
water

Article

Splitting and Length of Years for Improving Tree-Based Models
to Predict Reference Crop Evapotranspiration in the Humid
Regions of China

Xiaoqiang Liu 1, Lifeng Wu 2,3,* , Fucang Zhang 1,*, Guomin Huang 2, Fulai Yan 1 and Wenqiang Bai 1

����������
�������

Citation: Liu, X.; Wu, L.; Zhang, F.;

Huang, G.; Yan, F.; Bai, W. Splitting

and Length of Years for Improving

Tree-Based Models to Predict

Reference Crop Evapotranspiration in

the Humid Regions of China. Water

2021, 13, 3478. https://doi.org/

10.3390/w13233478

Academic Editor: Renato Morbidelli

Received: 1 November 2021

Accepted: 24 November 2021

Published: 6 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas of the Ministry of
Education, Northwest A&F University, Yangling, Xianyang 712100, China; liuxq1995@nwafu.edu.cn (X.L.);
yfl1995@nwafu.edu.cn (F.Y.); baiwq@nwafu.edu.cn (W.B.)

2 School of Hydraulic and Ecological Engineering, Nanchang Institute of Technology, Nanchang 330099, China;
huangguomin@nit.edu.cn

3 State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water
Resources and Hydropower Research, Beijing 100038, China

* Correspondence: wulifeng@nit.edu.cn (L.W.); zhangfc@nwsuaf.cn (F.Z.); Tel.: +86-15179161394 (L.W.)

Abstract: To improve the accuracy of estimating reference crop evapotranspiration for the effi-
cient management of water resources and the optimal design of irrigation scheduling, the draw-
back of the traditional FAO-56 Penman–Monteith method requiring complete meteorological in-
put variables needs to be overcome. This study evaluates the effects of using five data splitting
strategies and three different time lengths of input datasets on predicting ET0. The random for-
est (RF) and extreme gradient boosting (XGB) models coupled with a K-fold cross-validation ap-
proach were applied to accomplish this objective. The results showed that the accuracy of the RF
(R2 = 0.862, RMSE = 0.528, MAE = 0.383, NSE = 0.854) was overall better than that of XGB (R2 = 0.867,
RMSE = 0.517, MAE = 0.377, NSE = 0.860) in different input parameters. Both the RF and XGB mod-
els with the combination of Tmax, Tmin, and Rs as inputs provided better accuracy on daily ET0

estimation than the corresponding models with other input combinations. Among all the data
splitting strategies, S5 (with a 9:1 proportion) showed the optimal performance. Compared with the
length of 30 years, the estimation accuracy of the 50-year length with limited data was reduced, while
the length of meteorological data of 10 years improved the accuracy in southern China. Nevertheless,
the performance of the 10-year data was the worst among the three time spans when considering
the independent test. Therefore, to improve the daily ET0 predicting performance of the tree-based
models in humid regions of China, the random forest model with datasets of 30 years and the 9:1 data
splitting strategy is recommended.

Keywords: data splitting; length of years; random forest; extreme gradient boosting; reference
crop evapotranspiration

1. Introduction

Evapotranspiration (ET), the total water consumption of soil evaporation and crop
transpiration, is of great significance for water resources planning and management, irriga-
tion systems, land drainage implementation, groundwater research, drought assessment,
analysis of farmland environments, and agricultural water management in water shortage
areas [1–4]. The precise prediction of ET is critical at the global level because it has an
impact on the hydrological cycle [5,6]. In the context of climate change, agricultural water
resources are decreasing on a temporal and spatial scale across the world [7]. Crop water
use is the key factor of soil water circulation in farmland, which is exceedingly signifi-
cant regarding the optimal allocation of water resources and the formulation of irrigation
systems, and the key to calculate the crop water demand is to determine the evapotranspi-
ration of crops [8–10]. However, methods for calculating the ET, such as the water balance
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method [11], the conduction theory of aqueous vapor [12], or using the lysimeter device,
are extremely time-consuming and expensive in practice, which limits their applicability.
Hence, to determine the actual ET value in a wide range, the reference evapotranspiration
(ET0) was developed as an alternative method for calculating the ET and has been widely
used [13].

Plenty of nonlinear mathematical models with meteorological variables have been
established for ET0 prediction [14–16], among which the FAO-56 Penman–Monteith model
is the most widely accepted standard model in different regions and climates. However,
the FAO-56 Penman–Monteith model needs a mass of meteorological variables for its
calculation, e.g., maximum and minimum ambient temperatures, wind speed, relative
humidity, and solar radiation [17–19], which is the major weaknesses for its application
across the world. Therefore, models with fewer meteorological parameters as inputs,
e.g., temperature-based, mass transfer-based, and radiation-based models, have been
developed and applied widely in regions where only incomplete meteorological data are
available [6,20–23]. In spite of the wide application, there are still many inconveniences
in the estimation of evapotranspiration with empirical models as most of them are linear
functions, while evapotranspiration in reality is a highly complicated nonlinear process.

Over the past few decades, machine learning models have been successfully modeled
in various fields (i.e., pan evaporation, dew point temperature, global solar radiation,
streamflow, water quality, drought events, etc.) due to their excellence in dealing with com-
plex and nonlinear relationships [23–39], including in the field of ET0 estimation [40,41]. For
example, various algorithms, including artificial neural networks [42–44], extreme learning
machines [45–47], support vector machines [48–50], gene expression programming [51–53],
extreme gradient boosting [54–56], M5 model tree [57,58], and deep learning [59–61], have
been evaluated for their capability in estimating the ET0.

The random forest (RF) is an ensemble-based method. Due to the random forest being
able to handle extremely large datasets, RF has been commonly used for predicting ET0 in
recent years [62–65]. For example, Feng et al. studied the capabilities of the RF and GRNN
models for estimating the daily ET0 with meteorological parameters from two weather
stations in southwest China and discovered that both RF and GRNN performed well, while
RF was a little better than GRNN in general [62]. Wang et al. reported that the derived
generalized ET0 model based on the RF could be successfully applied to ET0 estimation
with both complete and incomplete meteorological variables, which was recommended
for application in water balance research [65]. Junior et al. predicted ET0 with the inverse
distance weighting (IDW), ordinary kriging (OK), random forest (RF), and a random forest
variation for spatial predictions (RFsp) based on maximum and minimum temperature data
from 136 climatological stations located in Brazil, in which they found that the RF obtained
better results than conventional approaches [63]. Karimi et al. used 10-year daily data
from Iran and considered the impact of replacing missing meteorological variables with
calculated meteorological variables based on the standard FAO-56 PM, some commonly
used empirical equations, and the random forest model [5]. According to their results,
when the calculated value was used to replace the missing variable, the RF model based
on the combination of wind speed has higher accuracy than the RF model based on the
combination of solar radiation. In addition, the random forest was also widely used in
flood probability mapping [65,66], and there are relevant reports using remote sensing
data [67,68]. Meanwhile, the random forest has also been well applied in water quality [69].

In recent years, because the error is reduced, the prediction accuracy is better and
the calculation costs are lower. Chen and Guestrin proposed the tree-based extreme
gradient boosting (XGB) [70], which has been widely applied in various fields [71–73]. In
addition, the model has also been used to predict ET0. For example, Wu et al. explored
the performance of the XGB model in estimating the monthly mean daily ET0 using
temperature data and found that the XGB model exhibited better estimation accuracy
than the other methods [74]. Fan et al. evaluated the capability of the XGB model in
estimating daily reference evapotranspiration using the Global Ensemble Reforecast v2 data
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in different climatic zones of China [75]. The results indicated that the XGB model can
be satisfactory for estimating the daily ET0. Furthermore, the optimization algorithm of
the XGB model has received more and more attention because of its ability to enhance the
ability of artificial intelligence methods in the modeling process of solving engineering
problems, and it has been used to estimate ET0 [76–78]. Therefore, the XGB model is suited
to estimate the daily ET0 in data-limited regions.

Machine learning models of different heuristic agrometeorological variables have
shown high accuracy in ET0 estimation based on finite data. However, the soundness of
the model to overcome the complexity in reality and to obtain high-precision simulating
results is highly dependent on the data management strategy during model development
and evaluation, especially for the splitting strategy of data allocating to the model training
and testing stages. Therefore, the key to ensuring a model obtaining the best simulation
accuracy with the data series is to find a suitable standard for appropriately splitting the
data into the model training and testing stages. For instance, Wu et al. established an
RF model with a 2:1 data splitting for the training and testing and found that the RF had
higher simulation accuracy than the other intelligent models [74]. To find an alternative
method of mass transfer-based methods, Shiri et al. established a random forest using
a cross-validation at the local and cross-station scales with a single data splitting for the
training and testing series [79]. It was found that the simulation accuracy of the random
forest model was better than the transfer-based models.

In the context of climate change, both meteorological factors and ET0 have changed
a great deal [80,81]. This poses a challenge to model establishment and evaluation for
estimation with a long-term period of data, and the efficiency for the model estimating
ET0 is related to the time length of the input datasets [4,82–84]. Yassen et al. divided a
35-year historical record (1983–2017) into four groups (i.e., 17 years (long-term), 10 years
and 7 years (middle-term), and 5 years (short-term)) to study the temporal and spatial
changes of Egypt’s annual reference evapotranspiration [85]. The results indicated that the
short-term group showed the most significant differences in all the studied areas of Egypt,
while the long-term and medium-term differences were only significantly different in a
certain area of Egypt. Ning et al. studied the interaction of the three factors (i.e., vegetation,
climate, and topography) and their corresponding impacts on ET modelling at six different
time spans in the Loess Plateau of China [86]. The results showed that the long-term spans
showed stronger relationships between the three factors than short-term spans in most
catchments. Therefore, it can be concluded that the time length of input datasets has an
important influence on the model accuracy of evaluating ET0.

To our knowledge, the trend of ET0 was found to have changed in different regions
of the world. Both Iran in the Middle East [87] and Spain in the Iberian Peninsula in
southwestern Europe [88] found an increasing trend in ET0. However, a decreasing ET0
trend had been reported in Northern China [89,90]. In the context of climate change, due
to the large population, vast land area, and frequent floods in the humid area of southern
China in this study, the uncertainty of the climate is expected to intensify the variability of
the ET0 in this area [80,81]. However, relevant reports to date are still lacking in southern
China. Therefore, it is of great significance to study how to improve the accuracy of the ET0
modeling for alleviating the pressure on the water resources in the region. Meanwhile, the
application of the relatively simple tree-based RF and extreme gradient boosting model in
ET0 estimation under various data splitting strategies (i.e., different proportions of splitting)
has not been evaluated. In addition, there is no corresponding report on the applicability
of the random forest and extreme gradient boosting in estimating the ET0 under limited
meteorological data and various time lengths of input datasets (i.e., data obtained from
different time ranges). Accordingly, the performance of the RF and XGB on daily ET0
estimation under various conditions consisting of different model input combinations,
data splitting strategies, and time lengths was evaluated in this study with meteorological
records from twenty-one climatological stations in the humid areas of southern China.
Overall, the aims of this research are to: (1) discuss the influence of different meteorological
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variable input combinations on model performance; (2) evaluate the effectiveness of various
data splitting strategies in estimating the ET0 under different input combinations; and
(3) evaluate the effectiveness of different time lengths of data on ET0 estimation under
various input combinations and splitting strategies.

2. Materials and Methods
2.1. Study Areas

In this research, daily meteorological data from 21 representative meteorological
stations across the humid region of China (Figure 1) were used to build the RF and XGB
models to estimate ET0. This area is rich in water and heat resources, the geographic range
including two river basins (the Yangtze River Basin and the Pearl River Basin). Due to
the effect of El Nino and typhoons, the occurring frequency of floods and waterlogging
disasters in this region is generally high, often bringing huge impacts to nature and the
society of this region. For example, a summer flood that occurred in the Poyang Lake of
the Yangtze River Basin affected over 2.531 million people and 190.4 thousand hectares of
crops, resulting in an economic loss of 2.39 billion RMB. Therefore, this area has become an
area of widespread concern for many scholars who study hydrological phenomena and
climate [55,91].

Figure 1. The geographical locations of the twenty-one weather stations in the humid areas of China in the present study.

2.2. Used Temperature Data

Continuous and long-term series of observed daily maximum (Tmax) and minimum
(Tmin), relative humidity (RH), global solar radiation (Rs), extra-terrestrial solar radi-
ation (Ra), and wind speed (U2) from 1966 to 2019 were gathered from 21 represen-
tative climatological stations in the humid region of China (Figure 1). Among them,
1966–2015 was used for training and testing models, and 2016–2019 was used for inde-
pendent testing. The meteorological records with quality control were obtained from the
National Meteorological Information Center (NMIC) of China Meteorological Adminis-
tration (URL: http://data.cma.cn accessed on 5 March 2020). The detailed description of
the 21 studied weather stations is listed in Table 1. Among these stations, the mean daily
maximum ambient temperatures were 7.75–29.75 ◦C, and the mean daily minimum ambi-
ent temperatures were 0.55–21.65 ◦C. The range of daily average wind speed varied from
0.49 to 2.37 m·s−1, while the daily average relative humidity ranged between 85.51% at
Emeishan and 62.43% at Lijiang. The range of daily average global solar radiation varied
between 16.94 MJ·m−2·d−1 at Lijiang and 10.15 MJ·m−2·d−1 at Guiyang. The highest daily
average ET0 (3.44 mm·d−1) was monitored at Mengzi, while the lowest value (1.72 mm·d−1)

http://data.cma.cn
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appeared at Emeishan. In general, the plateau site is more variable than sites in plains and
hilly areas.

Table 1. The geographical locations and daily mean values of meteorological data for each of the twenty-one weather
stations in the present study.

Station
Name

Altitude
(m)

Latitude
(◦ N)

Longitude
(◦ E)

Rs
(MJ·m−2·d−1) Tmax (◦C) Tmin (◦C) RH (%) U2 (m·s−1) ET0

(mm·d−1)

Emeishan 3048.6 29.31 103.21 12.60 (0.59) 7.75 (0.93) 0.55 (12.95) 85.51 (0.20) 2.27(0.57) 1.72 (0.66)
Lijiang 2394.40 26.51 100.13 16.94 (0.36) 19.52 (0.23) 8.07 (0.72) 62.43 (0.30) 2.37(0.49) 3.36 (0.40)

Tengchong 1648.70 25.07 98.29 15.22 (0.38) 21.61 (0.17) 10.73 (0.57) 77.14 (0.16) 1.24(0.42) 2.68 (0.38)
Kunming 1896.80 25.01 102.41 14.95 (0.45) 21.16 (0.22) 10.77 (0.53) 71.20 (0.19) 1.62(0.49) 2.92 (0.45)
Jinghong 553.60 21.55 100.45 15.60 (0.34) 29.75 (0.13) 18.05 (0.25) 79.28 (0.13) 0.49(0.77) 3.12 (0.37)
Mengzi 1301.70 23.20 103.23 15.55 (0.41) 24.70 (0.20) 15.07 (0.33) 70.45 (0.17) 2.21(0.53) 3.44 (0.42)
Yichang 134.30 30.42 111.05 10.79 (0.70) 21.56 (0.43) 13.59 (0.61) 75.04 (0.16) 0.98 (0.51) 2.28 (0.68)
Wuhan 27.00 30.38 114.17 12.05 (0.65) 21.41 (0.45) 13.28 (0.71) 76.66 (0.15) 1.38 (0.63) 2.45 (0.68)

Guiyang 1074.30 26.34 106.42 10.15 (0.70) 19.58 (0.42) 12.07 (0.59) 77.40 (0.14) 1.67 (0.45) 2.26 (0.62)
Guilin 166.20 25.20 110.18 11.21 (0.65) 23.29 (0.37) 16.06 (0.47) 74.82 (0.18) 1.79 (0.70) 2.66 (0.56)

Ganxian 124.70 25.50 114.50 12.26 (0.60) 24.20 (0.37) 16.26 (0.49) 74.86 (0.15) 1.18 (0.57) 2.71 (0.60)
Gushi 57.90 32.10 115.4 12.86 (0.61) 20.31 (0.48) 11.89 (0.79) 76.01 (0.18) 2.00 (0.47) 2.57 (0.66)

Nanjing 12.50 32.00 118.48 12.48 (0.59) 20.54 (0.47) 11.93 (0.81) 74.92 (0.16) 1.86 (0.55) 2.51 (0.64)
Hefei 36.50 31.53 117.15 12.04 (0.62) 20.63(0.47) 12.47 (0.76) 75.20 (0.17) 1.96 (0.47) 2.52 (0.65)

Hangzhou 43.20 30.19 120.12 11.69 (0.67) 21.22 (0.45) 13.47 (0.66) 75.84 (0.18) 1.66 (0.50) 2.48 (0.68)
Nanchang 45.70 28.40 115.58 12.11 (0.65) 21.84 (0.43) 14.88 (0.59) 75.95 (0.17) 1.77 (0.65) 2.63 (0.64)
Fuzhou 85.40 26.05 119.17 12.11 (0.62) 24.66 (0.31) 17.05 (0.40) 75.13 (0.16) 1.92 (0.43) 2.90 (0.55)

Guangzhou 4.20 23.08 113.19 11.62 (0.53) 26.56 (0.24) 19.01 (0.33) 76.70 (0.17) 1.32 (0.61) 2.65 (0.47)
Shantou 7.30 23.21 116.40 13.71 (0.48) 25.57 (0.23) 19.01 (0.32) 79.25 (0.12) 1.81 (0.50) 2.96 (0.45)
Nanning 73.70 22.51 108.19 12.50 (0.56) 26.34 (0.27) 18.56 (0.35) 79.24 (0.12) 1.07 (0.62) 2.73 (0.52)
Kaikou 18.00 19.59 110.20 13.89 (0.52) 28.14 (0.19) 21.65 (0.20) 83.06 (0.10) 1.97 (0.50) 3.16 (0.47)

maximum
value 3048.60 32.10 120.12 16.94 29.75 21.65 85.51 2.37 3.44

minimum
value 4.20 19.59 98.29 10.15 7.75 0.55 62.43 0.49 1.72

average
value 485.31 26.39 110.38 12.97 22.40 14.02 76.00 1.64 2.70

Note: data outside the brackets are daily averages from 1966 to 2015, while data inside the brackets are daily coefficients of variation from
1966 to 2015.

2.3. Estimation of Reference Evapotranspiration Using the FAO-56 Penman–Monteith Equation

The Penman–Monteith equation advocated by Allen et al. was used to compute daily
ET0 [3] and provide the reference evapotranspiration for the machine learning models in
this study [62,88,92]:

ET0 =
0.408∆(Rn − G) + γ 900

Tmean+273 U2(es − ea)

∆ + γ(1 + 0.34U2)
(1)

where Rn: net radiation (MJ·m−2·d−1); G: soil heat flux (MJ·m−2·d−1); Tmean: average
ambient temperature (◦C), i.e., Tmean = (Tmax + Tmin)/2; U2: wind speed (m·s−1); es: satura-
tion vapor pressure (kPa); ea: actual vaporpressure (kPa); ∆: slope of the vapor pressure
curve (kPa ◦C−1), and γ: psychrometric constant (kPa ◦C−1). For more details on how
Penman–Monteith equation was constructed, please refer to the literature of Allen et al. [3].

2.4. Random Forest (RF)

Random forest (RF) is used for classification and regression [7], mainly used for
regression problems [55,91,93]. The RF algorithm builds a decision tree on data samples and
then obtains the prediction results from each sample, reduces overfitting by averaging the
results, and finally optimizes the solution, thereby improving the prediction performance.

The model of random forest is established by decision-based learning device. To
establish an RF model, the first step is to get the sub-training set from the original data.
Suppose there are M samples in the initial dataset D, and the probability of not selecting a
particular individual after M samples is (1-M−1)M. This means that when the training sets
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are generated by sampling, each training set contains 63.2% of the original datasets, and
the unselected ones (36.8% of the original datasets) become out-of-bag datasets.

The main difference between random forest and bagging is that, when constructing
each tree, n features are randomly selected from all the features M. When optimizing
each segmentation node, the principle of minimum Gini coefficient is adopted. The Gini
coefficient can be expressed as follows:

Gini(p) = 2p(1− p) (2)

For the classification problem, the original problem began with developing trees on
the basis of random vector when using RF [7]. The prediction ability of the random forest
model needs to be evaluated by the edge function, and the equation is as follows:

mg(X, Y) = avk I(hk(X) = Y)−max
j 6=Y

avk I(hk(X) = j) (3)

Generalization error is used to measure the accuracy of the random forest model. The
generalization error of random forest is:

PE∗ = PX,Y(mg(X, Y) < 0) (4)

For the parameter meaning in the above formula and the details of the random forest
model establishment, please refer to the literature of Breiman [7]. The structure of the RF
algorithm is shown in Figure 2.

Figure 2. General architecture of the random forest model.
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2.5. Extreme Gradient Boosting

Extreme gradient boosting (XGB) is a new algorithm of gradient enhancers (GBMs)
proposed by Chen and Guestrin [9]. The XGB model is designed to prevent over-fitting
while reducing the computational cost by keeping the predictions at the best computational
efficiency through simplification and regularization. The XGB algorithm is derived from
the concept of “boosting”. It combines all the predictions of a group of weak learners and
trains strong learners through special training. The calculation formula is as follows:

f (t)i = ∑ t
k = 1 fk(xi) = f t−1

i + ft(xi) (5)

where t is the number of trees, ft(xi) is a function, and xi is the input variable.
In order to prevent the over-fitting problem without affecting the calculation speed of

the model, the XGB model can derive the following formula:

Obj(t) = ∑ n
k = 1l(yi, yi) + ∑ n

k = 1Ω( fi) (6)

where l is loss function, n is the number of the observed, ∑ n
k = 1l(yi, yi) is training error, yi

is the predicted value, yi is the actual value, Ω is the regularization term, and the formula
is:

Ω( f ) = γT +
1
2

λ‖ω‖2 (7)

where ω is norm of leaf scores, λ is a regularization parameter, and γ represents the
parameter that controls the weight of the number of leaves.

The XGB algorithm is based on a gradient boosting strategy. It does not reach all the
trees at once but adds a new tree each time to patch the previous test results. Assuming

that the predicted value at step t is
∧
yi

(t)
, the following derivation process can be obtained:

∧
yi

(0)
= 0

∧
yi

(1)
= f1(xi) =

∧
yi

(0)
+ f1(xi)

∧
yi

(2)
= f1(xi) + f2(xi) =

∧
yi

(1)
+ f2(xi)

...
∧
yi

(t)
=

t
∑

k = 1
fk(xi) =

∧
yi

(t−1)

+ ft(xi)

(8)

Details of the XGB model can be found in Song et al. [94].

2.6. Input Combinations

Four input combinations of meteorological variables were applied in present research
to discuss the influences of different climatic factors on daily ET0 estimation. Therefore, uti-
lizing various combinations of Tmax, Tmin, Ra, Rs, RH, and U2, a total of four combinations
of input are considered (Table 2). The flowchart of this study is described in Figure 3.

Table 2. Input combinations for the machine learning models.

Input Combination
Models Meteorological

VariablesRF XGB

1 RF1 XGB1 TmaxTmin Ra
2 RF2 XGB2 TmaxTmin Rs
3 RF3 XGB3 Tmax Tmin Ra RH
4 RF4 XGB4 Tmax Tmin Ra U2
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Figure 3. Simple flowchart of the proposed methodology in this study.

2.7. Data Splitting Strategies and Time Lengths of Input Data

In this study, five data splitting strategies with different proportions of datasets
allocated for model training and testing were applied. Specifically, the proportions of
dataset allocating to training and testing stages were set as 5:5 (S1), 6:4 (S2), 7:3 (S3), 8:2 (S4),
and 9:1 (S5), respectively (Figure 4). Within each of the splitting strategies, three levels of
data with different time ranges (spanning 10, 30, and 50 years, respectively) were used for
model development and evaluation, which were defined as the 10-year span (2006–2015),
the 30-year span (1986–2015), and the 50-year span (1966–2015), respectively (Figure 4).
Details of the data splitting strategy, the selection of specific years, and the cross-validation
procedure for the establishment and evaluation of each model are shown in Figure 4.
Furthermore, this paper used a fixed test dataset from 2016 to 2019 for independent testing
and varying only the training dataset. Based on the above data manipulation, the machine
learning models coupled with a K-fold cross-validation approach was then applied to
estimate ET0 under each of the input combinations.

2.8. Statistical Performance Analysis

The accuracy of the models for estimating daily ET0 were evaluated with four gener-
ally used statistical indicators [64,91], which were root mean square error (RMSE), mean
absolute error (MAE) [95], coefficient of determination (R2), and Nash–Sutcliffe coefficient
(NSE) [96], respectively. The statistical indices are expressed as follows:

RMSE =

√
1
n

n

∑
i = 1

(Xi,P − Xi.,R)
2 (9)

MAE =
1
n

n

∑
i = 1
|Xi,P − Xi,R| (10)

R2 =

[
n
∑

i = 1

(
Xi,P − Xi,P

)(
Xi,R − Xi,R

)]2

n
∑

i = 1

(
Xi,P − Xi,P

)2 n
∑

i = 1

(
Xi,R − Xi,R

)2
(11)
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NSE = 1−
∑n

i = 1
(
Xi,p − Xi,R

)2

∑n
i = 1

(
Xi,p − Xi,R

)2 (12)

where Xi,P, Xi,R, Xi,P, and n are the FAO-56 Penman–Monteith ET0, the predicted ET0,
the mean of FAO-56 Penman–Monteith ET0, and the number of observed meteorological
data, respectively. The value of R2 exceedingly approaches 1, meaning the model has
better performance and data fitting. Conversely, the values of RMSE and MAE extremely
approach 0, indicating higher prediction accuracy. Sutcliffe coefficient (NSE) is a commonly
used indicator when evaluating the performance of a model. The higher the value of
NSE, the better the performance of the model and vice versa. A perfect well between the
estimated and the target ET0 will produce NSE = 1.0 [97].

Figure 4. The data splitting strategies, lengths of years, and various cross-validation stages involved in this study.
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3. Results
3.1. Comparisons of XGB and RF Predicting Daily ET0 with Various Input Combinations

The predicting capability of machine learning models for reference evapotranspiration
at three levels of time length (2006–2015, 1986–2015, and 1966–2015) was evaluated by
the R2, RMSE, MAE, and NSE, which is largely due to the input of meteorological data,
These meteorological data are derived from the FAO-56 Penman–Monteith model. The
statistical results of the four different input combinations for predicting the daily ET0 at the
twenty-one climatological stations in the humid areas of China are provided in Table 3.

Table 3. Average statistical values of different input parameters of two machine learning models in the testing stages of 21
stations from various time lengths of input data.

Length of
Years/Input

Combination

Meteorological
Variables

XGB RF

R2 RMSE MAE
NSE R2 RMSE MAE

NSE(mm·d−1) (mm·d−1) (mm·d−1) (mm·d−1)

10-span
1 Tmax Tmin Ra 0.792 0.673 0.494 0.783 0.801 0.657 0.484 0.792
2 Tmax Tmin Rs 0.951 0.320 0.231 0.948 0.954 0.311 0.225 0.951
3 TmaxTmin Ra RH 0.889 0.502 0.360 0.876 0.896 0.485 0.350 0.884
4 Tmax Tmin Ra U2 0.843 0.587 0.424 0.836 0.853 0.567 0.412 0.847

30-span
1 Tmax Tmin Ra 0.786 0.672 0.495 0.777 0.789 0.666 0.492 0.780
2 Tmax Tmin Rs 0.950 0.323 0.232 0.947 0.952 0.314 0.227 0.949
3 TmaxTmin Ra RH 0.882 0.503 0.362 0.873 0.888 0.491 0.355 0.879
4 Tmax Tmin Ra U2 0.832 0.597 0.431 0.825 0.840 0.583 0.423 0.833

50-span
1 Tmax Tmin Ra 0.777 0.689 0.509 0.768 0.776 0.688 0.509 0.768
2 Tmax Tmin Rs 0.947 0.328 0.234 0.945 0.948 0.324 0.232 0.946
3 TmaxTmin Ra RH 0.875 0.526 0.379 0.862 0.880 0.516 0.372 0.868
4 Tmax Tmin Ra U2 0.820 0.620 0.448 0.812 0.827 0.607 0.440 0.819

Note: The best statistical indicators are highlighted in bold during the testing period.

Taking the 50-year span as an example, the RF and XGB models with input combi-
nation 2 (i.e., the RF2 and XGB2 models, input variables consisting of Tmax, Tmin, and Rs)
had better predicting accuracy than the other input combinations (Table 3); the range of
the mean RMSE value of the two combinations (inputs with Tmax, Tmin, and Rs; inputs
with Tmax, Tmin, and Ra, respectively) were 0.324–0.688 mm d−1 during the testing phase,
and the homologous values of the XGB models were 0.328–0.689 mm d−1. The input
combination of Tmax, Tmin, RH, and Ra produced a pleasing daily ET0 prediction, and the
mean RMSE values were 0.516 mm d−1 and 0.526 mm d−1 in the RF and XGB, respectively.
Whereas, the models with input combination 4 (i.e., input variables consisting of Tmax,
Tmin, U2, and Ra) were also capable of estimating the daily ET0 with respectable preci-
sion, possessing a mean RMSE value of 0.607 mm d−1 and 0.620 mm d−1 in the RF and
XGB, respectively. These phenomena show that a reasonable combination of parameters
is beneficial to the improvement of model accuracy. On the basis of temperature vari-
ables, the importance for each of the other three meteorological variables (i.e., Rs, RH, and
U2) contributing to the improvement of model accuracy can be ranked as Rs > RH > U2.
Although the input combination with Rs can produce better model accuracy than input
combinations with any other variable, it should be noted that the radiation records are not
universally available across the world, especially for less developed regions. In comparison,
RH is a variable that could be easily obtained in most regions on Earth, while, at the same
time, it provides a decent contribution to improving model accuracy. Therefore, RH is
recommended as an alternative for ET0 estimation with the model in regions where Rs is
not available. In terms of machine learning models’ performance under different input
combinations, compared with the 50-year span, similar patterns were observed in the other
two levels of time range, and the random forest model is better than the extreme gradient
boosting model (i.e., the 10-year span and the 30-year span, respectively; see Table 3).
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3.2. Comparisons of XGB and RF Predicting Daily ET0 with Data Splitting Proportions

Tables 4–6 present the statistical results of the machine learning models with the five data
splitting strategies (i.e., splitting into proportions of 5:5 (S1), 6:4 (S2), 7:3 (S3), 8:2 (S4), and
9:1 (S5), respectively) under four combinations of input during testing phases. As shown in
the tables, the models predicting accuracy differ among data splitting strategies under the
same input combination. Using the 50-year span (Table 6) as an example, the S5 proportion
demonstrated that the values of R2 and NSE are closest to 1 and the values of RMSE and
MAE are closest to 0 in the testing phase for the four combinations of input in two machine
learning models, compared to the S4, S3, S2, and S1. The ranks of the researching proportions
of the two machine learning models in the field of estimation precision in the testing phase
were: S5 > S4 > S3 > S2 > S1. In other words, the S5 proportion had a slightly better capability
than the S4 proportion and S3 proportion while realizing a greater edge in capability over
the S2 proportion and the S1 proportion. The S5 and S4 proportions had almost equivalent
performance (distinction in RMSE < 2%) in predicting the daily ET0 for the four combinations
of input, both of which move beyond the other three data splitting proportions in estimating
the daily ET0. However, the S1 proportion of XGB and RF revealed the worst estimates of the
daily ET0 for the S5 proportion, with an increase in RMSE by 7.5–7.6% and 7.1–7.2% for the
combination of input (i.e., Tmax, Tmin, Ra, and RH) and only by 3.5–5.9% and 2.6–5.0% for the
other three input combinations, respectively. In general, for the five data splitting proportions,
the statistical performance of the data splitting proportion of the RF is better than that of the
XGB (Table 6), indicating that the random forest models produced high-precision estimation
at the testing. Compared with the 50-year span, similar patterns of model performance with
different data splitting proportions were observed in the 10-year span (Table 4) and the 30-year
span (Table 5).

Table 4. Average statistical values of five proportions of different input parameters of two machine learning models in
testing process of 21 stations 2006–2015.

Input/Proportions
XGB RF

R2 RMSE MAE
NSE R2 RMSE MAE

NSE(mm·d−1) (mm·d−1) (mm·d−1) (mm·d−1)

Tmax, Tmin, Ra
S1 0.784 0.688 0.506 0.776 0.795 0.669 0.493 0.788
S2 0.788 0.680 0.499 0.781 0.798 0.662 0.487 0.792
S3 0.790 0.675 0.495 0.783 0.800 0.658 0.484 0.794
S4 0.794 0.670 0.492 0.784 0.802 0.656 0.482 0.794
S5 0.798 0.665 0.489 0.784 0.805 0.652 0.480 0.792

Tmax, Tmin, Rs
S1 0.948 0.332 0.241 0.945 0.951 0.322 0.233 0.949
S2 0.950 0.326 0.236 0.947 0.952 0.317 0.230 0.950
S3 0.950 0.322 0.232 0.948 0.953 0.313 0.226 0.951
S4 0.952 0.318 0.230 0.949 0.954 0.310 0.224 0.951
S5 0.953 0.313 0.227 0.949 0.955 0.305 0.221 0.951

Tmax, Tmin, Ra RH
S1 0.882 0.533 0.385 0.860 0.890 0.514 0.375 0.869
S2 0.884 0.511 0.366 0.874 0.892 0.493 0.356 0.882
S3 0.887 0.504 0.361 0.877 0.894 0.487 0.351 0.885
S4 0.889 0.500 0.358 0.878 0.897 0.482 0.348 0.886
S5 0.894 0.490 0.352 0.880 0.901 0.473 0.343 0.887

Tmax, Tmin, Ra U2
S1 0.835 0.604 0.438 0.828 0.845 0.583 0.426 0.840
S2 0.839 0.595 0.430 0.833 0.850 0.574 0.417 0.845
S3 0.842 0.590 0.425 0.836 0.852 0.569 0.413 0.847
S4 0.845 0.584 0.421 0.838 0.854 0.564 0.410 0.848
S5 0.848 0.578 0.418 0.837 0.858 0.558 0.406 0.848

Note: The best statistical indicators are highlighted in bold during the testing period.
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Table 5. Average statistical values of five proportions of different input parameters of two machine learning models in the
testing process of 21 stations 1986–2015.

Input/Proportions
XGB RF

R2 RMSE MAE
NSE R2 RMSE MAE

NSE(mm·d−1) (mm·d−1) (mm·d−1) (mm·d−1)

Tmax, Tmin, Ra
S1 0.776 0.689 0.508 0.766 0.782 0.679 0.501 0.773
S2 0.781 0.679 0.501 0.774 0.785 0.671 0.496 0.779
S3 0.784 0.673 0.497 0.777 0.787 0.668 0.493 0.781
S4 0.787 0.670 0.494 0.778 0.790 0.665 0.491 0.781
S5 0.791 0.664 0.489 0.781 0.793 0.661 0.488 0.782

Tmax, Tmin, Rs
S1 0.946 0.333 0.240 0.942 0.949 0.326 0.236 0.945
S2 0.948 0.326 0.234 0.945 0.950 0.320 0.231 0.947
S3 0.950 0.321 0.231 0.947 0.951 0.315 0.228 0.948
S4 0.950 0.318 0.229 0.947 0.952 0.313 0.226 0.949
S5 0.952 0.312 0.225 0.949 0.953 0.308 0.222 0.950

Tmax, Tmin, Ra RH
S1 0.874 0.523 0.376 0.864 0.881 0.508 0.367 0.871
S2 0.878 0.512 0.369 0.870 0.884 0.498 0.360 0.876
S3 0.880 0.506 0.364 0.872 0.886 0.493 0.356 0.879
S4 0.884 0.501 0.361 0.874 0.889 0.489 0.354 0.879
S5 0.887 0.493 0.355 0.876 0.892 0.482 0.348 0.882

Tmax, Tmin, Ra U2
S1 0.822 0.621 0.450 0.811 0.831 0.603 0.439 0.822
S2 0.827 0.608 0.439 0.820 0.836 0.591 0.429 0.830
S3 0.830 0.599 0.432 0.825 0.838 0.584 0.424 0.833
S4 0.834 0.594 0.429 0.826 0.841 0.581 0.421 0.834
S5 0.837 0.587 0.423 0.829 0.844 0.575 0.416 0.836

Note: The best statistical indicators are highlighted in bold during the testing period.

The box diagrams of the FAO-56 Penman–Monteith ET0 values and ET0 predicted by
the RF model of the model of the S5 proportion during ten cross-validation periods using
the best combination of input (i.e., the combination of Tmax, Tmin, and Rs) in the testing
phase are demonstrated in Figure 5. The diagrams clearly presented that the scopes of
ET0 values estimated by the ten cross-validation stages were close to the FAO-56 Penman–
Monteith ET0 values of their corresponding stages, further highlighting the model accuracy
on estimating daily ET0. Overall, the accuracy of the ten cross-validation periods for the
four selected sites was high, suggesting that the RF model can be utilized for estimating
ET0 in this area. In particular, the medians, inter-quartile ranges, and extreme values
of the fifth and six cross-validation periods were closer to their corresponding values of
FAO-56 Penman–Monteith than other cross-validation periods, indicating a better daily
ET0predicting performance for the former two periods. Among the four selected sites,
the distribution of the maximum, minimum, and interquartile range values of the ET0
at Guiyang station (inland plateau) was the closest to the corresponding values of the
FAO-56 PM estimated ET0 during the ten cross-validation stages.

3.3. Comparisons of XGB and RF Predicting Daily ET0 with Various Time Lengths of Input Data

The average and local RMSE values of the RF and XGB models for estimating daily
ET0 using the available length of years variables in the testing stage at the meteorological
stations in the humid regions of southern China are presented in Figure 6. Similar to
previous results (Table 3), the machine learning models with input combination 2 (i.e.,
the RF2 and XGB2 models, input variables consisting of Tmax, Tmin, and Rs) and the data
spitting proportion of S5 had more promising accuracy than other models and proportions.
Specifically, under the different data splitting strategies in the testing stage, compared
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to the 10-year dataset, the increased percentage of the average RMSE of the RF2 model
datasets from a length of 50 years ranged from 2.811 to 3.21%, while the increased per-
centage of the average RMSE of the 30-year dataset increased by 0.39 to 0.74% in the RF2
model. Besides, the ranges of the increased percentage in the RF1, RF3, and RF4 models
were 3.16–3.56%, 6.21–7.07%, and 1.01–1.24%; 0.58–0.79%, 0.45–1.89%, and 0.46–0.84% in
the field of the average RMSE in the length of 50 years and length of 30 years datasets
relative to the 10-year dataset, respectively. Moreover, the extreme gradient boosting
model is consistent with the results shown by the random forest model. Compared to
the 30-year dataset, the increased percentage of the average RMSE in the XGB2 model
datasets from a length of 50 years ranged from 3.45–3.78%, while the decreased percentage
of average RMSE of a 10-year dataset decreased by 2.85–3.30%. Among the three levels
of time lengths of input data, the XGB and RF models with the 50-year span performed
worst (RMSE = 0.276 mm·d−1–0.612 mm·d−1 and 0.259 mm·d−1–0.572 mm·d−1, respec-
tively), followed by the 30-year span (with RMSE ranging 0.266 mm·d−1–0.593 mm·d−1

and 0.252 mm·d−1–0.557 mm·d−1, respectively); the 10-year span (2006–2015) showed
satisfying daily ET0 estimates in southern China (RMSE = 0.257 mm·d−1–0.579 mm·d−1

and 0.250 mm·d−1–0.554 mm·d−1, respectively). Overall, under the same ratios and com-
binations of the RMSE values of the three time spans, the reduction in the modeling data
used improves the accuracy of the XGB and RF models (Figure 6).

Table 6. Average statistical values of five proportions of different input parameters of two machine learning models in the
testing process of 21 stations 1966–2015.

Input/Proportions
XGB RF

R2 RMSE MAE
NSE R2 RMSE MAE

NSE(mm·d−1) (mm·d−1) (mm·d−1) (mm·d−1)

Tmax, Tmin, Ra
S1 0.766 0.705 0.522 0.758 0.769 0.701 0.519 0.761
S2 0.772 0.697 0.514 0.764 0.773 0.694 0.513 0.765
S3 0.775 0.691 0.510 0.767 0.775 0.691 0.510 0.767
S4 0.778 0.687 0.507 0.769 0.776 0.682 0.504 0.769
S5 0.782 0.681 0.503 0.772 0.780 0.683 0.505 0.770

Tmax, Tmin, Rs
S1 0.943 0.341 0.243 0.941 0.945 0.335 0.240 0.943
S2 0.945 0.334 0.237 0.943 0.947 0.329 0.235 0.945
S3 0.946 0.330 0.234 0.944 0.948 0.326 0.233 0.946
S4 0.948 0.327 0.233 0.945 0.949 0.318 0.229 0.947
S5 0.949 0.322 0.229 0.946 0.950 0.319 0.229 0.947

Tmax, Tmin, Ra RH
S1 0.866 0.554 0.400 0.849 0.872 0.542 0.392 0.856
S2 0.870 0.536 0.386 0.858 0.875 0.525 0.379 0.864
S3 0.873 0.529 0.381 0.862 0.878 0.519 0.375 0.867
S4 0.876 0.524 0.377 0.864 0.881 0.507 0.366 0.870
S5 0.880 0.515 0.371 0.867 0.884 0.506 0.365 0.872

Tmax, Tmin, Ra U2
S1 0.809 0.643 0.468 0.798 0.818 0.626 0.457 0.809
S2 0.815 0.630 0.456 0.807 0.823 0.616 0.447 0.816
S3 0.819 0.622 0.450 0.811 0.826 0.609 0.442 0.819
S4 0.822 0.617 0.446 0.814 0.827 0.601 0.435 0.821
S5 0.826 0.609 0.439 0.818 0.831 0.599 0.434 0.823

Note: The best statistical indicators are highlighted in bold during the testing period.
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Figure 5. Box diagrams of daily FAO56-PM ET0 values and predicted ET0 values by the S5 proportion during ten cross-
validation stages using the perfect dataset in the testing stage (1966–2015) at the four weather stations. The numbers on the
horizontal direction represent the 10 cross-validation periods at S5 proportion, respectively.

3.4. Comparisons of XGB and RF Predicting Daily ET0 with a Fixed Testing Dataset

To effectively assess the impacts of different data splitting proportions and various time
lengths of input data on model performance, a fixed testing dataset consisting of records
from 2016 to 2019 was used for the model testing of all the types of models constructed in
this study. Meanwhile, the training datasets remained varied among different models, the
same as stated previously. The average statistical indicators of models with the fixed testing
dataset (2016–2019) were calculated for different time lengths of input data (Tables 7–9). As
shown in the tables, under the same time length of input data, both the RF and XGB models
with input combination 2 (i.e., the RF2and XGB2 models, input variables consisting of Tmax,
Tmin, and Rs) had better predicting accuracy than other input combinations, and this pattern
did not vary among different time lengths. Furthermore, for any of the three time lengths,
the estimating accuracies of the two groups of machine learning models with different data
splitting proportions was ranked as S5 > S4 > S3 > S2 > S1. Specifically, compared with other
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splitting proportions, the values of R2 and NSE were closer to 1, while the values of RMSE and
MAE were closer to 0 in the S5 proportion during the testing phase for any of the four input
combinations, and these trends did not differ between the RF and XGB models. The results
with the fixed testing dataset were consistent with the results of the above testing datasets
(Tables 4–6).

Figure 6. Bar plots of average RMSE values of the models for estimating daily ET0 by various length of years using the
different proportions in the testing stage at the 21 weather stations. (a,b) stand for RF and XGBoost, respectively; S1, S2, S3,
S4, and S5 represent data splitting proportions of 5:5, 6:4, 7:3, 8:2, and 9:1, respectively. RF1, RF2, RF3, and RF4 represent
the four combinations of the random forest model; XGB1, XGB2, XGB3, and XGB4 represent the four combinations of the
extreme gradient boosting model.

Table 7. Average statistical values of five proportions of different input parameters of two machine learning models in
testing process of 21 stations of the 10-year span model under the fixed test dataset (2016–2019).

Input/Proportions
XGB RF

R2 RMSE MAE
NSE R2 RMSE MAE

NSE(mm·d−1) (mm·d−1) (mm·d−1) (mm·d−1)

Tmax, Tmin, Ra
S1 0.762 0.727 0.536 0.718 0.774 0.707 0.523 0.732
S2 0.766 0.721 0.531 0.722 0.777 0.702 0.519 0.736
S3 0.767 0.718 0.529 0.724 0.777 0.700 0.517 0.737
S4 0.770 0.714 0.526 0.727 0.779 0.699 0.515 0.738
S5 0.771 0.713 0.524 0.728 0.780 0.697 0.514 0.739

Tmax, Tmin, Rs
S1 0.945 0.332 0.250 0.939 0.949 0.320 0.243 0.944
S2 0.945 0.328 0.247 0.941 0.950 0.317 0.242 0.944
S3 0.946 0.326 0.246 0.941 0.950 0.316 0.240 0.945
S4 0.947 0.323 0.243 0.942 0.950 0.314 0.239 0.945
S5 0.947 0.322 0.242 0.943 0.951 0.313 0.238 0.946

Tmax, Tmin, Ra RH
S1 0.870 0.536 0.383 0.844 0.878 0.517 0.370 0.854
S2 0.871 0.528 0.377 0.849 0.880 0.508 0.363 0.860
S3 0.872 0.526 0.375 0.851 0.881 0.505 0.361 0.861
S4 0.873 0.522 0.372 0.852 0.881 0.502 0.358 0.863
S5 0.873 0.520 0.370 0.854 0.882 0.501 0.357 0.864

Tmax, Tmin, Ra U2
S1 0.798 0.763 0.570 0.676 0.810 0.722 0.542 0.711
S2 0.801 0.758 0.564 0.681 0.814 0.719 0.538 0.714
S3 0.804 0.757 0.563 0.682 0.815 0.718 0.537 0.714
S4 0.805 0.755 0.561 0.684 0.817 0.718 0.536 0.714
S5 0.807 0.754 0.559 0.684 0.819 0.718 0.535 0.714

Note: The best statistical indicators are highlighted in bold during the testing period.
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Table 8. Average statistical values of five proportions of different input parameters of two machine learning models in
testing process of 21 stations of the 30-year span model under the fixed test dataset (2016–2019).

Input/Proportions
XGB RF

R2 RMSE MAE
NSE R2 RMSE MAE

NSE(mm·d−1) (mm·d−1) (mm·d−1) (mm·d−1)

Tmax, Tmin, Ra
S1 0.770 0.706 0.522 0.733 0.776 0.696 0.515 0.740
S2 0.773 0.700 0.517 0.737 0.777 0.693 0.513 0.743
S3 0.775 0.697 0.514 0.740 0.778 0.690 0.511 0.744
S4 0.776 0.695 0.513 0.742 0.779 0.689 0.510 0.745
S5 0.777 0.693 0.511 0.743 0.779 0.688 0.509 0.746

Tmax, Tmin, Rs
S1 0.946 0.326 0.242 0.941 0.950 0.317 0.238 0.944
S2 0.947 0.323 0.239 0.942 0.950 0.315 0.236 0.945
S3 0.948 0.321 0.238 0.943 0.950 0.314 0.235 0.945
S4 0.948 0.319 0.237 0.943 0.951 0.313 0.234 0.946
S5 0.949 0.318 0.236 0.944 0.951 0.312 0.234 0.946

Tmax, Tmin, Ra RH
S1 0.871 0.536 0.384 0.844 0.877 0.520 0.374 0.853
S2 0.872 0.530 0.380 0.848 0.879 0.515 0.369 0.856
S3 0.873 0.526 0.377 0.850 0.879 0.512 0.367 0.857
S4 0.874 0.523 0.374 0.851 0.880 0.510 0.366 0.858
S5 0.875 0.521 0.372 0.853 0.881 0.508 0.364 0.859

Tmax, Tmin, Ra U2
S1 0.808 0.711 0.525 0.723 0.816 0.684 0.506 0.744
S2 0.810 0.710 0.523 0.726 0.819 0.680 0.503 0.748
S3 0.812 0.709 0.522 0.726 0.821 0.679 0.501 0.749
S4 0.813 0.707 0.521 0.727 0.822 0.678 0.500 0.750
S5 0.814 0.706 0.520 0.728 0.823 0.677 0.499 0.750

Note: The best statistical indicators are highlighted in bold during the testing period.

To evaluate the impacts of different time lengths of input data on model accuracy,
the statistical indicators of models with the fixed testing dataset (2016–2019) under the
input combination 2 and the S5 proportion were analyzed (Figure 7). Generally, RF showed
higher accuracy than XGB. Under each of the three time lengths, the RF model consistently
had higher values of R2 and NSE and lower RMSE and MAE values than the XGB model
(Figure 7). Among the three time lengths, the models with the 30-year span data showed
the best estimating accuracy, followed by models with the 50-year span data and then
with the 10-year span data, respectively. Taking the RF model as an example, the values
of R2 (0.951) and NSE (0.946) for the models with the 30-year span data were higher than
models with the 50-year span data (R2 = 0.950; NSE = 0.944), or the same as models with
the 10-year span data (R2 = 0.951; NSE = 0.946). Meanwhile, the 10-year-span models
had lower error values (RMSE = 0.312 mm·d−1; MAE = 0.234 mm·d−1) than models with
other time spans (RMSE = 0.313 mm·d−1 and MAE = 0.237 mm·d−1 for the 50-year span;
RMSE = 0.317 mm·d−1 and MAE = 0.238 mm·d−1 for the 10-year span). The results for
other input combinations and other data splitting proportions (see Tables S1 and S2 for
details) were consistent with the above results.
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Table 9. Average statistical values of five proportions of different input parameters of two machine learning models in
testing process of 21 stations of the 50-year span model under the fixed test dataset (2016–2019).

Input/Proportions
XGB RF

R2 RMSE MAE
NSE R2 RMSE MAE

NSE(mm·d−1) (mm·d−1) (mm·d−1) (mm·d−1)

Tmax, Tmin, Ra
S1 0.771 0.710 0.526 0.867 0.774 0.703 0.522 0.735
S2 0.773 0.706 0.523 0.866 0.774 0.702 0.521 0.736
S3 0.774 0.704 0.521 0.865 0.775 0.700 0.519 0.738
S4 0.776 0.701 0.519 0.867 0.776 0.699 0.517 0.739
S5 0.777 0.699 0.517 0.867 0.776 0.699 0.518 0.739

Tmax, Tmin, Rs
S1 0.945 0.328 0.243 0.986 0.948 0.320 0.239 0.943
S2 0.947 0.325 0.241 0.987 0.949 0.319 0.238 0.943
S3 0.947 0.324 0.240 0.987 0.949 0.318 0.238 0.944
S4 0.948 0.322 0.239 0.987 0.950 0.317 0.237 0.944
S5 0.948 0.321 0.238 0.987 0.950 0.317 0.237 0.944

Tmax, Tmin, Ra RH
S1 0.868 0.563 0.407 0.925 0.874 0.547 0.396 0.838
S2 0.869 0.554 0.399 0.927 0.875 0.541 0.390 0.842
S3 0.870 0.550 0.395 0.925 0.875 0.537 0.387 0.844
S4 0.871 0.547 0.393 0.925 0.876 0.533 0.383 0.847
S5 0.872 0.544 0.391 0.924 0.876 0.534 0.384 0.847

Tmax, Tmin, Ra U2
S1 0.811 0.700 0.515 0.864 0.819 0.674 0.496 0.753
S2 0.812 0.699 0.514 0.865 0.820 0.673 0.495 0.754
S3 0.814 0.699 0.513 0.868 0.821 0.673 0.494 0.754
S4 0.815 0.698 0.513 0.866 0.824 0.673 0.494 0.754
S5 0.816 0.698 0.513 0.868 0.823 0.672 0.493 0.755

Note: The best statistical indicators are highlighted in bold during the testing period.

Figure 7. Bar chart of each average statistical indicator value in the fixed test dataset (2016–2019) with S5 proportion under
combination 2 of random forest and extreme gradient boosting model.
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4. Discussion
4.1. Effects of Input Combination Strategy on Daily ET0 Estimation

The category of the parameters of input was a crucial factor for the estimation precision of
the machine learning models in estimating the daily ET0. The model commonly operated the
worst when the Tmax/Tmin and Ra were valid in southern China. Since the model prediction
accuracy generally increases with the more meteorological input parameters [57,98,99], models
with temperature data as inputs would only generate non-ideal daily ET0 estimation despite the
fact that temperature data are generally widely effective around the world [20,100]. Therefore,
the extreme gradient boosting and random forest model with wind speed, relative humidity,
and global solar radiation (instead of extra-terrestrial radiation) data would produce acceptable
ET0 values. In this study, the machine learning models with the input combination of Tmax,
Tmin, and Rs presented better prediction accuracy than other combinations. The results indicate
that, with the global solar radiation (Rs) as inputs, the ET0 values estimated by the XGB and RF
models show a favorable viewpoint with the homologous FAO-56 Penman–Monteith values in
the humid regions of China. Feng et al., Fan et al. and Huang et al. also demonstrated that the
random forest models with Tmax/Tmin and Rs attained extremely pleasing ET0 estimation in
southern China [54,55,62]. The XGB and RF models with Tmax/Tmin, Ra, and RH outperformed
the XGB and RF models with Tmax/Tmin, Ra, and U2 in the humid region. These consequences
indicate that relative humidity is a more important factor than wind speed when estimating the
ET0 with the XGB and RF models in the humid region. Among the three single factors other
than temperature, the significance of meteorological parameters to estimate daily ET0 was
ranked as Rs > RH > U2 in the humid area of southern China. This consequence is consistent
with the research of Yan et al. [78], where they conclude that Rs is more influential than RH
and U2 for estimating the daily ET0 in the humid region.

4.2. Effects of Data Splitting Proportions on Daily ET0 Estimation

Previous studies have shown that high-precision simulations of machine learning
models on ET0 prediction can be obtained with a single ratio of allocating data into training
and testing [56,61]. However, under the same total dataset, there is no report on whether
the multiple ratios between the training data and testing data will improve the precision of
the machine learning models. As mentioned above (see in Tables 4–6, respectively), the
extreme gradient boosting and random forest models with the data splitting proportion of
S5 showed excellent capability in predicting the daily ET0 for all the combinations of input,
which exceeded the other four data splitting proportions at twenty-one meteorological
stations during the testing phase. Moreover, as the number of years in the testing phase
decreases, the accuracy of the model increases. This is an exceedingly hopeful strategy
for improving the accuracy of machine learning models to estimate daily ET0, especially
when there are plenty of historical years of data in the training phase. Consequently, for
improving the accuracy of machine learning models, the models should be established with
appropriate data segments. In this research, the five proportions among the proportions
within the dataset were identified. The accuracy of the data-segment increased with the
increase in the ratio in five ratios. In the split rule cases of Rezaabad et al. [101], the three
nearest proportions among the proportions within the ten percent of the dataset were also
identified. The accuracy of the smallest data segment has been known as the inferior ratio
in the three ratios. However, the accuracy of the maximum proportion of this study is
not perfect. Therefore, how to precisely select a satisfying proportion needs further study.
Shiri et al. established the GEP model, utilizing data splitting strategies in sub-humid
stations for estimating the daily ET0, and procured good results in sub-humid regions [102].
However, in this study, the XGB and RF models were evaluated in humid areas. Future
studies will be needed to use coupled data from arid and humid stations for evaluating the
machine learning models.
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4.3. Effects of Available Length of Years on Daily ET0 Estimation

The average RMSE calculated by the period of the length of the 10-year dataset was
much lower than those of the corresponding two periods under various combinations and
proportions, while the length of the 50-year dataset was the highest (Figure 6). The results
indicated that the reduced use of modeling data can improve the accuracy of the precision
of the random forest models under various input parameters and data segmentation.
This shows that the length of 50 years has been particularly inaccurate in dealing with
the complex non-linear relationship between the ET0 and its parameters in the XGB and
RF models, The reason for this phenomenon may be that climate change has caused
changes in meteorological factors, resulting in a corresponding increase in the value of
the ET0 with the growing length of years. Related phenomena have also been reported
in the literature [85,86,103]. However, the results of independent testing data show that
the model with a 30-year span has the highest accuracy and the model with a 10-year
span has the lowest (Figure 7), which is inconsistent with the results shown in the test
dataset. The reason for this phenomenon may be due to the over-fitting phenomenon
caused by the smaller dataset of the 10-year span model [104]. In this study, the results
showed that appropriately reducing the year span of the dataset is beneficial for the
improvement of the model accuracy. However, the specific causes remain to be further
studied. In addition, the superiority of datasets of different lengths for predicting ET0 has
been widely researched [105]. Yin et al. coupled the bi-directional and different datasets
for predicting the ET0 and discovered that the length of the short dataset provides the
best forecast performance in three lengths of datasets [106]. In the present study, the three
different lengths of years were used to build extreme gradient boosting and random forest
models for the first time. Due to the variables of different lengths of years, the prediction
precision of the random forest and extreme gradient boosting models have been enhanced
(Figures 6 and 7). Although the 10-year meteorological data obtained high accuracy in the
test dataset, its performance was the worst in independent testing. Therefore, the 30-year
data span model is a promising method for predicting the ET0 in the humid southern
regions of my country, and it may also apply to regions with similar climates.

5. Conclusions

The extreme gradient boosting and random forest models of data splitting strategies
and variable ranges of years have been put forward to predict the daily ET0 in twenty-one
weather stations of the humid regions of China. The results revealed that the accuracy of
the random forest model is better than that of the extreme gradient boosting model, and
the Rs were more crucial than the RH, U2, and Ra in predicting the daily ET0 in southern
China. The data splitting proportion of S5 showed excellent performance for all the same
input combinations, and the importance of the data splitting variables for predicting the
daily ET0 was as follows: S5 > S4 > S3 > S2 > S1. Compared with the length of 30 years, the
estimation accuracy of the 50-year length with limited data is reduced, while the length of
meteorological data of 10 years improves the accuracy for southern China. However, the
10-year performance was worse when considering the independent test. Considering that
the data span of 30 years has high accuracy and a stable performance, it is recommended
that the random forest model with a dataset of 30-year length produces the daily ET0. In the
absence of continuous and complete meteorological records, this promising strategy can be
used as an alternative to the FA0-56 P-M model to calculate ET0. Consequently, the random
forest model is proposed as a hopeful selective approach to improving the accuracy for
estimating the daily ET0 under conditions of insufficient climatic data in the humid area of
southern China. Whereas, further research is required to estimate the performance of the
suggested random forest model in the arid and humid climate areas of China or similar
climates around the world.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/w13233478/s1, Table S1. Average statistical values of different input parameters of three
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length of years of machine learning models in testing process of 21 stations under the fixed test data
set (2016-2019). Table S2. Average statistical values of five proportions of three length of years of
machine learning models in testing process of 21 stations under the fixed test data set (2016-2019).
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