
water

Article

GPU-Accelerated Laplace Equation Model Development Based
on CUDA Fortran

Boram Kim , Kwang Seok Yoon and Hyung-Jun Kim *

����������
�������

Citation: Kim, B.; Yoon, K.S.; Kim,

H.-J. GPU-Accelerated Laplace

Equation Model Development Based

on CUDA Fortran. Water 2021, 13,

3435. https://doi.org/10.3390/

w13233435

Academic Editors: Zheng Duan and

Babak Mohammadi

Received: 5 November 2021

Accepted: 2 December 2021

Published: 4 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Korea Institute of Civil Engineering and Building Technology, 283 Goyangdae-ro, Ilsanseo-gu,
Goyang 10223, Korea; brkim@kict.re.kr (B.K.); ksyoon@kict.re.kr (K.S.Y.)
* Correspondence: john0705@kict.re.kr; Tel.: +82-031-910-0276

Abstract: In this study, a CUDA Fortran-based GPU-accelerated Laplace equation model was devel-
oped and applied to several cases. The Laplace equation is one of the equations that can physically
analyze the groundwater flows, and is an equation that can provide analytical solutions. Such
a numerical model requires a large amount of data to physically regenerate the flow with high
accuracy, and requires computational time. These numerical models require a large amount of data
to physically reproduce the flow with high accuracy and require computational time. As a way
to shorten the computation time by applying CUDA technology, large-scale parallel computations
were performed on the GPU, and a program was written to reduce the number of data transfers
between the CPU and GPU. A GPU consists of many ALUs specialized in graphic processing, and can
perform more concurrent computations than a CPU using multiple ALUs. The computation results
of the GPU-accelerated model were compared with the analytical solution of the Laplace equation to
verify the accuracy. The computation results of the GPU-accelerated Laplace equation model were in
good agreement with the analytical solution. As the number of grids increased, the computational
time of the GPU-accelerated model gradually reduced compared to the computational time of the
CPU-based Laplace equation model. As a result, the computational time of the GPU-accelerated
Laplace equation model was reduced by up to about 50 times.

Keywords: Graphics Processing Unit; parallel computing; CUDA Fortran; Laplace equation

1. Introduction

In the field of Computational Fluid Dynamics (CFD), research to realistically express
computational fluid results based on improvements in computer performance is actively
being conducted. Such research results require a large amount of data to physically
regenerate the flow with high accuracy, and thus require significant computational time to
process data. That is, an important factor called computational execution time became a
consideration. In the past, only a Central Processing Unit (CPU) was used to perform a
computation on a large amount of data; since about 20 years ago, a technique for using a
Graphic Processing Unit (GPU) has been developed and used [1]. Gradually, GPUs have
emerged as a viable, inexpensive and highly portable alternative to large and expensive
high-performance computing clusters [2].

A GPU is a device that quickly processes graphic work under the command of a
CPU, converts a digital signal into an image, and transmits it to a display device. The
hardware of a CPU consists of an Arithmetical Logic Unit (ALU) with a complex physical
structure to enable various tasks, and the hardware of a GPU consists of an ALU that is
relatively simpler than that of a CPU. However, since the GPU contains a lot of ALUs, it is
possible to perform more computations at once than the CPU. GPUs require programming
in a different way from a CPU when performing data computations due to differences
in the CPU and hardware. NVIDIA’s CUDA (Compute Unified Device Architecture) [3]
and Khronos Group’s OpenCL (Open Computing Language) [4] are typical examples of
programming using GPUs [5]. GPU manufacturer NVIDIA has developed a compiler

Water 2021, 13, 3435. https://doi.org/10.3390/w13233435 https://www.mdpi.com/journal/water

https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0003-4864-4342
https://doi.org/10.3390/w13233435
https://doi.org/10.3390/w13233435
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/w13233435
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w13233435?type=check_update&version=2


Water 2021, 13, 3435 2 of 15

that can use the GPU for data computation in collaboration with the compiler supplier,
the Portland Group Incorporated (PGI). One of the results, CUDA Fortran, is a compiler
incorporating CUDA and PGI Fortran.

CUDA is a General-Purpose Computing on Graphics Processing Units (GPGPU) tech-
nology that allows a GPU to write parallel data processing algorithms using programming
languages. GPGPU is a technology that uses the GPU, which had previously only worked
on graphics under CPU commands, to computation applications that the CPU was in
charge of, and GPU performs better in large-scale parallel processing because it uses more
cores than the CPU [6]. In 2007, NVIDIA announced the CUDA architecture, capable of
GPU-based parallel programming, and began introducing hardware such as accelerators
equipped with CUDA processors [3].

Over the past few years, research on massively parallel computations using GPUs in
the CFD field has been conducted. In 2011, an open source software called SPHysics (www.
sphysics.org accessed on 4 November 2021) was developed using the GPU-based Smooth
Particle Hydrodynamics (SPH) method for free-surface fluid analysis [7,8]. Chow et al. [2]
developed a GPU-based three dimensions Incompressible Smooth Particle Hydrodynamics
(ISPH), achieving up to 18 times faster simulation execution time. Afrasiabi et al. [9]
developed a more optimized GPU-based 2D SPH and achieved up to about 264 times faster
execution time. Vanderbauwhede and Takemi [5] developed an OpenCL-based Weather
Research and Forecasting (WRF) model, and the results showed that the computational
execution time of the model using the GPU was reduced by two times compared to the
case of the model using the CPU. Kim et al. [10] developed a CUDA Fortran-based WRF
model, and the result of this study also said that GPU can improve computation efficiency
by five times compared to the CPU. Chang [11] applied CUDA to compressible flow cases
based on high-order accuracy numerical techniques. The computational execution time
using the GPU was reduced by about two times compared to the Open Multi-Processing
(OpenMP) parallel computation using 12 cores of the CPU.

In this study, a CUDA Fortran-based GPU-accelerated Laplace equation model was
developed and applied. Laplace equation is one of the various equations that can physically
analyze under groundwater flows, and is an equation that can calculate analytical solutions.
The computation results of the GPU-accelerated Laplace equation model were compared
with the analytical solution to verify the accuracy. Performance with respect to computa-
tional execution time was compared by measuring the overall program execution time of
the GPU-based Laplace equation model and the CPU-based Laplace equation model. In ad-
dition, by configuring the number of grids in various ways, the performance improvement
of the computational execution time according to the number of grids was investigated.

2. Numerical Method
2.1. Governing Equation

In the two-dimensional non-rotational flow, the velocity component can be expressed
as Equation (1) as a scalar function φ(x, y, t).

∂2φ

∂x2 +
∂2φ

∂y2 = 0, (1)

x and y are the horizontal and vertical axes, t is the time, and φ is the velocity potential.
Non-viscosity, incompressibility, and non-rotational flow fields are governed by Laplace
equations, and these flows are called potential flows.

2.2. Finite Volume Method

In this study, the Finite Volume Method [12] was adopted to discretize the Laplace
equation. The finite volume method is known as a method that is convenient to apply to
irregular curved grid networks as shown in Figure 1. Equation (2) is presented to apply
the numerical analysis of the Laplace equation using the finite volume method for the
computation element A B C D in Figure 1.

www.sphysics.org
www.sphysics.org


Water 2021, 13, 3435 3 of 15

Figure 1. Finite volume for a distorted grid [12].

∫
A B C D

(
∂2φ

∂x2 +
∂2φ

∂y2

)
dx dy =

∫
A B C D

H · n ds = 0, (2)

where H · n ds = (∂φ/∂x) dy− (∂φ/∂y) dx.
Equation (3) is a discretization of Equation (2).[

∂φ

∂x

]
i, j−1/2

∆yAB −
[

∂φ

∂y

]
i, j−1/2

∆xAB

+

[
∂φ

∂x

]
i+1/2, j

∆yBC −
[

∂φ

∂y

]
i+1/2, j

∆xBC

+

[
∂φ

∂x

]
i, j+1/2

∆yCD −
[

∂φ

∂y

]
i, j+1/2

∆xCD

+

[
∂φ

∂x

]
i−1/2, j

∆yDA −
[

∂φ

∂y

]
i−1/2, j

∆xDA = 0.

(3)

(i, j) is an index of a grid point, ∆x is an x-direction grid interval, and ∆y is a y-direction
grid interval. [∂φ/∂x]i, j−1/2 is the result of the computation element A′ B′ C′ D′ in
Figure 1, as shown in Equation (4a). [∂φ/∂y]i, j−1/2 is expressed as Equation (4b).[

∂φ

∂x

]
i,j−1/2

=

(
1

SA′ B′ C′ D′

) ∫∫ (
∂φ

∂x

)
dxdy

=

(
1

SA′ B′ C′ D′

) ∫
φdy

(4a)

[
∂φ

∂y

]
i,j−1/2

=

(
1

SA′ B′ C′ D′

) ∫∫ (
∂φ

∂y

)
dxdy

= −
(

1
SA′ B′ C′ D′

) ∫
φdx,

(4b)



Water 2021, 13, 3435 4 of 15

where SA′ B′ C′ D′ is the area of the computation element A′ B′ C′ D′. If the grid is not
overly distorted, the parameters of Equation (5) can be assumed as in Equations (6a)–(6c).∫

A′ B′ C′ D′
φdy ≈ φi, j−1∆yA′ B′ + φB∆yB′ C′ + φi, j∆yC′ D′ + φA∆yD′ A′ (5)

∆yA′ B′ ≈ −∆yC′ D′ ≈ ∆yAB (6a)

∆yB′ C′ ≈ −∆yD′ A′ ≈ ∆yj−1, j (6b)

SA′ B′ C′ D′ = ∆xAB∆yj−1, j − ∆yAB∆xj−1, j. (6c)

Therefore, as a result of using Equation (5), Equations (4a) and (4b) become Equations (7a)
and (7b), respectively.

[
∂φ

∂x

]
i, j−1/2

=
∆yAB(φi, j−1 − φi, j) + ∆yi−1, j(φB − φA)

SA′ B′ C′ D′
(7a)

[
∂φ

∂y

]
i, j−1/2

=
−[∆xAB(φi, j−1 − φi, j) + ∆xi−1, j(φB − φA)]

SA′ B′ C′ D′
. (7b)

[∂φ/∂x]i+1/2, j can also be expressed in the same way. Using the process of Equations
(4a)–(7b), Equation (3) can be expressed as Equation (8).

QAB(φi, j−1 − φi, j) + PAB(φB − φA)

+QBC(φi+1, j − φi, j) + PBC(φC − φB)

+QCD(φi+1, j − φi, j) + PCD(φD − φC)

+QDA(φi−1, j − φi, j) + PDA(φA − φC) = 0,

(8)

where QAB and φA in Equation (8) are the same as in Equations (9a)–(9c). φA represents
the average value for the four adjacent nodes as in Equation (9b).

QAB =
(∆x2

AB + ∆y2
AB)

SA′ B′ C′ D′
(9a)

PAB =
(∆xAB∆xi−1, j + ∆yAB∆yi−1, j)

SA′ B′ C′ D′
(9b)

φA = 0.25(φi, j + φi−1, j + φi−1, j−1 + φi, j−1). (9c)

Therefore, Equation (8) becomes Equation (10). A more detailed description of Equa-
tion (9) is presented by Fletcher [12].

0.25(PCD − PDA)φi−1, j+1 + [QCD + 0.25(PBC − PDA)]φi, j+1

+0.25(PBC − PCD)φi+1, j+1 + [QDA + 0.25(PCD − PAB)]φi−1, j

−(QAB + QBC + QCD + QDA)φi, j + [QBC + 0.25(PAB − PCD)]φi+1, j

+0.25(PDA − PAB)φi−1, j−1 + [QAB + 0.25(PDA − PBC)]φi, j−1

+0.25(PAB − PBC)φi+1, j−1 = 0.

(10)

The solution of Equation (10) was obtained using the Successive Over-Relaxation
technique as in Equations (11) and (12).



Water 2021, 13, 3435 5 of 15

φ∗i, j = {0.25(PCD − PDA)φi−1, j+1 + [QCD + 0.25(PBC − PDA)]φi, j+1

+0.25(PBC − PCD)φi+1, j+1 + [QDA + 0.25(PCD − PAB)]φi−1, j

+[QBC + 0.25(PAB − PCD)]φi+1, j

+0.25(PDA − PAB)φi−1, j−1 + [QAB + 0.25(PDA − PBC)]φi, j−1

+0.25(PAB − PBC)φi+1, j−1}}n

/(QAB + QBC + QCD + QDA)

(11)

φk+1
i, j = φk

i, j + λ(φ∗i, j − φk
i, j), (12)

where φk+1
i, j is the solution obtained in the current step, and φk

i, j is the solution obtained in
the previous step. λ is the relaxation parameter and is λ = 1.5 in this study.

Where ∑ |φ∗i, j − φk
i, j| < 1.0× 10−5, the calculation is finished.

3. GPU-Accelerated Computing

Figure 2 is a flowchart of the GPU-accelerated Laplace equation model. The solid line
indicates the sequence of programs, and the dotted line means the sequence of programs
and data transfer between the CPU and GPU.

Figure 2. Flowchart for numerical scheme.

3.1. CUDA Parallel Programming

Parallel programming of CUDA was implemented to reduce the computation time
of GPU-accelerated Laplace equations. The existing CPU-based sequential program has
been changed to a parallel program to enable GPU programming. The CUDA generates
grids and blocks for the number of grids in the calculation area. A group of blocks is a
grid, a group of threads is a block, and a thread refers to the single core operating on the
GPU. In the parallel programming of CUDA, one instruction is assigned to each core, and
the threads within one block perform operations in parallel at the same time. The array
of threads is stored in blockDim, and threadidx has an index. The block array is stored in
gridDim, and the index is stored in blockidx [3].



Water 2021, 13, 3435 6 of 15

3.2. GPU Hardware Structure and Features

Figure 3 shows a simplified CPU and GPU hardware structure. A control unit is
a device that instructs the operation of a processor, and controls the communication
and coordination between input/output devices. ALU is a digital circuit that calculates
arithmetic and logical operations. ALU is a digital circuit that calculates arithmetic and
logical operations. As shown in Figure 3, the CPU consists of a small number of ALUs, but
the GPU consists of many ALUs. For the hardware used in this study, the number of cores
containing ALU was six cores with Intel Xeon E5-2620 v2 @ 2.10 GHz for the CPU, and
5760 with NVIDIA GeForce GTXTITAN Z for the GPU (Table 1).

Table 1. System specification.

CPU Intel Xeon E5-2620 v2 (2.10 GHz)

GPU NVIDIA GeForce GTXTITAN Z
CUDA cores 5760

Peak GPU Clock/Boost 876 MHz
Peak GFLOPS 10,091 GFLOPS SP

Combined Memory bandwidth 675 GB/s

In CUDA programming, there is an additional process called data transfer between
the GPU and CPU that does not exist in existing CPU programming due to the difference
in the hardware structure between the CPU and GPU. Figure 4 shows the data processing
flow of CUDA for the dotted line in Figure 2 in detail. The CPU and GPU have independent
memory that each can control, and cannot control the memory of the other. When the
GPU processes data, data are first transmitted from the CPU memory to the GPU memory,
and the CPU instructs the data processing command to the GPU. The GPU processes data
in parallel at each core, and transfers the processed result from the GPU memory to the
CPU memory.

Figure 3. Hardware architecture of the CPU and GPU [13].



Water 2021, 13, 3435 7 of 15

Figure 4. CUDA data processing flow [13].

3.3. Data Transfer between the CPU and GPU

The objective of GPU-accelerated models is to shorten the time of numerical computa-
tion. Data transfer occurs between the CPU and GPU due to the difference in high-ware,
and it should be programmed so that data transfer between them does not occur frequently.
Therefore, the number of data transfers between the CPU and GPU should be reduced
to a minimum, and the program should be implemented so that continuous operations
are performed on the GPU. Figure 5 concisely shows the program system of the GPU-
accelerated model developed in this study. Figure 6 shows a part of the code for the CUDA
Fortran numerical computations part of Figure 2. Data transfer between CPU and GPU was
performed only in rows 1 and 11 to minimize the number of transfers. Lines 3 to 7 are in-
structions for the continuous operation of the GPU. However, the GPU-accelerated Laplace
equation model does not run continuously on the GPU. As shown in Figures 5 and 6 in
lines 2 and 8 to 10, it is programmed so that GPU operation is temporarily suspended
due to CPU operation while GPU operation is being performed. Then, GPU operation is
performed again after the CPU operation is completed. Such a cause is judged to be the
limitation of the function command of the CUDA program.

Figure 5. Program system of GPU-accelerated Laplace equation model; solid line: data transfer, dash
line: task performance.



Water 2021, 13, 3435 8 of 15

Figure 6. CUDA program code.

4. Numerical Cases and Results
4.1. Comparison of the Numerical Result and the Analysis Solution

The accuracy of the GPU-accelerated Laplace equation model was analyzed by com-
paring the result, from the numerical simulation and analytical solution for Equations (13a)
and (13b), which are publicly known.

∂2φ

∂x2 +
∂2φ

∂y2 = 0 , 0 < x < a , 0 < y < b (13a)



φ(0, y) = 0

φ(a, y) = 0

φ(x, 0) = 0

φ(x, b) = f (x),

(13b)

where x and y are the horizontal and vertical axes, φ is the dimensionless temperature, a
and b are arbitrary constants. The analytical solutions for Equations (13a) and (13b) are the
same as those for Equation (14) [14].

φ(x, y) =
∞

∑
n=1

An sinh
nπ

a
y sin

nπ

a
x, (14)

where An is Equation (15), and in the case of f (x) = 100, a = 1, b = 1, An becomes
Equation (16).

An =
2

a sinh
nπb

a

∫ a

0
f (x) sin

nπ

a
x dx (15)

An = 200
1− (−1)n

nπ sinh nπ
. (16)

In the numerical tests, numerical grids the size of 0.05× 0.05 were applied. Figure 7
shows the numerical model and the analytical solution result, and the two results agree well.
The Normalized Root Mean Square Error (NRMSE) of the numerical analysis and analytical
solution results was calculated and presented. For NRMSE, Equation (17) was used.

NRMSE =

√√√√ 1
m

m

∑
k=1

(
Ak − Fk

Ak

)2
, (17)



Water 2021, 13, 3435 9 of 15

where m is the number of numerical analysis result values, Ak is the analysis result value,
and Fk is the numerical analysis result value. The NRMSE for Figure 7 is 3.9× 10−4, which
indicates that the numerical analysis result of the GPU-accelerated Laplace equation and
the analysis solution agree well.

Figure 7. Comparison of analytical and numerical methods results for mesh configuration.

4.2. Groundwater Flow around Sheet Pile Dam

The velocity potential and stream function were obtained by applying the GPU-
accelerated Laplace equation model to a sheet pile dam, which is often used as a benchmark
for groundwater flow. Figure 8 is a cross-sectional view of the sheet pile dam. The upstream
water depth is 2 m, the downstream water depth is 0.5 m, and the sheet piles are located
up to 15 m deep in the soil layer. The impermeable layer is just below the soil layer.

Figure 8. Cross-section of sheet pile dam.

Figure 9a,b shows the boundary conditions for finding the velocity potential and the
stream function. Dirichlet boundary conditions and Neumann boundary conditions were
applied. Section 1 to Section 9 are Dirichlet boundary conditions. Section 1 is φ = 2.0 m,
Section 2 is φ = 0.5 m, Section 3 is φ = 0 m, Section 4 to Section 6 is ψ = 0.5 m2/s, and
Section 7 to Section 9 is ψ = 2.0 m2/s.



Water 2021, 13, 3435 10 of 15

(a)

(b)

Figure 9. Boundary conditions, solid line: Dirichlet boundary conditions, dash line: Neumann
boundary conditions. (a) Velocity potential, (b) Stream function.

Figure 10 is the numerical analysis result of the CPU-accelerated Laplace equation
model. Figure 10a shows the mesh configuration for the computational domain. Figure 10b
shows the equipotential line by finding the velocity potential, and Figure 10c shows the
streamline by finding the stream function. As a result of applying the GPU-accelerated
Laplace equation model to the sheet pile dam, it was confirmed that the equipotential
line and the streamline were approximately perpendicular to each other as shown in
Figure 10d. This indicates that the GPU-accelerated Laplace equation model represents the
groundwater flow around the sheet pile dam relatively well.



Water 2021, 13, 3435 11 of 15

(a)

(b)

(c)

(d)

Figure 10. Computed results of velocity potential and stream function for mesh configuration.
(a) Mesh configuration, (b) Equipotential line, (c) Streamline, (d) Flow net.

4.3. Irregular Calculation Area

In order to apply the GPU-accelerated Laplace model to the irregular calculation area,
a sector-shaped calculation area, as shown in Figure 11, was set.



Water 2021, 13, 3435 12 of 15

Figure 11. Computational domain for the solution of Laplace equation; number of grids: 24× 24.

Where RW = RZ = 0.1 m, RX = RY = 1 m and the angle between RX and RY
is 90 degrees. Dirichlet boundary conditions were applied as boundary conditions for the
computational domain, and the value is the same as Equation (18).

φ = 0 at WX

φ =
sinθ

rXY
at XY

φ =
1

rYZ
at YZ

φ =
sinθ

rWZ
at ZW

(18)

The numerical computation results of GPU-accelerated Laplace equations were ver-
ified by comparing them with the CPU-based numerical analysis results preceded by
Fletcher [12]. Figure 12 shows the results of calculating the velocity potential using the
GPU-accelerated Laplace equation model for various numbers of grids. The NRMSE for
Figure 12a and the numerical analysis results of the GPU-accelerated Laplace equation and
the numerical analysis results of the CPU-based Laplace equation by Fletcher [12] agree
well. The result of calculating the velocity potential by increasing the number of grids from
Figure 12b–d showed a similar trend to that of Figure 12a.



Water 2021, 13, 3435 13 of 15

(a) (b)

(c) (d)

Figure 12. Computed velocity potential for various number of grids. (a) number of grids: 6× 6,
(b) number of grids: 12× 12, (c) number of grids: 18× 18, (d) number of grids: 24× 24.

4.4. Performance of GPU-Accelerated Laplace Equation Models

The performance of the GPU-accelerated Laplace equation model for computational
execution time was compared by measuring the overall program execution time of each
GPU- and CPU-based Laplace equation model for the results of Figure 13. The GPU-
accelerated numerical model and the CPU-based numerical model assumed the same
algorithm. Speedup, a measure of the performance improvement of parallel computers, was
used for the performance of the calculation time. The speedup is the same as Equation (19).

Speedup =
CPU time
GPU time

, (19)

where GPU time is the overall program execution time of the GPU-accelerated numerical
model, and is the overall program execution time of the CPU-based numerical model. The
relationship between the number of grids and the speedup was confirmed by variously
configuring the number of grids in the calculation area. As shown in Figure 13, the number
of grids increased from 1.0 × 104 to 4.0 × 106, and as the number of grids increased, the
speedup also increased. An increase in the number of grids is associated with an increase
in the data to be processed. As the number of data increases, the numerical simulation
time increases. As the number of grids increases, the performance of the model tends
to increase the efficiency of GPU parallel processing. As a result, the GPU-accelerated
Laplace equation model shortened the computation time by up to 50 times compared to
the CPU-based Laplace equation model. It is judged that, when a large-scale operation
is performed, the use of a GPU can shorten the operation time compared to using only
one CPU.



Water 2021, 13, 3435 14 of 15

In the developed model, some data operations are being performed on the CPU due to
the limitations of the functions provided by CUDA Fortran. To obtain higher acceleration
results, the model must be programmed so that most data operations are performed on
the GPU.

Figure 13. Performance measurement of computation time of the GPU-accelerated Laplace equa-
tion model.

5. Conclusions

In this study, in order to shorten the computational execution time for the numerical
analysis of Laplace equations, a GPU-accelerated Laplace equation model was implemented
to verify the accuracy of the numerical analysis results and to confirm the performance of
the computational execution time. The GPU-accelerated Laplace equation model applied a
technique called CUDA and implemented the use of the Fortran language. As a way to
shorten the computation time by applying CUDA technology, large-scale parallel computa-
tions were performed on the GPU, and a program was written to reduce the number of
data transfers between the CPU and GPU.

The results of the GPU-accelerated Laplace equation model were in good agreement
with the analytical solution and the results of previous studies. As for the computational
execution time performance of the model, the performance increased as the number of
grids increased. When the number of grids was 4.0 × 106, the time was shortened by up
to about 50 times. When performing large-scale calculations, the performance of the GPU-
accelerated Laplace equation model with respect to time is higher than the computation
execution time of the existing CPU-based numerical model. We conclude from these
results that the GPU-accelerated Laplace equation model can be applied to the research of
groundwater flows targeting large areas.

Although this study provides an early stage for the GPU-based Laplace equation
model, several areas of development are still needed. Various algorithms will be devel-
oped for the CUDA Fortran library. If most of the data processing is performed on the
GPU, there is room for a further reduction in simulation execution time. In addition, the
developed model should be studied on optimization. If the performance of CUDA is
improved, it is judged that the performance of the CUDA Fortran-based model will also be
further improved.

Author Contributions: Conceptualization, B.K., K.S.Y. and H.-J.K.; methodology, B.K., K.S.Y. and
H.-J.K.; soft-ware and validation, B.K.; writing—original draft preparation, B.K.; writing—review
and editing, H.-J.K. All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by a grant (Grant 127568) from the Water Management Research
Program funded by the Ministry of Environment of the Korean government.

Institutional Review Board Statement: Not applicable.



Water 2021, 13, 3435 15 of 15

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This study was supported by a grant (Grant 127568) from the Water Management
Research Program funded by the Ministry of Environment of the Korean government.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ALU Arithmetical Logic Unit
CFD Computational Fluid Dynamics
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
GPGPU General-Purpose Computing on Graphics Processing Units
GPU Graphic Processing Unit
ISPH Incompressible Smooth Particle Hydrodynamics
NRMSE Normalized Root Mean Square Error
OpenCL Open Computing Language
OpenMP Open Multi-Processing
PGI Portland Group Incorporated
SPH Smooth Particle Hydrodynamics
WRF Weather Research and Forecasting

References
1. Harju, A.; Siro, T.; Canova, F.F.; Hakala, S.; Rantalaiho, T. Computational physics on graphics processing units. In International

Workshop on Applied Parallel Computing; Springer: Berlin/Heidelberg, Germany, 2012; pp. 3–26.
2. Chow, A.D.; Rogers, B.D.; Lind, S.J.; Stansby, P.K. Incompressible SPH (ISPH) with fast Poisson solver on a GPU. Comput. Phys.

Commun. 2018, 226, 81–103. [CrossRef]
3. NVIDIA. Cuda c Programming Guide; Version 4.0; NVIDIA Corporation: Santa Clara, CA, USA, 2011.
4. Munshi, A.; Gaster, B.; Mattson, T.G.; Ginsburg, D. OpenCL Programming Guide; Pearson Education: London, UK, 2011.
5. Vanderbauwhede, W.; Takemi, T. An investigation into the feasibility and benefits of gpu/multicore acceleration of the weather

research and forecasting model. In Proceedings of the 2013 International Conference on High Performance Computing &
Simulation (HPCS), Helsinki, Finland, 1–5 July 2013; pp. 482–489.

6. Bae, S.K. Acceleration of Word2vec Using GPUs. Master’s Thesis, University of Seoul, Seoul, Korea, 2017.
7. Gomez Gesteira, M.; Crespo, A.J.; Rogers, B.D.; Dalrymple, R.A.; Dominguez, J.M.; Barreiro, A. Sphysics—Development of a

freesurface fluid solver—Part 2: Efficiency and test cases. Comput. Geosci. 2012, 48, 300–307. [CrossRef]
8. Gomez Gesteira, M.; Rogers, B.D.; Crespo, A.J.; Dalrymple, R.A.; Narayanaswamy, M.; Dominguez, J.M. Sphysics—Development

of a free-surface fluid solver—Part 1: Theory and formulations. Comput. Geosci. 2012, 48, 289–299. [CrossRef]
9. Afrasiabi, M.; Klippel, H.; Röthlin, M.; Wegener, K. An improved thermal model for SPH metal cutting simulations on GPU. Appl.

Math. Model. 2021, 100, 728–750. [CrossRef]
10. Kim, Y.T.; Lee, Y.L.; Chung, K.Y. WRF Physics Models Using GP-GPUs with CUDA Fortran. Korean Meteorol. Soc. 2013, 23,

231–235. [CrossRef]
11. Chang, T.K. Efficient Computation of Compressible flow by Higher-Order Method Accelerated Using GPU. Master’s Thesis,

Seoul National University, Seoul, Korea, 2014.
12. Fletcher, C. Computational Techniques for Fluid Dynamics 1; Springer: New York, NY, USA, 1988; pp. 98–116.
13. Kim, B. Development of GPU-Accelerated Numerical Model for Surface and Ground Water Flow. Ph.D. Thesis, University of

Seoul, Seoul, Korea, 2019.
14. Zill, D.; Wright, W.S.; Cullen, M.R. Advanced Engineering Mathematics; Jones & Bartlett Learning: Burlington, MA, USA, 2011;

pp. 564–566.

http://doi.org/10.1016/j.cpc.2018.01.005
http://dx.doi.org/10.1016/j.cageo.2012.02.028
http://dx.doi.org/10.1016/j.cageo.2012.02.029
http://dx.doi.org/10.1016/j.apm.2021.08.010
http://dx.doi.org/10.14191/Atmos.2013.23.2.231

	Introduction
	Numerical Method
	Governing Equation
	Finite Volume Method

	GPU-Accelerated Computing
	CUDA Parallel Programming
	GPU Hardware Structure and Features
	Data Transfer between the CPU and GPU

	Numerical Cases and Results
	Comparison of the Numerical Result and the Analysis Solution
	Groundwater Flow around Sheet Pile Dam
	Irregular Calculation Area
	Performance of GPU-Accelerated Laplace Equation Models

	Conclusions
	References

