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Abstract: Ponded infiltration processes occur in agricultural lands irrigated by flooding of their soil
surface or under insufficient drainage conditions. The existing equations describing the phenomenon
of vertical infiltration under ponded conditions have not considered the actual contribution of the
pressure head gradient to the flow. In this study, simple equations are proposed to describe the
horizontal and vertical infiltration under various ponding heads incorporating the actual contribution
of the pressure head gradient to the flow. Six soils with known hydraulic properties, covering a
wide range of soil textures, were used. Horizontal and vertical infiltration data are obtained by
numerical simulation for all soils studied using the Hydrus-1D code. To validate the accuracy of the
proposed equations, the solutions of horizontal and vertical infiltrations provided by the proposed
equations were compared with numerically simulated ones provided by the Hydrus 1-D. The analysis
of the results showed a very good agreement in all soils studied. The proposed vertical infiltration
equation was also compared to a simple and accurate equation which does not incorporate the actual
contribution of the pressure head gradient to the flow and differences between them were observed
in all soils studied.

Keywords: ponding head; vertical infiltration; pressure head gradient; horizontal infiltration

1. Introduction

The infiltration process is of great importance in hydrology and agricultural sciences
since it provides the water available for plants and groundwater recharge and defines water
runoff at soil surface. A rainfall or irrigation intensity greater than soil infiltration capacity
will lead to water runoff at the soil surface, causing ponded conditions. Additionally, in
agricultural lands ponded conditions may be developed under insufficient drainage and in
irrigation practices when irrigation water is applied by flooding the soil surface. Further
ponded conditions are met in lakes, natural or artificial. Consequently, the study of the
vertical infiltration under ponding heads is of great interest.

For this, Philip [1,2] tackled the problem of the vertical infiltration under ponded condi-
tions, and he presented analytical solutions relative to this flow problem. Other researchers,
later, investigated the same infiltration case and proposed equations to estimate the cu-
mulative ponded infiltration in a homogeneous soil [3–14]. The main difference among
these equations is the number of physical or fitting parameters used. In several models, the
common physical parameters used are the soil sorptivity, S, and the saturated hydraulic
conductivity, Ks, which are often met as the main parameters of the two-parameter models.

Green and Ampt [3] proposed a two-parameter equation assuming a piston-type
water content profile with a well-defined wetting front characterized by a constant pressure
head and constant pressure head at the surface. Brutsaert [4] proposed a three-parameter
equation based on the quasi-analytical time-series infiltration solution of Philip [5] which
can be converted into a two-parameter form by fixing the value of the third parameter.
Parlange et al. [6] proposed a three-parameter equation based on integration of the water
content-based form of Richards’ equation which can be converted into a two-parameter
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form by fixing the value of the third parameter. Parlange et al. [7] proposed a modified
version of Parlange et al. [6] equation with five parameters including ponded conditions.
Haverkamp et al. [8] proposed a very accurate six-parameter equation based on that of
Parlange et al. [7] which can be converted into a three-parameter one. Swartzendruber [9]
proposed a three-parameter equation which is a semi-analytical solution of the Richards’
equation for all times t > 0, which is similar to the Philip’s moderate time series solution.
This equation can be converted into the two-parameter equation of Stroosnijder [10] by
fixing the third parameter. Later, Valiantzas [11] proposed a simple two-parameter lin-
earized equation which is a specific solution located approximately at the middle of the two
limiting behavior soils defined by the Green and Ampt [3] and Talsma and Parlange [12]
equations. Valiantzas compared his equation with other common nonlinear ones with two
and three parameters [3–10]. The comparison showed that the three-parameter equations
may reproduce unrealistic estimates and have convergence or nonuniqueness difficulties
of the solution [11]. The equation proposed by Valiantzas, over the other two-parameter
equations studied, has the advantage of simplicity and accuracy of sorptivity and satu-
rated hydraulic conductivity estimations, as well as the ability to detect and eliminate
abnormalities of the infiltration process [11].

However, all the above-mentioned researchers did not incorporate into their analyses
the actual contribution of the pressure head gradient to the flow.

Recently, Poulovassilis and Argyrokastritis [15] determined the exact contribution of
the pressure head gradient term in the vertical infiltration process in the case of homo-
geneous porous media under zero ponding head. Specifically, Poulovassilis and Argy-
rokastritis [15] showed that the contribution to the flow of the pressure head gradient St1/2,
included in Philip’s [16] two term equation, is only applied in the case of horizontal infil-
tration. They defined analytically that this contribution is in the vertical case is (St1/2 − αt)
and that it is smaller than the horizontal one by a factor αt, being a measurable function of
the infiltration time t. In conclusion, they proposed a new two-term analytical equation for
vertical infiltration which reproduces exactly a vertical cumulative curve and satisfies the
physical rules of the infiltration process.

Up to now, no research has been carried out on the actual contribution of the pressure
head gradient to flow during the vertical infiltration process under ponded conditions.

The purpose of the present study is to define the physical characteristics of infiltration
under ponded conditions and to develop simple equations for it, conforming to these
characteristics, incorporating the actual contribution of the pressure head gradient.

2. Materials and Methods
2.1. Theory

The infiltration process along the horizontal axis x in a homogeneous semi-infinite
porous body is governed by the following initial conditions

θ = θi h = hi t = 0 x ≥ 0, (1)

θ = θ0 h = hp t ≥ 0 x = 0, (2)

where θ0 is the volumetric water content established at x = 0 at a pressure head hp ≥ 0
and the pair θi < θ0, hi < 0 denote the initial uniform steady state prevailing all along the
porous column.

When hp = 0, the horizontal cumulative infiltration is described by the following
equation

ix = K0

∫ t

0
λx=0 dt = St

1
2 , (3)
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where K0 is the hydraulic conductivity when θ = θ0 prevailing for all t at x = 0 and the
pressure head gradient λx=0 at x = 0 [5,17] is

λx=0 = (− dh
dx

)
x=0

=
1
2

t
−1
2

S
K0

, (4)

The imposition of the ponding head hp > 0 at x = 0, adds the pressure head gradient
and results in establishing a zone along which positive pressure heads prevail. The length
of this zone is continuously increasing as the infiltration time t increases. Thus, if x0 is the
value of x at which the hydrostatic pressure becomes zero at time t, then x0 → 0 when
t→ 0 and x0 → ∞ as t→ ∞ , while the pressure head gradient −

(
dhp
dx

)
≡ λp → 0 as

t→ ∞ for all x and therefore hp → 0 as x0 → ∞ . In this case

ix,p = St
1
2 + K0

∫ t

0
λx=0,pdt, (5)

while for all x < x0 the hydraulic conductivity is K0.
The pressure head gradient of the first term at the right-hand side in Equation (5)

tends to zero as t→ ∞ and the same is true for the gradient λx=0,p. Therefore, the two
terms must tend to become parallel to each other. In such a case, the integral term may be
expressed in terms of St

1
2 so that

K0

∫ t

0
λx=0,pdt = nxSt

1
2 , (6)

where nx > 0. Thus, we may write,

ix,p = St
1
2 + nxSt

1
2 = S(1 + nx)t

1
2 (7)

It may be mentioned that the imposition of hp affects the shape of the wetting front
reducing it to a steeper form. From Equation (7)

ix,p

t
1
2

= S(1 + nx) (8)

so that the value of the ratio at the left hand of Equation (8) is increasing as nx increases
and further that this ratio is a single-valued function of the independent variable nx.

If in conditions described by Equation (3) x is replaced by z then they govern, too, the
vertical infiltration process. The gravitation component adds to the pressure head gradient,
causes an increase of the infiltration rate and promotes the expansion of the zone with
positive hydrostatic pressure. Thus, if z0 is the depth at which the hydrostatic pressure
becomes zero at a time t, then z0 → 0 as t→ 0 and z0 → ∞ as t→ ∞ , and therefore(

dz0

dt

)
>

(
dx0

dt

)
and z0 > x0,

(
dK0

dz

)
>

(
dK0

dx

)
(9)

for all finite t.
Poulovassilis and Argyrokastritis [15] determined that the contribution of the pressure

head gradient to the vertical flow is smaller than that of the horizontal flow by a factor at,
which is a variable depending on the infiltration time, but measurable if the soil properties
S and K0 are known (Equation no. 20 from Poulovassilis and Argyrokastritis [15]). Thus,
we may write,

iz,p = S(1 + nz)t
1
2 − at + K0t (10)

from which
iz,p + at − K0t

t
1
2

= S(1 + nz) (11)
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The ratio at the left-hand side of Equation (11) is a single-valued function of the
independent variable nz.

Taking into account the analytic form of the variable at (Equation no. 22 from Poulo-
vassilis and Argyrokastritis [15])

at = St
1
2

(
1− e−c( K0

S )
√

t
)

, (12)

the Equation (10) can be written as

iz,p = St
1
2

[
(1 + nz)−

(
1− e−c( K0

S )
√

t
)]

+ K0t, (13)

or

iz,p = St
1
2

(
nz + e−c( K0

S )
√

t
)
+ K0t, (14)

in which c is a constant fitting parameter characteristic of the porous medium.
Poulovassilis and Argyrokastritis [15] also demonstrated that the variable at may be

described by the following equation for small and intermediate infiltration time t

αt = kt, (15)

where the slope coefficient k is characteristic of the porous medium.
In that case, Equation (2) may be approximated by the Poulovassilis and Argyrokastri-

tis (Equation no. 25 from Poulovassilis and Argyrokastritis [15]) following equation

iz = St
1
2 + (K0 − k)t, (16)

2.2. Porous Media

Six soils ranged from sand to clay with known hydraulic properties were selected
covering a wide range of soil texture. The soils studied were the Yolo light clay (YLC), a
clay loam (CL), a silty loam (SiL), a sandy loam (SL), a loamy sand (LS) and a sand (S).
For all soils, water retention and hydraulic conductivity curves were described by the
Mualem [18]-van Genuchten [19] closed-form model. For the Yolo light clay soil, the soil
parameters were obtained from Poulovassilis et al. [20] and for the other studied soils by
the database included in the Hydrus-1D software package [21]. The corresponding soil
parameters are presented in Table 1.

Table 1. The Mualem-van Genuchten closed-form model parameters θs, θr, α, n, the tortuosity factor l, the saturated
hydraulic conductivity Ks, the sorptivity S and the parameters c (Equation (12)) and k (Equation (15)) of the six porous
media studied.

Soil
Soil Parameters Infiltration Parameters

θs θr α n l Ks S c k
(cm3 cm−3) (cm3 cm−3) (cm−1) (-) (-) (cm h−1) (cm h−1/2) (-) (cm h−1)

YLC 0.495 0.124 0.015 2.0 0.5 0.04428 0.7512 0.6468 0.024
CL 0.41 0.095 0.019 1.31 0.5 0.26 0.7453 0.9898 0.1969
SiL 0.450 0.067 0.02 1.41 0.5 0.45 1.2395 1.066 0.2986
SL 0.41 0.065 0.075 1.89 0.5 4.42083 3.6775 0.73 1.9899
LS 0.41 0.057 0.124 2.28 0.5 14.5917 6.0006 0.5883 5.9645
S 0.43 0.045 0.145 2.68 0.5 29.70 8.9092 0.506 9.9463

2.3. Numerical Analysis

Very few experimental cumulative infiltration data are available for hp > 0, which
is, perhaps, due to the additional experimental difficulties for obtaining such data. For
this reason, infiltration data were obtained by numerical simulation for all porous media
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studied using the Hydrus-1D software package (Department of Environmental Sciences,
University of California Riverside: Riverside, CA, USA) [21].

The Hydrus-1D is one of the most common software packages that has been suc-
cessfully applied in various studies worldwide for predicting soil water movement un-
der different conditions. The HYDRUS-1D is a finite element model for simulating the
one-dimensional movement of water, heat, and multiple solutes in variably saturated
media. The program numerically solves the Richards equation for saturated–unsaturated
water flow and Fickian-based advection–dispersion equations for both heat and solute
transport [21]. The unsaturated soil hydraulic properties can be described using van
Mualem-Genuchten [18,19], Brooks and Corey [22], modified van Genuchten [23], log-
normal distribution model of Kosugi [24], and a dual-porosity model [25] type analytical
functions. In this study, the Mualem-van Genuchten closed-form model was used.

To obtain horizontal and vertical infiltration numerical data, boundary conditions
were set. Upper boundary was defined as a constant soil surface ponding depth, hp, of
0, 5, 10, 25, 50, 100, 150 and 200 cm. As lower boundary of the uniform soil column, a
zero-pressure head gradient was defined (free drainage). Initial pressure heads were set to
−208, −500, −300, −200, −100 and −100 cm for YLC, CL, SiL, SL, LS and S, respectively,
according to soil texture.

The value of sorptivity S for each porous medium was obtained using horizontal
infiltration numerical data and applying the Philip’s [5] equation ix,n = St1/2 (Table 1).

2.4. Tests of the Formulated Equations

To validate the proposed Equations (7) and (14), the solutions of the ix,p and iz,p
provided by these equations, respectively, were compared with numerically simulated
ones, ix,p,n and iz,p,n, provided by the Hydrus-1D program for horizontal and vertical
infiltration, respectively.

In order to compare the proposed Equation (14) with those proposed for vertical
infiltration by other researchers, the Valiantzas equation (denoted as Val) was selected and
its algebraic form is given by Equation (17). It is a simple and accurate two-parameter
equation, among others more sophisticated needing three or more parameters, as presented
in the introduction section.

i = 0.5Kst + St
1
2

[
1 +

(
0.5Ks

S

)2
t

]0.5

, (17)

The adjustment of soil sorptivity for various soil surface ponding depths was estimated
by the following Equation [11]

Sp =
√

S2
0 + 2Kshp(θs − θi), (18)

where Sp is the soil sorptivity for ponding depth hp, S0 for hp = 0, θs and θi are the water
content at saturation and the initial soil water content, respectively.

3. Results and Discussion

In Figure 1, the horizontal cumulative infiltration curves ix,p,n obtained numerically for
all soils examined are compared to the predicted ones ix,p using the Equation (7), for various
hp values. Correspondingly, the comparison between the vertical cumulative infiltration
curves iz,p,n obtained numerically and the predicted ones iz,p using the Equation (14), for
various hp values is depicted in Figure 2. The fitting parameter c in Equations (12)–(14) and
the slope coefficient k in Equations (15) and (16) for each soil are presented in Table 1.
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Figure 1. Comparative presentation of the horizontal cumulative infiltration numerical data ix,p,n and predicted ones ix,p

using Equation (7) with time t for various ponding heads hp, for Yolo light clay (a), clay loam (b), silty loam (c), sandy loam
(d), loamy sand (e) and sand (f).
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Figure 2. Comparative presentation of the vertical cumulative infiltration numerical data iz,p,n and predicted ones iz,p using
Equation (14) with time t for various ponding heads hp, for Yolo light clay (a), clay loam (b), silty loam (c), sandy loam
(d), loamy sand (e) and sand (f).

As shown in Figures 1 and 2, the ix,p and iz,p predicted by applying Equations (7)
and (14), for the horizontal and vertical infiltration, respectively, are in close agreement
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with those produced numerically by Hydrus-1D. Furthermore, the proposed equations
(Equations (7) and (14)) were tested for their accuracy with the numerical data using the
indices of Root Mean Square Error (RMSE) and Index of Agreement (d) [26]:

d = 1−
∑N

j=1 (in,j − ipred,j)
2

∑N
j=1 (

∣∣∣ipred,j − in

∣∣∣+ ∣∣in,j − in
∣∣)2 , 0 ≤ d ≤ 1, (19)

RMSE =

√
∑N

j=1 (in,j − ipred,j)
2

N
, (20)

where in,j and ipred,j are the numerical cumulative infiltration values and the predicted ones
by the proposed Equation (7) or (14), respectively, in is the mean of numerical values and N
is the number of values.

As shown in Table 2, both the small values of RMSE and the values of d approaching 1
indicate the accurate match of the proposed equations (Equations (7) and (14)) to the
numerical data for all porous media studied.

Table 2. Root Mean Square Error (RMSE) and Index of Agreement (d) for testing the accuracy of the
proposed Equations (7) and (14) with the numerical data for various ponding heads hp for the six
porous media studied.

hp
(cm)

YLC CL SiL SL LS S
RMSE d RMSE d RMSE d RMSE d RMSE d RMSE d

Horizontal infiltration using Equation (7)

0 0.036 0.999 0.025 0.999 0.011 0.999 0.015 0.999 0.025 0.999 0.083 0.999
5 0.046 0.999 0.169 0.988 0.003 1.000 0.030 0.999 0.069 0.999 0.151 0.999
10 0.052 0.999 0.267 0.980 0.002 1.000 0.047 0.999 0.092 0.999 0.225 0.999
25 0.064 0.999 0.464 0.970 0.001 1.000 0.075 0.999 0.127 0.999 0.242 0.999
50 0.079 0.999 0.669 0.966 0.012 0.999 0.103 0.999 0.157 0.999 0.290 0.999

100 0.101 0.999 0.916 0.966 0.072 0.999 0.132 0.999 0.181 0.999 0.332 0.999
150 0.117 0.999 0.523 0.993 0.137 0.999 0.149 0.999 0.185 0.999 0.353 0.999
200 0.129 0.999 0.667 0.991 0.026 0.999 0.159 0.999 0.197 0.999 0.362 0.999

Vertical infiltration using Equation (14)

0 0.045 0.999 0.042 0.998 0.059 0.999 0.017 0.999 0.072 0.999 0.197 0.999
5 0.064 0.999 0.078 0.996 0.045 1.000 0.117 0.999 0.104 0.999 0.176 0.999
10 0.091 0.999 0.126 0.993 0.058 0.999 0.140 0.999 0.112 0.999 0.215 0.999
25 0.127 0.999 0.233 0.987 0.072 0.999 0.171 0.999 0.131 0.999 0.192 0.999
50 0.161 0.999 0.343 0.984 0.079 0.999 0.199 0.999 0.148 0.999 0.212 0.999

100 0.185 0.999 0.452 0.984 0.089 0.999 0.229 0.999 0.155 0.999 0.238 0.999
150 0.211 0.999 0.318 0.995 0.099 0.999 0.246 0.999 0.148 0.999 0.252 0.999
200 0.198 0.999 0.217 0.998 0.114 0.999 0.259 0.999 0.149 0.999 0.262 0.999

It may be noted that the hydraulic properties S and K0 present in Equations (7) and (14)
can be determined from an available cumulative infiltration curve for vertical infiltration
under zero ponding head [15]. Thus, Equation (7) contains one unknown, nx, which
depends on the value of ponding head hp (Figure 1a–f) and Equation (14) contains the
unknown variable nz which also depends on the value of ponding head hp as shown in
Figure 2a–f. It is seen from these figures that nz > nx, and the rather small difference between
them may be explained on the basis of the relationships (7) and (10). We have not reached an
analytical expression relating hp and n for both cases of infiltration (horizontal and vertical).
However, it is found that the plotting of loghp versus logn produces, approximately, a
straight line (Figure 3). Thus, if two pairs (hp − n)1 and (hp − n)2 are determined, then the
relationship (hp, n) may be approached for all such pairs.
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Figure 3. Relationships between (a) the parameter nx of the Equation (7) and ponding head hp for horizontal infiltration and
(b) the parameter nz of the Equation (14) and ponding head hp for vertical infiltration (b), for all porous media studied.

The vertical cumulative infiltration data iz,p with time t obtained by the proposed
Equation (14) and the Valiantzas equation (Equation (17)) for hp = 0 and various soil
ponding heads hp, are presented in Figure 4 and the index of RMSE values between the
two equations are presented in Table 3.

From Figure 4 and the RMSE values, it is obvious that there are differences in the
estimation of vertical cumulative data iz,p between the two procedures. This difference
is not systematical, since for hp = 0 the Val (Equation (17)) compared to Equation (14)
overestimated the vertical cumulative infiltration data iz,p while for hp > 0 the Val generally
underestimated the iz,p values.

Specifically, the Val systematically overestimated the iz,p data for hp = 0 for all the tested
porous media. There is a higher difference between the two equations for the fine-textured
soils (YCL, SiL) compared to the coarse-textured ones (LS, S). The overestimation of the iz,p
data for hp = 0, as has been shown by Poulovassilis and Argyrokastritis [15], is attributed
to the non-incorporation of the actual contribution of the pressure head gradient term to
this model.

For all the other ponding heads hp > 0, the Val generally underestimated the iz,p data
for all the tested porous media. The underestimation of Val compared to Equation (14)
presents higher differences for the coarse-textured soils (S, LS), for which there is also a
gradual increase of this difference as the hp values increase in the same porous media. For
the finer porous media, the Val generally underestimated the iz,p but for an intermediate
value of hp, different for each porous medium, the Val gives similar results to Equation [14].
The higher differences between the two equations (Equation (14) and Val) for the ponding
depths hp > 0 are observed for coarser materials compared to the finer ones. Specifically,
the underestimation of Val compared to Equation (14) for hp > 0 may be attributed to the
estimation of Sp for the different hp and also in the way that the needed parameter of θi
is estimated.
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Figure 4. Comparative presentation of the vertical cumulative infiltration data iz,p predicted by the proposed Equation (14)
and the Valiantzas equation [11] with time t for various ponding heads hp, for Yolo light clay (a), clay loam (b), silty loam
(c), sandy loam (d), loamy sand (e) and sand (f).
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Table 3. Root Mean Square Error (RMSE) values from comparing the vertical cumulative infiltration
data iz,p predicted by the proposed Equation (14) and the Valiantzas Equation [11] for various ponding
heads hp for the six porous media studied.

hp (cm) YLC CL SiL SL LS S

0 0.757 0.194 0.728 0.579 0.441 0.472
5 0.288 0.043 0.159 0.025 0.379 0.696

10 0.119 0.129 0.051 0.182 0.601 1.319
25 0.173 0.278 0.191 0.341 0.825 1.536
50 0.407 0.423 0.282 0.398 0.926 1.783
100 0.555 0.617 0.356 0.407 0.978 1.935
150 0.641 0.603 0.449 0.396 0.998 1.992
200 0.611 0.606 0.487 0.379 0.994 2.021

4. Conclusions

The study of infiltration under ponded conditions is of great interest in agricultural
lands. However, there are no studies that have considered the actual contribution of the
pressure head gradient to the flow in their analyses.

To fill that scientific gap, two simple equations are proposed, to describe the horizontal
and vertical infiltration under various ponding heads, incorporating the actual contribution
of the pressure head gradient to the flow.

The accuracy of the proposed equations was validated using horizontal and vertical
numerical infiltration data for six soils, covering a wide range of soil textures.

The soil sorptivity and saturated hydraulic conductivity, which are included in the
proposed equations, can be determined from an available vertical cumulative infiltration
under zero ponding head. Thus, both the horizontal and vertical proposed equations
contain one unknown parameter each, nx and nz respectively, which depend on the value of
ponding head hp. The plotting of loghp versus logn produces, approximately, a straight line.

Finally, the proposed vertical infiltration equation was compared to that of Valiantzas
which does not incorporate the actual contribution of the pressure head gradient to the
flow and differences were observed in all porous media studied. The vertical cumulative
infiltration data obtained by Valiantzas equation are overestimated for hp = 0 and are
underestimated for hp > 0.
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