lo2, . . . , Lo10) were created. Likewise, in further analysis, each input was
pre-processed using the MODWT technique to assess the effect of wavelet transformation
on SDT models. The parametric details and model formation of MODWT models is given
in relevant sections.

It can be observed from Figure 8 that simple SDT models outperformed the MODWT-
processed SDT model at lower lags (from Lo0 to Lo4), whereas at higher lag order, i.e.,
from Lo5 to Lo10, MODWT-SDT models performed better than SDT models. Highest
testing NSE was observed for the SDT—Lo4 model, which was equal to 0.22. Contrastingly,
lowest the RMSE was observed for MODWT-SDT at Lo6, which was equal to 65.86 m3/s.
Average NSE for SDT models in training was 0.12 and for testing, it was 0.11. Meanwhile,
MODWT-SDT models yielded 0.29 NSE in training and 0.13 in testing. In conclusion,
neither the SDT nor the MODET-SDT models could yield acceptable or satisfactory results.
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3.2. Decision Tree Forest (DTF)

After SDT analysis, DTF was applied in a similar parametric setting. DTF models
and MODWT-DTF models were formed by using time lagged inputs with and without
wavelet pre-processing. Outcomes of each model were statistically assessed though the
performance evaluation measures (Figure 9).
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Performance of DTF models is graphically expressed in Figure 9, where it can be
noted that MODWT-DTF models significantly outperformed DTF models. Average NSE in
testing for MODWT-DTF was observed to be 0.88, while maximum efficiency was observed
at Lo9. However, owing to the fact that efficiency marginally increased from 0.90 at Lo3
to 0.91 at Lo9, it can be considered that MODWT-DTF yielded best performance at Lo3.
While average NSE, for testing with DTF models, was limited at a low value of 0.30, and
maximum NSE for simple models was observed at Lo8, which was equal to 0.44. Similarly,



Water 2021, 13, 3528 14 of 21

MODWT-DTF models yielded lower RMSE values than DTF models. Average RMSE for
MODWT-DTF in testing was 22.84 m3/s, while for DTF models, it was 59.96 m3/s. In
conclusion, wavelet pre-processing significantly improved DTF performance and enhanced
testing NSE by a factor of 2.98 on average, while in training average NSE improved from
0.41 to 0.90 by a factor of 2.24.

3.3. Tree Boost (TB)

Figure 10 shows the performance of TB models in terms of NSE and RMSE (m3/s).
Here, it can be observed that MODWT-TB models performed well as compared to simple
TB models. Maximum performance efficiency in testing was 0.17 at Lo3 for the MODWT-TB
model. Additionally, minimum RMSE was observed at Lo3 for the MODWT-TB model,
which was equal to 66.42 m3/s, whereas average NSE of simple TB models in testing was
only 0.04 as compared to 0.11 for MODWT-TB models. Likewise, lower RMSE values
were yielded by MODWT-TB as compared to TB models, as average RMSE for TB was
71.59 m3/s in training and 71.91 m3/s in testing, while for MODWT-TB, average RMSE in
training was 61.93 and 68.54 m3/s in testing. Although wavelet transformation improved
the performance of simple TB models, but still these models did not perform well in
comparison to other techniques.
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3.4. Multilayer Perceptron (MLP)

Similarly, the performance of MLP and MODWT-MLP models as per evaluation cri-
terion is shown in Figure 11. The graphs indicate that MODWT-MLP models performed
better than simple MLP, as supported by NSE and RMSE values. The former produced
better NSE at all lag orders and also with lower RMSE values. The highest NSE value of 0.33
was observed at Lo4 for the MODWT-MLP model, which also produced the lowest RMSE
value of 60.57 m3/s. The average NSE for MLP models in training was 0.27 and testing
was 0.20, while for MODWT-MLP models, these values were 0.32 and 0.28, respectively.
Similarly, average RMSE for MLP in training and testing was 62.33 and 65.67 m3/s respec-
tively, as compared with 60.62 and 62.53 m3/s for MODWT-MLP models. In conclusion,
the best performance was observed at Lo4 in this case. Moreover, wavelet pre-processing
enhanced the performance of MLP models, but still it was not satisfactory.
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3.5. Gene Expression Programming (GEP)

In Figure 12, performance of the GEP and MODWT-GEP models is graphically pre-
sented, which clearly indicates that MODWT-GEP models outperformed simple GEP
models. Wavelet pre-processed GEP models produced runoff simulation with higher accu-
racy than that of simple GEP models, as average NSE, in testing, for the former was 0.26 as
compared to 0.18 of the later. Additionally, MODWT-GEP produced a lower testing RMSE,
on average, i.e., 62.91 m3/s, as compared to 66.57 m3/s for MLP models. The highest NSE
value in testing was observed at Lo6 for MODET-MLP, equal to 0.33, while a minimum
RMSE of 60.85 m3/s was observed at the same lag order for the same model. Similar to
TB, MLP, and SDT, gene expression programming also produced unsatisfactory results,
although wavelet transformation indicated signs of accuracy enhancement.
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3.6. Comparative Analysis

After a thorough performance evaluation of each technique with and without wavelet
transformation, an encompassing comparative analysis of best performing models of each
technique is described in this section. For the comprehensive comparative analysis, from
each technique used in this study, one model with best performance indices is selected.
Table 5 summarizes the statistical metrics and wavelet parameters of the models. It can
be noted that, in each technique except single direction tree, simple models integrated
with wavelet pre-processing outperformed the countermodels having pre-processed inputs.
Moreover, the analysis shows that these models mostly performed well at lower lag orders,
i.e., Lo3 and Lo4, except MODWT-GEP, which performed best at Lo6. Further analysis
indicated that wavelet-coupled decision tree forest (MODWT-DTF) outperformed all other
models in this study. The highest testing NSE value (0.90) for rainfall–runoff modelling
of the Soan River basin was produced at lag order 4 (Lo4) by MODWT-DTF. This value
accounts for 90% modelling accuracy along with minimum modelling error in terms of
RMSE equal to 23.79 m3/s. Figure 13 graphically represents the comparison of models
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with highest accuracy in each technique. Moreover, we also compared the best performing
model with respect to their accuracy in modelling flows of higher magnitude along with
lower magnitude. For this purpose, the performance was evaluated at runoff below the
third quartile (Q3) for low flows and above Q3 for high flows, whereas the value of Q3
for the testing data was 38.74 m3/s. For the comparative analysis, it was observed that
MODWT-DTF at Lo3 performed best in both scenarios, i.e., low-magnitude runoff and
high-magnitude runoff. However, the NSE of the model dropped slightly from 0.90 above
Q3 to 0.85 below Q3, whereas the R2 value dropped significantly from 0.94 to 0.55 from
high to low magnitude runoff. Interestingly, MODWT-TB at Lo3 yielded a high NSE value
of 0.79 for low-magnitude runoff, but the model produced a higher RMSE value and lower
R2 and NSE values compared to MODWT-DTF at Lo3 (Table 6). Therefore, the latter model
is considered to be outperforming the former in both scenarios.

Table 5. Summary of best performing model comparison.

ML Technique Lag Order Wavelet Filter Level
Testing

NSE RMSE R2

SDT Lo4 - 0.22 65.52 0.22
MODWT-DTF Lo3 db4 3 0.90 23.79 0.94
MODWT-TB Lo3 db4 3 0.17 66.42 0.24

MODWT-MLP Lo4 db4 3 0.33 60.57 0.33
MODWT-GEP Lo6 db4 3 0.30 60.85 0.31
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Table 6. Summary of best performance models at low flows and high flows.

ML Technique
Performance below Q3 Performance above Q3

NSE RMSE R2 NSE RMSE R2

SDT 0.04 22.23 0.05 0.31 57.49 0.28
MODWT-DTF 0.85 8.53 0.55 0.90 21.54 0.94
MODWT-TB 0.79 10.12 0.08 0.11 65.65 0.16

MODWT-MLP 0.28 18.54 0.12 0.37 54.99 0.29
MODWT-GEP 0.28 18.56 0.17 0.30 57.95 0.21

As previously discussed, MODWT-MLP produced the highest modelling accuracy,
90% at Lo4; Figure 14 shows the rainfall–runoff plot of the model compared with observed
runoff. It can be observed that MODWT-MLP-Lo4 (solid orange line) replicated the ob-
served runoff (solid black line) with high accuracy. The model successfully captured the
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trends of observed runoff at extreme values (outliers) along with recurring frequencies.
Figure 15 shows the regression plot of the models, which indicates a high coefficient of
determination (R2) value equal to 0.9405, which is also presented in Table 5.

Water 2021, 13, x FOR PEER REVIEW 18 of 23 
 

 

 
Figure 14. Rainfall–runoff modelling of Soan River basin (MODWT-DTF-Lo3). 

 
Figure 15. Regression plot (MODWT-DTF-Lo3). 

3.7. Discussion 
In this study, we used major machine learning techniques together with MODWT 

pre-processing to model the rainfall–runoff relationship in the Soan River basin. Out-
comes suggested that MODWT-based DTF performed best at lag order 3. The modelling 
accuracy was observed to be 90% with RMSE value as low as 23.79 m3/s. Moreover, it was 
also observed that wavelet pre-processing enhanced the effectiveness of simple models. 
An overarching research work was done regarding application of machine learning 
techniques in hydrological problems. This study adds to the literature by developing an 
encompassing comparison of the performance of five mainstream machine learning 
techniques, along with assessing the effect of MODWT pre-processing, in rainfall–runoff 
modelling of the Soan River basin, the largest basin in the Pothohar plateau. 

0

10

20

30

40

50

60

70

800

200

400

600

800

1000

1200

1400

1600

1800

Ra
in

fa
ll 

(m
m

)

Ru
no

ff 
(m

3 /
s)

Rainfall–Runoff Modelling of Soan River basin 
(MODWT-DTF-Lo3)

Rainfall Observed Discharge MODWT-DTF-Lo3

y = 0.7423x + 9.024
R² = 0.9405

0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000 1200 1400 1600 1800

Si
m

ul
at

ed
 R

un
of

f (
m

3 /
s)

Observed Runoff (m3/s)

Regression Plot (MODWT-DTF-Lo3)

Figure 14. Rainfall–runoff modelling of Soan River basin (MODWT-DTF-Lo3).

Water 2021, 13, x FOR PEER REVIEW 18 of 23 
 

 

 
Figure 14. Rainfall–runoff modelling of Soan River basin (MODWT-DTF-Lo3). 

 
Figure 15. Regression plot (MODWT-DTF-Lo3). 

3.7. Discussion 
In this study, we used major machine learning techniques together with MODWT 

pre-processing to model the rainfall–runoff relationship in the Soan River basin. Out-
comes suggested that MODWT-based DTF performed best at lag order 3. The modelling 
accuracy was observed to be 90% with RMSE value as low as 23.79 m3/s. Moreover, it was 
also observed that wavelet pre-processing enhanced the effectiveness of simple models. 
An overarching research work was done regarding application of machine learning 
techniques in hydrological problems. This study adds to the literature by developing an 
encompassing comparison of the performance of five mainstream machine learning 
techniques, along with assessing the effect of MODWT pre-processing, in rainfall–runoff 
modelling of the Soan River basin, the largest basin in the Pothohar plateau. 

0

10

20

30

40

50

60

70

800

200

400

600

800

1000

1200

1400

1600

1800

Ra
in

fa
ll 

(m
m

)

Ru
no

ff 
(m

3 /
s)

Rainfalll–Runoff Modelling of Soan River basin 
(MODWT-DTF-Lo3)

Rainfall Observed Discharge MODWT-DTF-Lo3

y = 0.7423x + 9.024
R² = 0.9405

0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000 1200 1400 1600 1800

Si
m

ul
at

ed
 R

un
of

f (
m

3 /
s)

Observed Runoff (m3/s)

Regression Plot (MODWT-DTF-Lo3)

Figure 15. Regression plot (MODWT-DTF-Lo3).

3.7. Discussion

In this study, we used major machine learning techniques together with MODWT
pre-processing to model the rainfall–runoff relationship in the Soan River basin. Outcomes
suggested that MODWT-based DTF performed best at lag order 3. The modelling accuracy
was observed to be 90% with RMSE value as low as 23.79 m3/s. Moreover, it was also
observed that wavelet pre-processing enhanced the effectiveness of simple models. An
overarching research work was done regarding application of machine learning techniques
in hydrological problems. This study adds to the literature by developing an encompassing
comparison of the performance of five mainstream machine learning techniques, along
with assessing the effect of MODWT pre-processing, in rainfall–runoff modelling of the
Soan River basin, the largest basin in the Pothohar plateau.
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Machine learning techniques have been intensively applied to hydrological problems
by undertaking real-world case studies. Wu and Chau [66] used a different combination
of two signal pre-processing techniques, singular spectrum analysis (SSA) and moving
average (MA), with two ML techniques, ANN and support vector regression, to forecast
rainfall with multiple lead times. Using a similar approach, this current study separately
combined five ML techniques with MODWT pre-processing method to explore the rainfall–
runoff relationship in the Soan River basin. Similarly, the impact of changing climate
on the occurrence of extreme hydrological events in an Iranian catchment was assessed
by Sharafati and Elnaz [67]. In contrast to our study, the authors used Soil and Water
Assessment Tool (SWAT) and a combination of global climate models to study rainfall and
runoff trends in the catchment. Similar to this study, Ghani et al. [68] also mapped the
rainfall–runoff association in the Pothohar region and Soan River basin with 92% accuracy
using HEC-HMS and HEC-GeoHMS software. Likewise, Hussain et al. [69] also modelled
the rainfall–runoff relation of the region with maximum R2 value of 0.66. Recently, Ouma
et al. [70] also modelled the rainfall–runoff relationship in the Nzoia subbasin of Lake
Victoria using wavelet-based machine learning models and compared their performance
with the long short-term memory (LSTM) deep learning model. Outcomes of our study
provide empirical support to their findings corresponding to performance enhancement
of machine learning models when coupled with wavelet pre-processing. The optimal lag
order for the Soan basin was observed to be three, i.e., the models performed best when
rainfall data were lagged up to three days having input coefficients Rt-1, Rt-2, and Rt-3.
This optimal lag number related to the time in which runoff generated from rainfall at
the farthest point of the basin reaches the outlet. From analysis of the rainfall and runoff
training data, it was observed that highest runoff (1407.69 m3/s) was generated after two
days of highest rainfall incident (95.48 mm), whereas similar observation was made during
the testing period when the highest runoff was observed after two days and lasted up to
three days of the maximum rainfall event. This association between theoretical concept of
lag order (also called time lag or lag number) and physical concept (time of concentration)
has also been observed by earlier studies [37,40,71].

This study added to the literature by indicating the effectiveness of DTF and MODWT-
based DTF applied in the Soan River basin modelling; whereas, various previous studies
solidify the findings of our study regarding accuracy enhancement by wavelet transforma-
tion [25,46,48].

3.8. Research Limitations and Uncertainties

Although the Soan River basin is the largest in the Pothohar region, it does not fully
represent the region, as there exist five other basins. To fully understand the dynamics of
rainfall and runoff association in the region, further research work is needed on different
basins of the region. Moreover, application of deep learning techniques in hydrology
has emerged progressively; therefore, deep learning techniques such as long short-term
memory (LSTM) might be helpful in exploring new dimensions of the basin’s hydrological
characteristics. This research only uses rainfall as an output and pre-processed rainfall
data to extract additional and hidden information from the time series, but combinations
of rainfall, infiltration, and evaporation can also be used in any subsequent study to better
understand the relationship of these hydrological processes. Moreover, other techniques
of signal processing, such as bootstrapping, can also be used to assess their impact on the
performance these models. These recommendations for future research work are most
likely to be undertaken by the authors in the near future.

4. Conclusions

This study used five machine learning techniques (SDT, TB, DTF, MLP, and GEP) with
and without combination of maximal overlap discrete wavelet transformation (MODWT).
From the comparative analysis of the simple and MODWT-based models, it can be con-
cluded that MODWT-based models outperformed simple models, except SDT, where the
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simple SDT model yielded higher accuracy than MODWT-SDT models. Moreover, it
was observed that MODWT-SDT performed better than SDT models at higher lag orders.
Additionally, it was observed that MODWT pre-processing improved the performance
of simple models, but it did not necessarily push the accuracy within acceptable or sat-
isfactory range, whereas the comparative analysis of the best performing models from
technique established that DTF outperformed the other four techniques, when coupled
with MODWT. Highest modelling accuracy, equal to 90%, was produced at MODWT-DTF
at Lo3. Meanwhile, the same model produced a minimum RMSE of 23.79 m3/s. This
performance enhancement reflects the tendency of data pre-processing with MODWT (or
any other wavelet model) to extract hidden information within the univariate time series.
Hence, wavelet pre-processing can be reliably applied to problems involving multiple
variables to attain better outcomes with reduced parametric requirement and parsimonious
modelling. However, the results of wavelet technique can also change depending on the
type, topography, and features of the basin; therefore, selection of wavelet family, wavelet
type, and level of decomposition must be done correctly to achieve better outcomes.
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