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Abstract: In natural water, as a rule, there is a violation of radioactive equilibrium in the chain
238U . . . → 234U → 230Th →. Groundwater usually has a 234U/238U ratio in the range of 0.8–3.0
(by activity). However, in some regions, the 234U/238U ratio reaches >10 and up to 50. Ultrahigh
excesses of 234U can be explained by climatic variations. During a cold period, minerals accumulate
234U as a normal component of the radioactive chain, and after the melting of permafrost, it is lost
from the mineral lattice faster than 238U due to its higher geochemical mobility. This hypothesis was
tested using data on the isotopic composition of uranium in the chemo- and bio-genic formations
of the World Ocean and large lakes, which are reservoirs that accumulate continental runoff. The
World Ocean has the most significant 234U enrichments in the polar and inland seas during periods
of climatic warming in the Late Pleistocene and Holocene. In the bottom sediments of Lake Baikal,
the 234U/238U ratio also increases during warm periods and significantly exceeds the 234U excess of
the World Ocean. Furthermore, the 234U/238U ratio in the water of Lake Baikal and its tributaries
increases from north to south following a decrease in the area of the continuous permafrost and has a
seasonal variation with a maximum 234U/238U ratio in summer. The behavior of 234U in large water
reservoirs is consistent with the hypothesis about the decisive influence of permafrost degradation
on the anomalies in 234U/238U ratios in groundwater.

Keywords: non-equilibrium uranium; 234U/238U ratio; climate variations; permafrost; World Ocean;
Lake Baikal

1. Introduction

The violation of the radioactive equilibrium of the 238U chain (238U→ 234Th . . . 234U
→ 230Th→ . . . 206Pb, hereafter referred to as the 234U/238U activity ratio) in natural water
was discovered by P.I. Chalov [1–3] and V.V. Cherdyntsev [4,5]. They explained it by radio-
kinetic separation, i.e., an increase in the mobility of daughter products in comparison with
parent isotopes. For the majority of groundwater, the 234U/238U ratio is in the range of
0.8–3 (hereafter, the activity ratio). Sometimes, in groundwater at middle and high latitudes
of the Earth, there is a steady shift of the 234U/238U ratio to 5–20, and in some cases, it
increases to 50 [6,7]. Such high enrichment in uranium-234 is explained by the release of
recoil atoms (234Th) from the mineral matrix into the water [8–16]. A limitation of this
hypothesis is the fact that significant enrichment in uranium-234 can occur only with a high
dispersion of the mineral grains, with characteristic radii r < 10−5 m and with water–rock
interaction lasting a relatively long time (t > 104 years).

V.A. Polyakov [6] suggested that extremely high excesses of uranium-234 could be
related to climatic variations. During a cold period, due to the absence of liquid water,
234U accumulates in host rocks as a normal component of the 238U chain. After permafrost
degradation, uranium-234 is extracted from the host rocks by meltwater at a higher rate
than 238U, since 234U has a predominantly water-soluble form U6+ and is located in the
conjugated tracks of recoil nuclei and α-particles. In contrast, 238U has a water-insoluble
form U4+ as the chemical component of its mineral lattice. As a result, according to
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our estimates, the bulk diffusion coefficient of uranium-234 in minerals exceeds that for
uranium-238 by approximately 500 times.

This hypothetical mechanism received confirmation from a complex study of ground-
water, including the determination of δ18O, δ2H, and 234U/238U and the dating of ground-
water by the helium technique [17–21]. A more fundamental test of the hypothesis is
possible on the basis of data on the isotopic composition of uranium in chemo- and bio-
genic formations in the World Ocean and large continental water bodies.

2. World Ocean

The average (234U/238U) ratio for the modern ocean is 1.144–1.145 [22,23], and the
weighted mean for river runoff is 1.25 [24]. If rivers are the only source of 234U, then, taking
into account the average residence time of U in the oceans of ~400 thousand years [9,25], the
234U/238U ratio in ocean water should be ~1.08 [22,26,27]. This difference in the calculated
and observed 234U/238U ratios in ocean water cannot be explained by variations in river
runoff and/or a decrease in the residence time of uranium in the ocean [28]. Therefore,
there must be an additional source of uranium-234.

Hypothetically, it could be 234Th nuclei, which directly recoil from the mineral lattice
to water. If recoil 234Th is the main reason for the 234U/238U disequilibrium, then 234U
excess should correlate with the global increase in the physical disintegration of rocks
during glacial periods [29–31]. An additional source of uranium-234 during a glaciation
time should be clayey sediments on shelves, which drained after a drop in the ocean level
and were accumulated in a previous warm period [32]. Following these hypotheses, which
link the 234U excess with an increase in the flux of 234Th recoil nuclei, the highest value of
234U/238U ratio in seawater should be observed during a glaciation time. As will be shown
below, this contradicts the observations and, in addition, these hypotheses do not answer
the following questions.

1. Why is the loss of 234Th recoil nuclei by fine-grained particles small at the conti-
nental stage of transport? In the zone of finely dispersed rocks on the continents,
Yedoma (Arctic), loess, and black earth (middle latitudes), whose origin is associated
with the wind spread of dusty material during the glacial epochs, a significant viola-
tion of the radioactive equilibrium in the 238U chain is not observed in surface and
shallow groundwater.

2. Suppose that the increase in the amount of 234Th recoil nuclei is, in fact, due to an
increase in the supply of dust to the ocean during cooling periods [33,34]. However,
both dust and thorium in the chemical compounds have a very short average residence
time in ocean water [35–37] and are quickly deposited in bottom sediments. What
mechanism ensures the reverse flow of uranium from the pore water of sediments
into ocean water? Oxidizing conditions favoring the migration of uranium in water-
soluble forms are observed only in the thin surface layer of bottom sediments. The
presence of organic material, for example, in the form of microbial mats and/or a
stream of dead organisms, transforms the environmental conditions into an area of
chemical reduction. The diffuse transfer of uranium from pore water into free water
is hampered by the accumulation of new portions of sediments, with the exception of
the oceanic abyssal, where the accumulation is greatly slowed down. In some cases,
when an excess of uranium 234U (234U/238U > 1.14) is observed in the pore water,
occasionally, none is recorded for the abyssal [10,13–15].

The generalization of data on corals, mollusk valves, and carbonate marine sediments
demonstrates a noticeable change of the 234U/238U ratio in time, with a maximum during
warming periods (Figure 1). The minimum of the uranium-234 excess in the ocean is
observed during the last glaciation period.
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Figure 1. Initial uranium isotopic composition (234U/238U) in corals and carbonates of the circumpolar and arctic regions of 
the World Ocean: 1—[38]; 2—[39]; 3—[40]; 4—[41]; 5—[42]; 6—[43]; 7—[44]; 8—[45]; 9—[46]; 10—[47]; 11—[48]; 12—[49]; 
13—[50]; 14—[51]; 15—[52]; 16—[53]; 17—[54]; 18—[55]; 19—[32]; 20—[56]; 21—[57]; 22—[58]; 23—[59]; 24—[60]; 
25—[61]; 26—[62]; 27—[63]; 28—[64]; 29—[65]; 30—[66]; 31—[67]; 32—[68]; 33—[69]; 34—[70]; 35—[71]; 36—[72]; 
37—[73]; 38—[74]; 39—uranium isotopic composition in modern ocean δ234U = 145 ± 3 ‰ [22,23]; 40—sea-level changes 
[75]. 

Figure 1. Initial uranium isotopic composition (234U/238U) in corals and carbonates of the circumpolar and arctic regions of
the World Ocean: 1—[38]; 2—[39]; 3—[40]; 4—[41]; 5—[42]; 6—[43]; 7—[44]; 8—[45]; 9—[46]; 10—[47]; 11—[48]; 12—[49];
13—[50]; 14—[51]; 15—[52]; 16—[53]; 17—[54]; 18—[55]; 19—[32]; 20—[56]; 21—[57]; 22—[58]; 23—[59]; 24—[60]; 25—[61];
26—[62]; 27—[63]; 28—[64]; 29—[65]; 30—[66]; 31—[67]; 32—[68]; 33—[69]; 34—[70]; 35—[71]; 36—[72]; 37—[73]; 38—[74];
39—uranium isotopic composition in modern ocean δ234U = 145 ± 3 ‰ [22,23]; 40—sea-level changes [75].

The observed distribution of the 234U/238U ratio in time for oceanic chemo- and
organogenic formations is much better explained by the hypothesis linking the increase
in the uranium-234 flux with permafrost melting, which contradicts the hypothesis that
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the increase in 234U excess is related to an increase in the flux of 234Th recoil nuclei. For
the Eemian interglacial, which was warmer than the current one, the recorded excess
of uranium-234 was somewhat higher than the Holocene excess, probably due to the
greater degree of permafrost thawing. For the 234U/238U ratio distribution curve during
the Weichselian glaciation, a fine structure is found, when small increases in the 234U/238U
ratio correspond to periods of temporary warming within the cooling periods.

No significant excess of uranium-234 was found in the corals, shells of mollusks, and
carbonate deposits of the equatorial ocean zone [23]. In contrast, the Arctic Ocean, being
relatively isolated and experiencing the greatest influence of the continental runoff from
the permafrost zone, demonstrates the maximum excesses of the 234U/238U ratio. For
example, in the Barents Sea, the uranium concentration is (0.49–35.6) × 10−7 g/L, and the
activity ratio varies from 1.11 to 1.91 [18–76]. Based on the flow patterns of the Barents
Sea, the highest excess of uranium-234 is observed in areas with a minimal contribution of
Atlantic water.

Following 234U, anomalies should also be found in the isotopic composition of thorium.
Considering the time required to achieve radioactive equilibrium in the ... 234U→ 230Th
→ 226Ra . . . chain, the anomalies in the 230Th/232Th ratio caused by the influence of
climatic variations should be traced much farther into the past than the 234U/238U ratio.
For example, in the Norwegian Sea, the Holocene, Eemian, and previous warming periods
(MIS-1, MIS-5, and MIS-7, respectively, Figure 2) are unambiguously distinguished by
an increase in excess thorium-230 and the depletion of the oxygen isotopic composition
in carbonates.
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Figure 2. Initial 230Th/232Th ratio and oxygen isotopic composition of carbonates for core 23059 from the Norwegian Sea
for the period MIS 1–8 (adapted from [77] with changes): 1—isotopic composition of thorium; 2—isotopic composition
of oxygen.

3. Continental Freshwater Bodies

Lake Baikal is the largest reservoir of freshwater, and it is located in a geographic
zone where the temperature state of rocks in the Late Pleistocene and Holocene changed
significantly [78]. The catchment area of Lake Baikal currently contains both sporadic
discontinuous and continuous permafrost. The modern warming and thawing of the
permafrost characteristic of the region [79] affect the volume and chemical composition of
river runoff [80].

In the bottom sediments of Lake Baikal, geochemical, mineral, and biological systems
react to climatic variations [81–108]. During warming, the concentration of diatoms sharply
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increases, and in cold periods, the flow of clay material and the fraction of terrigenous
uranium increases (Figure 3a).
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Figure 3. Distribution of various biological, clastic and isotope-geochemical indicators over the depth
of bottom sediments of Lake Baikal (adapted with changes from [84,85]: 1—clay flow (a); 2—number
of diatoms (a); 3—234U/238U ratio (b); 4—concentration of terrigenous uranium (b).

The enrichment in uranium-234 significantly decreases in cold periods and increases
in warm ones (Figure 3b). A decrease in the amount of uranium-234 during cold periods
with a simultaneous increase in the flow of clay into the lake contradicts the hypothesis
of the direct input of 234Th into the water as the main source of imbalance in the 238U
system [8–16,109].

Similar variations in isotopic, geochemical, and biogenic parameters were found in the
bottom sediments of some water bodies in northern and northwestern Mongolia, for exam-
ple, Lake Huvsgul [110–119]. Vosel [120] studied the bottom sediments of the small lakes
of the Baikal region. The highest enrichment in uranium-234 was found in the lakes Tsagan-
Tyrm (the saltiest lake, 234U/238U = 2.7—hereafter, on average), Melkoye (234U/238U = 2.6),
and Ordynskoye (234U/238U = 2.3); lower enrichment was found in the lakes Holbo-Nur
(234U/238U = 1.9), Namshi-Nur (the least mineralized lake, 234U/238U = 1.8), and Alaty
(234U/238U = 1.7). There is a correlation between an increase in the 234U/238U ratio and
lake water salinity that can be explained by the accelerated degradation of permafrost upon
contact with saltwater.

A network of tributaries is the source of uranium in the bottom sediments of Lake
Baikal. Currently, in the Selenga River (south sector of the catchment), the 234U/238U ratio
is 2.08–2.13 (average 2.11); in the Upper Angara River (north sector of the catchment), it
is 1.34 ± 0.02 and 1.40 ± 0.15 [84,90]. In the Barguzin River (middle sector of catchment),
it is 1.53 ± 0.03 and 1.56 ± 0.14 [84,90]. In the Selenga River, seasonal variations were
obtained, with a maximum of the 234U/238U ratio in summer, as well as a decrease in this
ratio from the source (mountain part of the watershed, Figure 4) to the mouth [84,121].
There is a stable differentiation between the southern and northern sectors of the Lake
Baikal catchment by uranium-234 excess, with its maximum in the south in the zone of the
most intense modern permafrost degradation.
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Figure 4. The content and isotopic composition of uranium in the Selenga River (the profile length is
approximately 400 km, point 1 is on the border with Mongolia, and point 60 is at the mouth) and its
tributaries (adapted from [84]): 1—uranium concentration in water of Selenga River; 2, 3—isotopic
composition of uranium in water of Selenga River and its tributaries, respectively.

Apparently, the seasonal thawing of permafrost (Figure 5) affects the isotopic com-
position of uranium in surface and groundwater, leading to an increase in uranium-234
at the end of the warm season [122]. The depth of seasonal permafrost thawing depends
on factors related to weather. Therefore, the seasonal enrichment by uranium-234 varies
significantly from year to year.
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Figure 5. Change in the isotopic composition of uranium (234U/238U) of surface (5 monitoring points)
and groundwater (36 monitoring points) of the Kultuk test site, southern Baikal region (data from
Table 1 after [122]): the 234U/238U ratio is normalized to the average for each sampling point, and the
curve is a polynomial of degree four, which gives the first best approximation in R2 (more reliable
detection of seasonal variations is hindered by the uneven sampling of water in time).

4. Conclusions

In the World Ocean, the most significant enrichments in uranium-234 and thorium-
230 are recorded for the northern and inland seas during warming climate periods. The
relative 234U enrichment is greater in places where (1) the sea is more isolated from the
general oceanic circulation, (2) the relative length of the coastline is greater, and (3) the
contribution of continental waters to the chemical balance of the water budget is greater. In
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the bottom sediments of Lake Baikal during periods of cooling, the isotopic composition of
uranium approaches the equilibrium value 234U/238U = 1, and during periods of warming,
the excess of uranium-234 increases even more significantly than in the oceanic reservoir.
In the tributaries of Lake Baikal and small lakes on its catchment, an increase in excess
uranium-234 is noted from north to south, in accordance with a decrease in the proportion
of the area occupied by the continuous permafrost. Since the source of excess uranium-234
in the ocean and large lakes is runoff from the continents, the appearance of anomalously
increased 234U/238U ratios indicates permafrost melting. The revealed effect is consistent
with the hypothesis according to which the accumulation of the radiogenic product 234U in
the mineral matrix occurs during the ice age in the frozen rocks. In the course of permafrost
degradation and ice melting, the flux of uranium-234 from the host rocks into the meltwater
increases significantly due to its greater mobility as compared to uranium-238.
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