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Abstract: The hydrological cycle of the Arctic river basin holds an important position in the Earth’s
system, which has been significantly disturbed by global warming. This study analyzed recent
changes in the hydrological components of two representative Arctic river basins in Siberia and
North America, the Lena River Basin (LRB) and Mackenzie River Basin (MRB), respectively. The
trends were diagnosed in hydrological components through a comparative analysis and estimations
based on remote sensing and observational datasets during 2003–2016. The results showed that
the annual precipitation decreased at rates of 1.9 mm/10a and 18.8 mm/10a in the MRB and LRB,
respectively. In contrast, evapotranspiration (ET) showed increasing trends, with rates of 9.5 mm/10a
and 6.3 mm/10a in the MRB and LRB, respectively. Terrestrial water storage (TWS) was obviously
decreased, with rates of 30.3 mm/a and 18.9 mm/a in the MRB and LRB, respectively, which indicated
that more freshwater was released. Contradictive trends of the runoffs were found in the two basins,
which were increased in the LRB and decreased in the MRB, due to the contributions of the surface
water and base flow. In addition, the mean annual cycles of precipitation, ET, TWS, runoff depth,
surface flow and base flow behaved differently in both magnitudes and distributions in the LRB and
MRB, the trends of which will likely continue with the pronounced warming climate. The current
case studies can help to understand the recent changes in the Arctic hydro-climatology and the
consequence of global warming in Arctic river basins.

Keywords: hydrological components; hydrograph separation; hydrological cycles; time lag; Arctic
river basins

1. Introduction

The global hydrological cycle has been disturbed by recent climate changes [1–6]. As
in high latitudes, the Arctic region is particularly sensitive to climate changes [7]. The
hydrological cycle of Arctic terrestrial ecosystems is a key element in the Earth’s system [5].
The climate over the Arctic region has been significantly altered during the past few
decades, which has directly influenced the hydrological cycle in different ways [8,9]. More
specifically, the average annual temperature has increased at almost twice the global rate
over recent decades in the Artic regions, which is pronounced to increase by an additional
4–7 ◦C over the next century [10,11].

The major hydrological components in terrestrial ecosystems include precipitation,
evapotranspiration (ET), runoff and terrestrial water storage (TWS) changes. Estimations
of the hydrological components can help us to comprehend the dynamics and potential
mechanisms of the hydrological processes under perturbation, which is crucial for estimat-
ing and managing the availability of water resources and the interactions between land
surfaces and climates in the Arctic [12–14]. It is noted that the hydrological components do
not standalone but, rather, are interactive. For example, the precipitation in high latitudes
plays an important role in the Arctic hydrologic system, which is likely to intensify the
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hydrological cycle [15] in a way that it is linked with ET and also related with the river
discharge and TWS changes in the Arctic region [16–18].

Precipitation was found to increase in high-latitude regions [19]. Nevertheless, a
previous study indicated the annual precipitation in the Arctic showed decreasing trends
during the last few decades [16]. Meanwhile, a statistically obvious increase in the averaged
seasonal and annual precipitation was demonstrated in the Canadian Arctic and Eurasia
Arctic [9,17]. It has been noted that the spatiotemporal variations of precipitation over the
subregions of the Arctic show inconsistencies [5]. Trends in river runoffs within the Arctic
also behave in diverse ways [20]. During 1936–1999, the runoffs increased by 7% in the six
largest Eurasian rivers [21]. However, previous studies have suggested that the maximum
spring runoff was decreased, and a slight rise in the winter runoff was observed over the
past 40 years in the MRB [22]. The annual runoffs into the Ungava Bays, James and Hudson
of North America were also decreased [23]. Therefore, the trends of the runoffs were not
consistent with precipitation in the Arctic basins, suggesting that other hydrologic factors
might also have influences on altered runoffs.

ET is one of the dominant controlling factors in the hydrologic cycle at the local and
global scales, which is an important indicator of the regional water budget, depending on
the water availability and climate regime [24,25]. Eddy covariance (EC) observations in
various ecosystems have substantially advanced our knowledge of terrestrial ET during
the past few years [26]. However, ET estimations in large-scale regions have remained
challenging due to the scarcity of the ground observations and limitations of the hydrologic
models [27,28]. In particular, the hydrological system was dominated by ET in the summer
in the Arctic region [29]. A previous study indicated that recently increased ET induced
the coastal tundra to dry out in the LRB [30]. However, the magnitude and variability of
ET are still poorly understood in the Arctic region.

TWS is another key factor of the terrestrial hydrologic cycle. However, direct ob-
servations of TWS at the regional scale were extremely difficult yet limited, especially in
large and high-latitude regions. In the Arctic region, the changes of TWS are specifically
important in estimating the annual water budget. Previous studies have indicated that the
TWS changes reflected the melting of excess ground ice and thaw in the permafrost, both of
which are key indicators of climate change [31–33]. Recently, as the Gravity Recovery and
Climate Experiment (GRACE) satellite launched in 2002, its products can not only investi-
gate the variations of TWS at the basin scale but also help diagnose the discharge sources
and estimate the permafrost contributions from a mass balance perspective [12,34–38].

To summarize, the trends of the individual hydrological components in the Arctic
region have been extensively analyzed in previous studies. However, detailed investiga-
tions of recent changes in the hydrological cycle, including precipitation, ET, TWS change
and runoff, have seldom been systematically discussed for different Arctic river basins,
especially in Siberia and North America. Due to the inconsistent monitoring combined
with the barriers of data transparency and accessibility, quantifying the variations of the
hydrological components by in situ measurements is still a major challenge over the Arctic
region. To overcome such bottlenecks, remote sensing provides a reliable method to esti-
mate the hydrological components over high-latitude regions and has great potential for
advancing our understanding of the water balance dynamics and their relationship with
climate change at the regional scale [12,39–41].

In this study, the hydrological components in two representative Arctic river basins
were quantitively estimated and analyzed based on multiple satellite remote sensing
datasets and the observed data during 2003–2016. The variations of the hydrological factors
and the hydrologic regimes were analyzed. The impact factors, corresponding to changes in
the precipitation and temperature, were also discussed. The rest of the paper is organized
as follows. The study areas are briefly introduced in Section 2. Section 3 explains the
methodology and datasets with postprocessing used in the current study. The results and
the associated discussions are summarized in Sections 4 and 5, followed by the conclusions
given in Section 6.
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2. Study Area

The study areas include the Mackenzie River Basin (MRB) and Lena River Basin
(LRB), which are located in North America and Eastern Siberia in the Russian Federation,
respectively (Figure 1). The area of the MRB is 180 × 104 km2, which is the largest North
American river [42]. Wetland and permafrost cover approximately 49% and 75% in the
MRB. The freshwater contribution of the MRB accounts for about 7% of the annual inflow
to the Arctic Ocean, and the mean annual discharge is about 325 km3/year [43]. The area
of the LRB is 243 × 104 km2, including one of the largest rivers in the Arctic. The mean
discharge is 532 km3/year, and freshwater accounts for 15% of the total among flowing
into the Arctic Ocean [5,44,45]. The continuous permafrost accounts for 71% in the LRB,
and about 78–93% of the basin is covered by permafrost [46,47].
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Figure 1. The study areas include the Mackenzie River Basin (MRB) and the Lena River Basin (LRB).
Red dots represent the hydrological stations for observation. Permafrost distributions and major
water bodies are also displayed.

3. Data and Methodology
3.1. Data
3.1.1. Temperature and Precipitation Data

The monthly air temperature and precipitation data were extracted from the high-
resolution and long-term gridded dataset of the Global Precipitation Climatology Center
(GPCC) (http://climate.geog.udel.edu/~climate/html_pages/download.html#wb_ts2017
(accessed on 16 November 2020)). The GPCC dataset incorporates observations from
75,000 stations worldwide from 1901 to 2017 [48]. The GPCC V7 dataset was based on an
enlarged and improved database to reduce the associated uncertainties from the source
data, and the systematic gauge measuring error was corrected, which has been widely used
to support model climate variability analyses, validations, regional climate monitoring
and water resource assessment studies [49–52]. The V7 version reduced the uncertainty
of the dataset using an enlarged and improved database and is expected to include an

http://climate.geog.udel.edu/~climate/html_pages/download.html#wb_ts2017
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improved correction of the systematic gauge measuring error [50]. Therefore, the GPCC
dataset with the highest spatial resolution (0.5◦ × 0.5◦) was used during 2003–2016. Four
seasons, namely the spring (March–May), summer (June–August), autumn (September–
November) and winter (December–February), were defined for the seasonal analysis in the
current study.

3.1.2. TWS retrieved from GRACE

Data retrieved from the Gravity Recovery and Climate Experiment (GRACE) satellite
were used for analyzing the TWS change [3,34,53–55]. The GRACE data products were
freely downloaded from the GRACE Tellus website (https://grace.jpl.nasa.gov/data/get-
data/monthly-mass-grids-land/ (accessed on 17 November 2020)). Preprocessing was
conducted to remove noise by filtering and truncation [56,57]. The monthly TWS changes
from 2003 to 2016 were used with a spatial resolution of 1◦ × 1◦.

3.1.3. ET Data

The Global Land Evaporation Amsterdam Model (GLEAM) was used to calculate the
ET (https://www.gleam.eu/ (accessed on 15 November 2020)) [58]. GLEAM is driven by
reanalysis or station-based forcing data (e.g., net radiation and air temperature from ERA-
Interim and the Multi-Source Weighted-Ensemble Precipitation data for the ET dataset)
and applies a two-step method for estimating the ET, including the traditional method
proposed by Priestley and Taylor (1972), followed by a function of the root zone soil
moisture and vegetation optical depth. A wide range of water balance-based and EC-
based evaluations [25,59] suggested that GLEAM ET data have been demonstrated to be
accurate in a variety of ecosystems. Therefore, GLEAM often serves as a reference data
for assessing other sorts of large-scale ET data [60]. GLEAM has been used not only in
estimating large-scale ET dynamics [61] but also land–atmosphere interactions and drought
monitoring [62,63]. In this study, the GLEAM v3.2a ET product during 2003–2016 was used
with a spatial resolution of 0.25◦ × 0.25◦.

3.1.4. Runoff Data

In this study, the runoff data was collected by the Arctic Great Rivers Observatory
(ArcticGRO, Falmouth, MA, USA) [64] jointly managed by national hydrological institu-
tions in Russia (Roshydromet), the United States (the US Geological Survey; USGS) and
Canada (the Water Survey of Canada; WSC) (https://arcticgreatrivers.org/data/ (accessed
on 15 November 2020)). The Russian Hydrometeorological Services, which is in charge
of the quality control of the discharge data, has conducted systematical observations of
discharges in the Siberian region since the late 1930s [44]. The data have been rigorously
validated by various hydrological institutions (Arctic and Antarctic Research Institute
(AARI), St. Petersburg et al.) [65]. We used the monthly discharge data during 2003–2016
at the Arctic Red River hydrological station of the MRB and Kusur hydrological station of
the LRB, respectively. For comparison purposes, we converted the discharge (m3/s) data
to the runoff depth (mm).

3.2. Method
3.2.1. Mann–Kendall Test with Trend-Free Pre-Whitening

The Mann–Kendall (MK) test with trend-free pre-whitening (TFPW-MK) has been
used in studies of hydrological trend detection. The equations for the MK test method are
given below:

S =
n−1

∑
k=1

n

∑
j=k+1

Sgn(Sj − Sk) (1)

Sgn(Sj − Sk) =


1

(
Xj − Xk

)
> 0

0
(
Xj − Xk

)
= 0

−1
(
Xj − Xk

)
< 0

(2)

https://grace.jpl.nasa.gov/data/get-data/monthly-mass-grids-land/
https://grace.jpl.nasa.gov/data/get-data/monthly-mass-grids-land/
https://www.gleam.eu/
https://arcticgreatrivers.org/data/
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Var(S) =
n(n− 1)(2n + 5)−

m
∑

i=1
ti(ti − 1)(2ti + 5)

18
(3)

Z =


S−1√
Var(S)

S > 0

0 S = 0
S+1√
Var(S)

S < 0
(4)

where Xi is the value of year i, n is the length of the data and m is the number of groups
with tied ranks, each with ti tied observations. If |Z| > Z1−α/2, the null hypothesis is
rejected, and the alternative hypothesis is accepted at the significance level of α; otherwise,
the null hypothesis of no trend is accepted at the significance level of α.

Trend-free pre-whitening includes the following steps:

r1 =

n−1
∑

t=1
(xt − xt)(xt+1 − xt+1)√

n−1
∑

t=1
(xt − xt)

2n−1
∑

t=1
(xt+1 − xt+1)

2

(5)

Yt = xt − βt (6)

Y′t = Yt − r1Yt−1 + βt (7)

where xt is the value of year t of the time series, n is the length of the data and xt is the
average value. The original MK test was applied to Yt to assess the significance of the trend.

3.2.2. Hydrograph Separation

Various methods have been proposed to separate the base flow from the measured
total discharge hydrograph. The analysis of the base flow provided valuable insights into
understanding the dynamic changes of the groundwater and its contribution to the stream
flow under climate changes [66,67]. However, most of the existing methods are rather
subjective, which cannot provide consistent and converged results, even with the same
input data [68].

Digital filtering algorithms have become powerful tools in hydrograph analyses [68–70].
The stream flow is distinguished as a direct runoff and base flow using the digital filter
method. The direct runoff indicates a stream flow component changing with a high
frequency, including the surface runoff and interflow, while the base flow represents a
stream flow component changing with a low frequency, including groundwater discharge
and the shallow subsurface flow. A two-parameter digital filtering algorithm is expressed
as follows:

bt =
(1−BFImax)× α + qb−1 + (1− α)× BFImax ×Qt

1− α× BFImax
(8)

where bt is the filtered base flow at time step t; α is the filter parameter; qb−1 is the filtered
base flow at time t−1; Qt is the total stream flow at time step t; and BFImax is the maximum
value of the long-term ratio of base flow to the total discharge, defined as 0.25 for perennial
streams with hard rock aquifers, 0.50 for ephemeral streams with porous aquifers and 0.80
for perennial streams with porous aquifers [69].

The two-parameter digital filter algorithm was validated by comparing the results
with measured data in Illinois, Pennsylvania and Maryland [71]. In cold regions, this
method also has been successfully applied in river drainage basins with permafrost [72,73].
Therefore, we used the automated digital filter techniques for hydrograph separation in
the Arctic regions.
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4. Results
4.1. Recent Changes in Temperature and Precipitation

The seasonal and annual variability of the temperatures in the MRB and LRB during
2003–2016 are shown in Figure 2a,b and Table 1. Annually, the temperatures in the two
basins showed increased trends (Table 1 and Figure 2a). The warming trends of annual
temperatures during the study period were 0.79 ◦C/10a and 0.46 ◦C/10a in the MRB
and LRB, respectively (Figure 2a). The Arctic amplification was much stronger than the
global warming rate 0.19 ◦C/10a during the last decades. The annual air temperature
increased by around 11.06 ◦C and 6.2 ◦C during 2003–2016 in MRB and LRB, respectively.
The magnitude of the warm trends was more obvious in the MRB of North America than
in the LRB of Eastern Siberia. The temperatures in the MRB showed increasing trends in
all the seasons (Figure 2b and Table 1). The rates of the temperatures were stronger in the
spring and summer than in the autumn and winter. The temperature in the LRB showed
an increasing trend in the spring, summer and winter, while it had a decreased trend in
the autumn (Figure 2b and Table 1). The results showed obvious warming during the past
14 years over the entire study area.
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Figure 2. Variations in the annual and seasonal temperatures and precipitations in the MRB and LRB during 2003–2016. (a)
annual temperature; (b) seasonal temperature; (c) annual precipitation; (d) seasonal precipitation.

Table 1. The results of the TFPW-MK test for temperature and precipitation in Lena and Mackenzie.
Values exceeding 1.96 represent upward significant trends, whereas those less than 1.96 represent
decreasing trends at α < 0.05.

Basin Variate Spring Summer Autumn Winter Annual

Lena
Temperature 1.28 1.28 −1.40 0.67 1.28
Precipitation 1.53 −1.40 −2.99 * 1.40 −2.01 *

Mackenzie
Temperature 0.92 1.89 1.53 1.16 1.65
Precipitation −1.65 1.16 −0.43 −1.28 −0.43

* p < 0.05.

The seasonal and annual variabilities of the precipitation in the MRB and LRB during
2003–2016 are shown in Figure 2c,d and Table 1. Annually, the precipitation in LRB had a
significantly decreased trend and that in MRB showed a nonsignificantly decreased trend
(Table 1 and Figure 2c). The mean annual precipitations were 359.2 mm and 363.1 mm
in the MRB and LRB, respectively. The annual precipitations had decreased rates of
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1.9 mm/10a and 18.8 mm/10a in the MRB and LRB, respectively (Figure 2c), which
were unlike the positive trends in global surface temperatures over the past century.
The changes of precipitation in the study basins were different with the trends in global
precipitation, which showed no significant changes based on the GPCP dataset [74]. The
annual precipitation increased during 2003–2006 but started to decline after 2000 in the
LRB, while the precipitation increased after 2010 in the MRB. Except for the summer,
the precipitations decreased in the spring, autumn and winter in the MRB, which were
60.1 mm,150.6 mm, 89.6 mm and 58.9 mm in the spring, summer, autumn and winter,
respectively (Table 1 and Figure 2d). In the LRB, the spring and winter precipitations
showed increased trends, while they showed decreased trends in the summer and autumn,
and the precipitations were 57.0 mm, 177.3 mm, 94.6 mm and 34.2 mm in the spring,
summer, autumn and winter, respectively. From the magnitudes of the decreases in the
relevant seasons, it can be seen that the decrease of annual precipitation in the LRB was
mainly due to the decreased precipitation in the autumn.

4.2. Changes in ET

The mean annual ET in the MRB and LRB were 358.3 mm and 334.4 mm, respectively,
which were almost equal to the amount of precipitation. The annual ET series in the MRB
had a significantly increased trend and that in LRB showed a nonsignificantly increased
trend (Table 2 and Figure 3a). The ET in the two basins experienced increases of 9.5
and 6.3 mm/10a during 2003–2016, respectively (Figure 3a). Seasonally, ET showed an
increasing trend in the spring and summer in two basins, and the greatest increase appeared
in the summer, with rates of 64 mm/a and 56 mm/a, respectively (Figure 3b and Table 2).
The decreased trend occurred in the autumn of the LRB and in the winter of the MRB
(Figure 3b and Table 2). The area average magnitudes of ET were 102.2 mm, 224.7 mm,
29.7 mm and 1.6 mm for the spring, summer, autumn and winter in the MRB. The area
average magnitudes of ET were 93.8 mm, 214.8 mm, 25.5 mm and 0.4 mm for the spring,
summer, autumn and winter in the LRB.
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Figure 3. Variations in the annual and seasonal ET in the MRB and LRB calculated by GLEAM during 2003–2016. (a) annual
ET; (b) seasonal ET.

Table 2. The results of the TFPW-MK test for the ET in Lena and Mackenzie. Values exceeding 1.96
represent the upward significant trends, whereas those less than 1.96 represent decreasing trends at
α < 0.05.

Basin Spring Summer Autumn Winter Annual

Lena 0.92 1.28 −2.14 * −0.79 0.92
Mackenzie 1.16 1.04 0.92 −1.16 2.62 *

* p < 0.05.

4.3. Changes in TWS

TWS anomalies in the GRACE dataset showed significantly decreased trends during
2003–2016 in the MRB and LRB, with declines of 30.3 mm/a and 18.9 mm/a (Figure 4a and
Table 3). The variations indicate more freshwater flowing out of two basins, which showed
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a state of deficit. The maximum positive anomalies of TWS were 127.3 mm and 198.2 mm
in the LRB and MRB, respectively, occurring in 2007 and 2005. The minimum negative
anomalies of −300.3 mm and −409.4 mm in the LRB and MRB, respectively, occurred in
2012 and 2016. The seasonal analysis results indicated that the seasonal variations in the
TWS were consistent between the two basins during 2003–2016. Figure 4b and Table 3
show that the TWS in the LRB and MRB had negative anomalies in the spring, summer and
winter and a positive trend in the autumn. The greatest decrease occurred in the spring in
the MRB, while it occurred in the winter in the LRB. The state of the seasonal deficit was
stronger in the MRB than in the LRB, while the state of gain was stronger in the LRB than
in the MRB. The results indicated that more water was released in the MRB and LRB in the
spring, summer and winter and stored in the autumn.
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Figure 4. TWS variations in the MRB and LRB estimated by GRACE data during 2003–2016. (a) annual TWS; (b) sea-
sonal TWS.

Table 3. The results of the TFPW-MK test for TWS in Lena and Mackenzie. Values exceeding 1.96
represent upward significant trends, whereas those less than 1.96 represent decreasing trends at
α < 0.05.

Basin Spring Summer Autumn Winter Annual

Lena −1.53 −1.89 1.53 −2.75 * −2.62 *
Mackenzie −3.48 * −1.90 0.92 −2.75 * −2.50 *

* p < 0.05.

4.4. Changes in Runoff

The annual runoff showed obvious changes during 2003–2016 and experienced an
upward trend with a rate of 2.0 mm/a in the LRB (Figure 5a and Table 4). A rapid increase
in the annual runoff occurred before 2008, when the TWS also showed a significant increase.
In the MRB, the runoff showed a slight decreased trend with a rate of−0.9 mm/a (Figure 5a
and Table 4). The mean annual runoff depths were 167.0 mm and 248.6 mm in the MRB
and LRB, respectively. The runoffs in the spring and summer increased in the LRB, while
it significantly decreased in the autumn and winter (Figure 5b and Table 4). The spring
runoff increased in the Siberian regions primarily due to climate warming during snowmelt
periods associated with early snowmelts [75–78]. The maximum and minimum magnitudes
of the trends occurred in the spring and autumn in the LRB, respectively, with rates of
26.2 mm/10a and −10.7 mm/10a. The runoff depths in the spring, summer, autumn and
winter were 27.5 mm, 149.9 mm, 57.5 mm and 13.7 mm in the LRB. In the MRB, the runoff
decreased in all the seasons, and the minimum trend was in the summer with a rate of
−6.3 mm/10a (Figure 5b and Table 4). The runoff depths in the spring, summer, autumn
and winter were 34.7 mm, 74.6 mm, 39.5 mm and 18.2 mm.
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Table 4. The results of the TFPW-MK test for the runoffs in Lena and Mackenzie. Values exceeding
1.96 represent upward signify trends, whereas those less than 1.96 represent decreasing trends at
α < 0.05.

Basin Spring Summer Autumn Winter Annual

Lena 3.11 * 0.79 −2.14 * −2.01 * 0.18
Mackenzie −1.40 −0.67 −0.43 −1.77 −1.40

* p < 0.05.

5. Discussion
5.1. The Impacts of Precipitation, Temperature and TWS on the Stream Flow

Figure 6a,b showed the hydrological separation in two basins from 2003 to 2016
calculated by Equation (8). The annual surface flow and base flow showed increased trends
in the LRB, whereas both showed a decreased trend in the MRB. The surface flow and base
flow contributed 56% and 44% to the increased total runoff in the LRB, and the surface flow
impacted stronger on the runoff than the base flow. In the MRB, the surface flow and base
flow contributed to a 39% and 61% decrease in the total runoff, and the decreased runoff
was mainly influenced by the base flow. The annual TWS anomalies were more highly
related to the surface flow and base flow than precipitation in the LRB (Figure 6c,e). The
annual precipitation and TWS showed a significantly decreased trend during 2003–2016,
with more TWS released the same as the runoff. Therefore, the increased annual runoff in
this area was mainly attributed to the TWS increase. In the MRB, the correlation coefficient
between annual precipitation and surface flow was 0.45, and changes in the annual TWS
showed stronger relationships with the surface flow and base flow, which were 0.66 and
0.62, respectively. Both annual precipitation and TWS showed decreased trends, suggesting
the control of the annual precipitation and TWS on the interannual variability in the runoff.

Temperature is an important factor that affects the changes of runoffs in the Arctic
region. The relationship between temperature and runoff is shown in Figure 7. The
temperature influence on the runoff was comparatively less at temperatures less than
0 ◦C in the MRB and Lena (Figure 7a,b). The increased rate of the runoff depth was
0.23 mm/◦C in the two basins. This may be because the runoff was generated from the
base flow. Previous studies have shown that the snow depth and runoff during the spring
showed significant correlations in Arctic rivers [42]. At temperatures above 0 ◦C, the
runoff increased dramatically as snowmelt (Figure 7a,b). In this case, the snowmelt water
increased with the increase in temperature. The increased rate of runoff depth in Lena was
higher than that in Mackenzie.
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Figure 6. Annual changes in the surface flow and base flow (a,b), and relationships between the annual runoff and annual
precipitation and TWS (c–f) in the MRB and LRB during 2003–2016.
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Figure 7. The relationships between the runoff and temperature in the LRB (a) and MRB (b) during 2003–2016.

5.2. Seasonal Cycles of Hydrological Components

As shown in Figure 8, the trends of the precipitation and ET agreed relatively well in
the LRB and MRB, both peaking around June–August and reaching a minimum between
November and February. The precipitation from November to March was higher in the
MRB than in the LRB. However, it was lower from May to October. The ET was higher in
the MRB than in the LRB. The TWS showed positive anomalies from February to June and
negative anomalies from July to January in the two basins. As seen, the runoff remained
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high during May–October and then decreased to reach the annual low in April before
increasing again throughout the second half of the year. The positive anomaly of the TWS
was caused by the accumulation of snow, low ET and runoff. It is evident that winter
precipitation significantly influenced the hydrological cycle in the MRB and LRB. The
surface flow was concentrated from May to September, and the differences between the
high runoff and low runoff were obviously mainly due to the snowmelt [77,79]. The base
flow from November to May was higher in the MRB than in the LRB, and it was obviously
higher from June to October in the LRB. The maximum base flow occurred in August and
September, which lagged 2 to 3 months compared to the surface flow. In the Arctic region,
the permafrost conditions also highly influenced the hydrological regime; basins with more
permafrost coverage (such as LRB) had lower subsurface storage capacity and, thus, a
lower winter base flow and a higher summer peak flow [80–82].
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Figure 8. Mean annual cycles of precipitation (a), ET (b), TWS (c), runoff depth (d), surface flow (e) and base flow (f) in the
LRB and MRB during 2003–2016.

Precipitation had a positive correlation with the ET and runoff in general (Figure 9a,b).
The relationships between monthly precipitation and ET were better correlated in the LRB
(R = 0.82, p = 0.001) than in the MRB (R = 0.79, p = 0.002) (Figure 9a). However, there were
also phase differences for different months. There were higher positive relationships in
March and October and high negative relationships in May and July (Figure 10a). The
relationships between the monthly precipitation and runoff were also better correlated
in the LRB (R = 0.82, p = 0.0001) than in the MRB (R = 0.79, p = 0.0005) (Figure 9b). The
monthly precipitation more highly positively influenced by the monthly runoff mainly
occurring in January, April and November in the LRB, and it occurred only in October
in the MRB, which indicated that the runoff was influenced by precipitation (Figure 10b).



Water 2021, 13, 3494 12 of 18

For the TWS, there were negative correlation with precipitation in general (Figure 9c).
The relationships between the monthly precipitation and TWS were better correlated in
the MRB (R = 0.58, p = 0.04) than in the LRB (R = 0.55, p = 0.07) (Figure 9c). In the MRB,
the monthly precipitation showed higher negative relationships in January and February,
whereas they showed higher positive relationships in August and October (Figure 10c).
The positive relationships between monthly precipitation and TWS were higher in July,
August, September and November in the LRB, suggesting that the precipitation impacted
on the TWS (Figure 10c). Overall, the impact of the precipitation on the ET, runoff and
TWS on a monthly scale showed huge differences in the different river basins over the
Arctic region.
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Figure 9. The relationships between the monthly precipitation and ET (a), runoff (b) and TWS (c) in
the LRB and MRB.
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Figure 10. The relationships between the monthly precipitation and ET (a), runoff (b) and TWS (c) in
the LRB and MRB during 2003–2016.

5.3. Telationship between Precipitation and Other Hydrological Components

As the key component and driving factor in the hydrologic cycle, precipitation has a
prominent influence on the interactions among other hydrologic components [83]. There
is a lag time from when water is introduced as the precipitation compared to when it
becomes surface water, ET and TWS, which is typically described empirically as the total
precipitation in the hydrological balance [84]. The time lags of the ET, runoff and TWS
responses to precipitation are shown in Figure 11. The results indicated that the ET and
runoff were most highly related to precipitation over a 1-month lag, i.e., the monthly ET and
runoff were strongly influenced by the precipitation that occurred 1 month earlier in the
study area. The negative relationships between precipitation and ET and runoff occurred
after a lag of 4 months, and the maximum negative relationships both occurred after a
6-month time lag. The monthly precipitation and the TWS were negatively correlated
without any lag and poorly negatively correlated over a 1-month lag. As time goes by, the
relationships between precipitation and TWS converted from negative values to positive
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values in the study areas. The TWS were most highly related to precipitation over a time
lag of 4 months in the two basins. These results suggested that more precipitation would
lead to more TWS when precipitation preceded the TWS by 4 months; in contrast, it would
result in less TWS when precipitation preceded it by 0 to 1 month. It is also found that the
monthly precipitation mainly formed ET and runoff over the next 3 months; after that, the
ET and runoff would gradually decrease, and more precipitation was stored in the basins,
which induced the TWS increase in the LRB and MRB.
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Figure 11. The time lag of the correlation coefficient between precipitation and ET (a), runoff (b) and
TWS (c) in the LRB and MRB during 2003–2016.

6. Conclusions

In this study, the changes of the hydrological components in two representative river
basins in the Arctic region, namely the Mackenzie River Basin (MRB) and the Lena River
Basin (LRB), were investigated using multiple satellite remote sensing and observational
datasets during 2003–2016. The main conclusions were as follows:

(1) The changes of the hydrological components in the different basins of Arctic region
showed different trends. The annual precipitation decreased at rates of 1.9 mm/10a and
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18.8 mm/10a in the MRB and LRB, respectively, which was much greater in Eastern Siberia
than in North America. The magnitude of the warm trends was obviously more in the
MRB of North America than the LRB of Eastern Siberia, which were 0.79 ◦C/10a and
0.44 ◦C/10a, respectively. The ET increased more rapidly in the MRB than in the LRB, with
rates of 9.5 and 6.3 mm/10, respectively.

(2) The TWS showed a decreased trend during 2003–2016 in the MRB and LRB, with
declines of 30.3 mm/a and 18.9 mm/a. The change trends of the runoffs were different
with the TWS in the study area. The surface flow and base flow contributed 56% and
44% of the increased total runoff in the LRB. In the MRB, the surface flow and base flow
contributed 39% and 61% of the decreased total runoff, so the decreased runoff was mainly
influenced by the base flow. The increased annual runoff in the LRB was mainly attributed
to a lower ET and less of a deficit of TWS, while a higher ET and more of a deficit of TWS
in the MRB controlled the variability in the runoff.

(3) The mean annual cycles of precipitation, ET, TWS, runoff depth, surface flow and
base flow in the LRB and MRB showed deviations in the magnitudes and distributions.
The precipitation on a monthly scale influenced the ET, runoff and TWS and showed huge
differences in the different river basins over Arctic region. There were obviously lag times
from rainfall to surface water, ET and TWS in the study areas. The monthly precipitations
mainly formed the ET and runoff for the next 3 months; after that, the ET and runoff would
gradually decrease, and more precipitation was stored in the basins, which induced TWS
increase in the LRB and MRB.
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