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Abstract: Advancement of modern technologies has given numerical simulations a crucial role
to effectively manage irrigation. A new numerical scheme to determine irrigation depths was
incorporated into WASH 2D, which is a numerical simulation model of crop response to irrigation.
Based on two predicted points of cumulative transpiration—water price and quantitative weather
forecast—the scheme can optimize an irrigation depth in which net income is maximized. A field
experiment was carried out at the Arid Land Research Center, Tottori, Japan, in 2019, to evaluate the
effectiveness of the scheme on net income and crop production compared to a tensiometer-based
automated irrigation system. Sweetcorn (Zea mays L., Amaenbou 86) was grown in three water
balance lysimeters per each treatment, filled with sandy soil. The scheme could achieve a 4% higher
net income, due to a 7% increase in green fodder yield, and an 11% reduction in irrigation amount,
compared with the automated irrigation method. These results indicate that the numerical scheme, in
combination with quantitative weather forecasts, can be a useful tool to determine irrigation depths,
maximize net incomes which are farmers’ targets, and avoid large investments that are required for
the automated irrigation system.

Keywords: drought; net income; water flow; automated irrigation; transpiration

1. Introduction

Irrigation is an essential part of agriculture all over the world. Over two billion of the
world’s population live in countries facing high water stress [1], which will be increased
by half by 2025 [2]. Still, farmers in those countries have limited knowledge to improve
irrigation management. They tend to over-irrigate their crops to maximize yield. Such
activity could have adverse implications for sustainable water use. Proper use of integrated
information of plant, soil, and weather can lead to more efficient management of irrigation.

To address the dual challenge of water saving and increasing food supply, researchers
have explored ways to determine appropriate irrigation depths under scarce water con-
ditions. In this context, the deficit irrigation approach (DI), which is the application of
water below crop water requirement, has been developed [3]. Some studies showed the
usefulness of DI for either improving the crop water productivity (CWP) or reducing water
applied [4–6]. In fact, reducing evapotranspiration (ET) compared with the standard ET
likely accompanies yield reduction, as carbon assimilation is tightly connected to transpi-
ration [7]. By applying different percentages of ET deficits, Oktema et al. [8] and Ertek
and Kara [9] found that DI may or may not improve CWP, but it significantly affected
crop yield. Thus, DI is not necessarily advantageous, as it is quite hard to quantify the ET
reduction at different growth stages under various crop, soil, and climate conditions. DI
may be valid when water is severely limited, water price is very expensive, and extracted
water from soil is replenished by seasonal rainfall [10].

To avoid plant water deficit, automated irrigation systems (AIS) with either soil mois-
ture sensors or tensiometers were developed. Many researchers have shown the effect
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of AIS to enhance yield or CWP [11–13]. However, such systems are initially expensive,
cannot consider the forecasted rain, and have technical vulnerabilities. Recent advance-
ments in weather-sensing technology have provided accurate real-time measurements of
weather parameters (i.e., temperature, solar radiation, etc.), which has helped growers in
estimating crop water requirement. Those advancements have facilitated the application
of a wide range of growth simulation models, such as CROPSYST [14], MOPECO [15],
and AquaCrop [16], as well as numerical simulation models of soil water flow and crop
response to irrigation, such as SWAP [17], HYDRUS [18], and WASH [19], have been
developed, which may reduce the need for sensor use in agriculture.

Many schemes have been presented for irrigation scheduling using such numerical
models. Li et al. [20] used the AquaCrop model for irrigation scheduling for cotton. Under
various water deficits, Fang et al. [21] used long-term simulation of growth, through a
stage-based, calibrated root zone water quality model for irrigation scheduling to maximize
WUE in maize. Adeyemi et al. [22] used dynamic neural network models for irrigation
scheduling from daily predicted volumetric water content (VWC) based on past soil
moisture and climatic measurements. Due to the uncertainty of rain events, the combined
use of weather forecast with those models, rather than climatic data of average or “typical
year”, may enhance the efficiency of water use.

To consider future rainfall in the determination process of irrigation depth, freely acces-
sible quantitative weather forecasts (WF) have been used in some studies. Chen et al. [23]
evaluated a new irrigation decision support scheme for improving irrigation scheduling
for cotton, based on forecasted rainfall and drought stress, simulated by the RZWQM2 [24].
Regardless of the forecasted rainfall parameter, other forecasted weather data (e.g., air
temperature, relative humidity, etc.) is important in predicting daily reference evapotran-
spiration (ETo). Cai et al. [25] investigated the accuracy of public weather forecasts in
predicting daily ETo estimated by the FAO Penman–Monteith equation. They found that
the forecasted daily ETo estimates agree well with the actual daily ETo values, with R2 val-
ues greater than 0.91 for all studied locations. They concluded that public weather forecast
data are appropriate for use in irrigation management. In this context, Lorite et al. [26]
determined irrigation scheduling using free online weather forecasts based on daily and
weekly reference evapotranspiration. Ballesteros et al. [27] used a newly developed FORETo
software, which use forecasted weather parameters to estimate reference ET for both maize
and onion crops. Some studies utilized WF to optimize or determine irrigation depth at
maximum net income (total income minus total costs) considering the water price. For
examples, Wang and Cai [28] and Jamal et al. [29] optimized irrigation depths that max-
imize the seasonal net income, while Fujimaki et al. [19] and Abd El Baki et al. [30–33]
determined irrigation depths that maximize net income at each irrigation event. In fact, the
objective of farmers is not CWP, but net income [10], when water is volumetrically priced.

In this study, we evaluated a new scheme, presented by Abd El Baki et al. [33], which
can determine irrigation depths that maximize net incomes by predicting two points of
cumulative transpiration at each irrigation event, using WF and previous irrigation and
weather records since the last irrigation event. Their validation has been limited to only
one short legume crop—soybean. However, the validation of a new scheme should be
carried out using at least two crops with contrasting morphology and physiology. The
main objective of this research was, therefore, to investigate the feasibility of the proposed
scheme for a tall C4 crop, sweetcorn (Zea mays L., Amaenbou 86), in comparison with the
automated irrigation systems operated with tensiometers in sandy soil.

2. Materials and Methods
2.1. Proposed Scheme

This scheme assumes the following: (1) that water is priced volumetrically to encour-
age farmers to conserve water; and (2) if a farmer can estimate cumulative transpiration at
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each irrigation interval, an irrigation depth at a maximum net income can be determined.
The net income, In ($ ha–1), during an irrigation interval is estimated as follows:

In = Pcετiki − PwW − Cot (1)

where Pc is the producer’s price of crop ($ kg–1 dry matter (DM)); ε is transpiration pro-
ductivity of the crop (produced dry matter (kg ha–1), divided by cumulative transpiration
(kg ha–1)); τi is cumulative transpiration over the irrigation interval (1 mm = 10,000 kg ha–1);
ki is the income correction factor; Pw is the price of water ($ kg−1); W is the irrigation depth
(1 mm = 10,000 kg ha–1); and Cot is other costs (e.g., fertilizers, labors, etc.) ($ ha–1). Note
that the product of the two components, ετi, was used to predict the dry matter produced
at each irrigation event and thus the ki was used to avoid underestimation of In during the
initial growth stage. The ki was described [19] as follows:

ki =
kcb
kcb

=

∫
kcbdτ
τfkcb

=

(
akcb

+ ckcb

)
τf −

akcb
bkcb

[
exp

(
bkcb

τf − 1
)]

τfkcb
(2)

where kcb is the average value of the basal crop coefficient (kcb) for a given growth period;
τf is the expected cumulative transpiration at the end of this period; and akcb

, bkcb
and ckcb

are fitting parameters. The ki ranges from about 3 in the early stages of growth to about
1 in the later stages. If a crop has distinctly different sensitivity to drought stress among
different phenological periods, we may also include such an effect into this value.

This scheme also assumes that the cumulative transpiration (τi) linearly increases as
W, until the potential value (τmax) is achieved, as follows:

τi =
∫

Trdt = atW + τ0, (3)

τi = τmax (4)

where Tr is the transpiration rate (cm s−1); at is the slope, which is determined by setting
W1 (Figure 1) as half of the sum of cumulative potential transpiration and cumulative
reference ET (ETo) over the irrigation interval; and τ0 is cumulative transpiration at W = 0.
A simplified linear relationship between τi and W allows the proposed scheme to cut the
time of the simulation run by one-third, in comparison with the original scheme. Abd
El Baki et al. [33] reported that the proposed scheme gave similar optimum W for both
irrigation intervals: one-day intervals and two-day intervals, with RMSE of 0.1 cm and
0.02 cm, respectively, as compared with the original scheme.

The irrigation depth corresponding to maximum In (Inmax) is determined when the
first derivative of Equation (1), with regard to W, becomes zero, as shown in Figure 1. In
one case, the derivative may be solved as shown in Equation (5), when W lies in zone A;
while Equation (6) is obtained when W lies in zone B, because τ0 = τmax and always
remains constant.

dIn

dW
= atPcεki − Pw, W <

τmax − τ0

at
(5)

dIn

dW
= −Pw, W ≥ τmax − τ0

at
(6)

Hence, the W is determined as zero when atPcεki − Pw < 0; while the optimal W is
(τmax − τ0)/ at when atPcεki − Pw ≥ 0.
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Figure 1. Conceptual example of determination of irrigation depth to maximize net income when
cumulative transpiration is a linear function of applied water until potential value.

2.2. Numerical Model

The algorithm described in Section 2.1 has been incorporated into the WASH 2D,
which simulates the two-dimensional movement of water, heat, and solute in soils. It can
also simulate water uptake by plants in response to both drought and salinity stresses, and
can partition the ET in two components: evaporation and transpiration [19]. To simulate
the water flow in soil, the model uses the two-dimensional Richards equation for the
combined liquid and gaseous phases with a sink term. This sink term describes the plant
water uptake rate, S (cm s–1), which is estimated using the macroscopic root water uptake
model [34], as follows:

S = αwβTp, (7)

where αw, β, and Tp are reduction coefficients due to drought and salinity stresses, normal-
ized root density distribution, and potential transpiration (cm s–1), respectively. The αw in
WASH 2D model is expressed by the additive form which is a function of matric potential,
ψ (cm) and osmotic potential, ψo (cm), as follows:

αw =
1

1 +
(
ψ
ψ50

+ ψo
ψo50

)p (8)

where ψ50, ψo50, and p are fitting parameters. If a crop has distinctly different ψ50 values
among different phenological periods, we may change the value, although the dependence
of ψ50 to phenological periods has yet to be reported.

The β is described as [19]:

β = 0.75(brt + 1)drt
−brt−1(drt − z + zr0)

brt grt

(
1 − x2grt

−2
)

, (9)

where brt is a fitting parameter; drt and grt are the depth and the width of the plant root
zone (cm), respectively; z and zr0 are the soil depth and the depth below which roots
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exist (cm), respectively; and x is the horizontal distance from the plant (cm). The drt is
expressed as a function of cumulative transpiration from germination, τ, as follows:

drt = adrt[1 − exp(bdrtτ)] + cdrt, (10)

where adrt, bdrt, and cdrt are fitting parameters.
The Tp is calculated by the product of reference evapotranspiration (cm h–1), ETo,

calculated using the Penman–Monteith equation [35] and the basal crop coefficient, kcb,
as follows:

Tp = ETokcb, (11)

Note that the ETo is estimated through the model using either meteorological or
weather forecasts data. The kcb is also expressed as a function of τ, as follows:

kcb = akcb

[
1 − exp

(
bkcb

τ
)]

+ ckcb
− dkcb

τ
ekcb (12)

where akcb
, bkcb

, ckcb
, dkcb

, and ekcb
are fitting parameters. The WASH 2D model expressed

both parameters kcb and drt as functions of τ, instead of days after sowing, to make the
plant growth more dynamically respondent to both drought and salinity stresses. Further
details about equations and the model components are provided in [19].

2.3. Simulation Procedure

To determine W at a maximum In, two simulation runs are carried out at each irriga-
tion day, as follows: (1) an update run using both irrigation and weather records since the
previous irrigation day to estimate the current (initial) condition; and then (2) an optimiza-
tion run using data resulted from an update run in addition to quantitative weather forecast
for next irrigation interval (Figure 2). The model shall give one of two possible decisions:
(1) optimal irrigation depth at maximal net income; or (2) no irrigation is recommended if
the soil water is adequate to meet crop water needs and therefore atPcεki − Pw < 0.
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2.4. Field Experiment

A field experiment was carried out at the Arid Land Research Center (ALRC), Tottori,
Japan, in 2019. Two treatments were compared: proposed scheme (S) and an automated
irrigation method (A). Three replicates were set for each treatment; each replicate was
established on a water-balance lysimeter that was 2 m long, 2 m wide, and 2 m deep, filled
with a sandy soil, with hydraulic properties, as shown in Figure 3. Irrigation was supplied
though a drip irrigation system with lateral tubes and emitters spaced at 100 cm and 20 cm,
respectively. Irrigation interval for treatment S was set at two-day intervals until 5 August
and one-day intervals until the end of irrigation. This was because available water of sand
soil is just 0.05 cm3 cm–3, in which the plant tended to start wilting after 2 days of irrigation
under hot and fine weather. The irrigation was automatically supplied for treatment A
when the average suction measured by 2 tensiometers at a depth of 20 cm exceeded the
trigger value of 50 cm. The automated irrigation system was controlled by CR300 series
data logger (Campbell Scientific, Inc., Logan, UT, USA). The schematic of the experimental
setup is illustrated in Figure 4.
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Figure 3. Soil hydraulic properties of Tottori sand, ALRC, Japan.

Weather data were collected from a weather station installed in the field as shown in
Figure 5. On the other hand, quantitative weather forecast data were downloaded from the
website of Yahoo! Japan, whose data are based on forecasts from the meteorological agency
of Japan [36]. This website provides quantitative values for all required parameters except
solar radiation. Instead, it provides classes of cloud such as “rain”, “cloudy”, or “clear”. To
obtain solar radiation, we used an empirical relationship between such descriptions and
the ratio of extraterrestrial radiation to solar radiation [19].
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Figure 5. Meteorological data measured with a weather station set nearby the field experiment:
(a) the fluctuations of both rain (mm) and air temperature (◦C); and (b) the fluctuations of the wind
speed (m s–1), relative humidity (%), and solar radiation (MJ m–2 h–1) across the growing season.

To compare VWC values, which resulted from simulations with observed ones, 5 10HS
sensors (METER Inc., Pullman, Washington, WA, USA) were inserted into the soil profile at
5 observation points (x, y): (0, 5), (0, 15), (0, 45) (15, 5), and (30, 5), respectively. x designates
the horizontal distance from drip tube (cm), while z designates the soil depth (cm). The
calibration function of 10HS sensor is shown in Figure 6.
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ALRC, Japan.

Actual observed daily ET (ETLys) was estimated from the water balance between two
rainfall events, as follows:

ETLys = P + I − D ± ∆S (13)

where P is the precipitation (mm day−1); I is the irrigation (mm day−1); D is the drainage
(mm day−1); and ∆S is the change in the soil water storage (mm day−1). Drainage was
measured using an ECRN-50 Rain Gauge (METER Inc., Pullman, Washington, DC, USA)
for each treatment. Observed daily ET was available only from 18 August until 25 August;
therefore, observed and simulated ETa were compared in two periods—P1 was from 18
August to 22 August; and P2 was from 22 August to 25 August, to check the accuracy of
the model to in terms of ET simulation.

Local variety of sweetcorn (Zea mays L., Amaenbou 86) was sown on 17 June at 20 cm
spacings along the drip tube. Producer price was set as 0.4 $ kg–1 DM. Both water price and
transpiration productivity were set as 0.0002 ($ kg–1) and 0.003 in numerical simulations,
respectively. The water price was similarly set to that used in Israel [37].

Parameter values of kcb function, akcb
, bkcb

, ckcb
, dkcb

, and ekcb
were set at 1.08, −0.21,

0.15, 1.98 × 10−7, and 4.29, respectively. They were derived from fittings to those given by
Allen et al. [32] by setting average evapotranspiration during initial, development, mid,
and late stages as 3, 4, 5, 5 mm d–1, respectively (Figure 7). Parameter values of stress
response, normalized root density distribution and the depth of root zone functions for
sweetcorn crop are listed in Table 1. Those values were previously measured for the same
crop and were set according to those reported by Fujimaki et al. [19]. Other parameter
values for soil or crop properties can be acquired online (http://www.alrc.tottori-u.ac.jp/
fujimaki/download/WASH_2D/ (accessed on 8 August 2021).

http://www.alrc.tottori-u.ac.jp/fujimaki/download/WASH_2D/
http://www.alrc.tottori-u.ac.jp/fujimaki/download/WASH_2D/
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Figure 7. Basal crop coefficient function for sweetcorn in terms of cumulative transpiration through-
out the growing season (parameter values of kcb function were obtained by the fitting to those
reported by Allen et al. [32]).

Table 1. Parameter values of root growth and stress response functions used in the simulation using
the WASH 2D model.

Parameter Remark

Ψ ψo P Equation (8)−1000 −3000 3

brt grt zr0 Equation (9)
0.12 30 2

adrt bdrt cdrt Equation (10)
40 −0.4 5

Nutrients include: (1) granular fertilizers were applied occasionally: CaCl2, (NH4)2SO4
and “PK40” (P = 20% and K = 20%) in total rates of 40 kg ha–1, 90 kg ha–1 and 165 kg ha–1,
respectively; and (2) liquid fertilizer (N = 10%, P2O5 = 4%, K2O = 8%) was applied through-
out the growing season with total N rate 95 kg ha–1, starting from 31 July [38]. The plants
were harvested as a green fodder on 03 September. Thus, the gross net income for both
the treatments was calculated based on green fodder. The price of green fodder was de-
termined by dividing the price of dry matter by the ratio between dry and fresh matter
(100 $ t−1 FW). The mass of dry matter was measured after oven-drying under 65 ◦C.
The leaf area index (LAI) was calculated by dividing the leaf area per unit ground area
of the plant. The yield and its components (plant height (PH), ear diameter (ED), and
ear length (CL)) were measured in cm units; and ear weight (EW) and dry matter (DM)
were measured in gram units; finally, other parameters, such as number of leaves (LN),
ears number plant–1 (EN), number of rows ear–1 (ERN), number of grains row–1 (NGR),
and leaf area (LA) were statistically analyzed using a randomized complete block design.
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The MS-Excel 2016 software was used to estimate significant differences between the two
treatments through an ANOVA test.

3. Results and Discussion
3.1. Soil Water Content

To check the accuracy of the numerical simulation, we compared observed and simu-
lated soil moisture from 25 July until 30 August (Figure 8). The response of soil VWC to
both irrigation and rainfall events are shown at three observation points: (1) in (0, 5), where
the sensor was just below the drip tube, the model could well simulate VWC with RMSE
of 0.012 cm3 cm–3; (2) in (0, 45), where the sensor inserted in the deeper layer under the
drip tube, the model simulated VWC with a fair accuracy with RMSE of 0.008 cm3 cm–3;
and (3) when the sensor in mid distance between two adjacent drip tubes at near soil
surface (50, 5), the soil moisture remained fairly constant when there was no rainfall, and
it responded to rainfall events after August 15. In this case, the model could simulate
the VWC with RMSE of 0.01 cm3 cm–3. The previous rain event occurred on 22 July,
which caused the VWC in the point (50, 5) gradually decreased until the soil reached an
air-dry condition (0.006 cm3 cm–3). These results are in accordance with those reported
by Abd El Baki et al. [30–33], demonstrating the ability of WASH 2D model to simulate
VWC in the sandy soil and to alter soil moisture monitoring using expensive sensors in
irrigation management.
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Figure 8. Comparison between observed and simulated VWC in the treatment S (fluctuations of VWC under both irrigation
and rainfall events measured in two dimensions: x is the horizontal distance from the drip tube, and z is the soil depth).

3.2. Evapotranspiration

To check the accuracy of the model in terms of ET simulation, a comparison between
observed and simulated values were carried out, as shown in Table 2. Observations were
made in two different periods. Daily average ET at each period was estimated between
each of two active rainfall events, assuming that stored water in the soil profiles is the same
when drainage is decreased to the same value (0.2 mm h–1) after rain. The simulated values
of ET agreed well with the observed ones, with an RMSE of 0.18 mm d–1. These two events
may not be enough to assess the accuracy of ET predictions and more data are required by
taking more drainage data between rain events successfully.
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Table 2. Observed and simulated ET for two selected periods—P1 and P2—in treatment S.

Observation Periods ET_Obs. (mm d–1) ET_Sim. (mm d–1)

P1 (18 August–22 August) 2.14 2.26
P2 (22 August–25 August) 3.95 4.17

3.3. Growth Parameters of Sweetcorn

Both LAI and biomass were measured for four times throughout the growing season,
as shown in Figure 9. Both parameters were a bit higher for treatment S with non-significant
differences compared to treatment A.
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Figure 9. Comparison between the two treatments in terms of LAI and biomass throughout the growing season (treatment
A designates the automated irrigation while treatment S refers to the proposed scheme). Note that biomass refers to the
sum of leaves and stems dry matter.

The combination of WF and numerical simulations in sandy soil could give the
proposed scheme the potential to reduce drainage and associated nitrate losses, which may
be a reason why the treatment S recorded higher values of LAI and biomass compared
with treatment A (Figure 10). The nitrate uptake for both treatments appeared to be similar,
except that during the early reproductive period, from 7 August to 13 August, the nitrate
uptake for treatment S was higher than treatment A, which could contribute to a larger
leaf area. The data in Figure 10 only represents the nitrate in the liquid fertilizer. Prior
to 31 July, the automatic irrigation system tended to deliver more water than treatment
S, and the source of nutrients was granular fertilizer, which likely caused leaching of
nutrients and hence slowed the growth of leaves in treatment A. These results agree with
the suggestions of Kirtok [39], that nitrogen deficiency during the growing period reduces
the plant leaf area, which leads to a reduction in biomass accumulation [40]. According
to Tollenaar [41], LAI values generally range between 2 and 6 in maize varieties. In this
study, LAI for both treatments recorded lower values than normal ones. This may be due
to both lodging and green snap caused by heavy rainfall and strong wind events during
the silking and tasseling stages. These events may have led to reduce nutrients uptake
and cause stalk breakage which reduced vegetative growth as indicated by Carter and
Hudelson [42]. Another reason would be low plant density than typical one. To evaluate
the marketable fresh sweetcorn ears, yield components describing the visual appearance
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are important [43]. As shown in Table 3, non-significant differences between the two
treatments in these parameters: plant height, leaves number, ears number per plant, ear
diameter, ear length, number of grains row per ear, and number of grains per row per ear.
Treatment S had slightly higher values of these parameters due to more nitrate uptake
(Figure 10), as noted by several researchers [44,45].
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Figure 10. The fate of nitrate supplied by fertigation for the two treatments during the growing season
(treatment A designates the automated irrigation while treatment S refers to the proposed scheme).

Table 3. Statistical analysis of some growth parameters: plant height (PH), number of leaves (LN),
ears number plant–1 (EN), ear diameter (ED), ear length (CL), number of rows ear–1 (ERN), number
of grains row–1 (NGR), ear weight (EW), leaf area (LA), and dry matter (DM).

Treatment
PH EN CN ED EL ERN NGR EW LA. DM
cm cm cm g cm2 g

A
Average 128.7 8 2 2.9 17.2 14 37.1 128.3 1653.7 49.1

St.
Error 1.3 0.2 0.1 0.1 0.4 0.3 1.9 1.0 70.6 0.8

S
Average 130.8 9 3 2.9 17.2 14 40.4 138.1 1911.7 52.5

St.
Error 2.3 0.1 0.4 0.2 0.7 0.4 2.2 13.9 29.9 0.7

Note that DM is the sum of both dry leaves and stems only. St. Error—the standard error.

3.4. An Example of Irrigation Depth Determination by the Proposed Scheme

An example of determining an irrigation depth at maximal net income is illustrated in
Figure 11. The model suggested an irrigation depth of 10.2 mm for 2 days on 3 August, to
achieve a maximum net income of 70 $ ha−1. The slope, at, is determined as 0.48 by setting
another point of = 6.6 mm at an irrigation depth of 8.2 mm. The distribution between W and
simulated cumulative transpiration is clearly linear in W < 5 mm. However, in this study,
W1 was set beyond the “linear” range, resulting in larger recommended (“optimum”) value
than optimum. In addition, cumulative transpiration did not always reach its potential
value as shown in Figure 11. This is because irrigation began some time (e.g., 10:30) after
the start (9:00) of calculating cumulative transpiration, and there is a time lag before applied
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water reaches to the entire root zone, regardless of how much water is applied. Thus, one
drawback of this scheme is the difficultly in setting W1 appropriately, and further studies
are required to determine how to set appropriate W1.
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3.5. Net Income Assessment

One advantage of the proposed scheme is to maximize net income at optimal irri-
gation depth and maximal yield; a comparison among those three factors is shown in
Figure 12. The grain yield is greatly affected by both lodging and green snap as men-
tioned in Section 3.2. Thus, we evaluated net income based on a green fodder yield at
100 $ t−1 FW. Treatment S achieved higher yield by 7%, although it reduced applied irriga-
tion by 11%. This was due to more crop canopy produced and more nutrients uptake by
sweetcorn plants grown in treatment S compared with treatment A. Thus, net income for
treatment S increased by 4% than treatment A. These results in parallel with the previous
studies reported by Abd El Baki et al. [30–33], demonstrating the efficacy of the proposed
scheme to enhance farmers’ net incomes.
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Figure 12. Comparison of applied water, green fodder yield and gross net income between the two treatments (treatment A
designates the automated irrigation while treatment S refers to the proposed scheme).

3.6. Advantages of the Combination of Weather Forecasts and Numerical Simulation

The combination of WF (one- and two-day intervals in the current study) and numeri-
cal simulation can help farmers in increasing the net income is shown in Figure 12. This
agrees with those reported by Cai and Wang [28] who found that using 7-day and 2-week
weather forecasts could increase net income by 21% and 42%, respectively. It could also
enhance water productivity, as treatment S and A recorded 10.9 kg m−3 and 9.1 kg m−3

on green fodder basis, respectively. Available water and rooting depth can be used to
determine irrigation interval and required WF days for determining irrigation depth. In the
proposed scheme, we used freely accessible WF to predict ETo using the Penman–Monteith
equation (PM), which has been reported to improve the performance of ETo forecasting
compared to other methods [46]. Needless to state that the accuracy of WF parameters is
critical for obtaining an accurate calculation. The comparison of forecasted and actual rain-
fall, wind speed, relative humidity, and ETo data throughout the growing season is shown
in Figure 13a–d, respectively. We discarded forecast from 0:00 to 9:00, because transpiration
during the period is quite small and the weather forecast does not provide beyond 24:00 of
the 2nd day. The forecasted rain was overestimated with a root mean square error (RMSE)
of 7.2 mm per a selected duration. Although the other weather parameters such as wind
speed and relative humidity were somewhat underestimated, the forecasted ETo estimates
are in fair agreement with the measured ones with an RMSE of 0.5 mm per a selected
daily period (9:00 to 24:00). As indicated in Figure 10, the proposed scheme could also
enhance the efficiency in fertilizer application by reducing leaching owing to rain. The
overestimation of forecasted rain may have caused mild drought stress. For example, on
28 July, 10 mm of rain was forecasted and therefore only 2.7 mm was applied for 2 days.
As a result, the relative cumulative transpiration (the ratio of simulated cumulative transpi-
ration and cumulative potential transpiration) became 0.75, revealing mild drought stress.
If the rain had not been forecasted, the scheme would have suggested 5.1 mm and the
relative cumulative transpiration would have become 0.91. However, the negative effect of
overestimation may have been partly offset by the reduced nitrate leaching.
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and (d) reference evapotranspiration during each irrigation interval throughout the growing season.

To emphasize the importance of irrigation even under a rainy climate, the distribution
of rainfall and irrigation events throughout the growing season is shown in Figure 14. The
irrigation was primarily applied from 22 July to 15 August, during the drought period
occurred in this season.
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4. Conclusions

In this study, two irrigation schemes, the proposed scheme and automated irrigation
were compared in terms of net income considering the price of water. The proposed scheme
aimed to predict cumulative transpiration values at two irrigation depths in order to deter-
mine irrigation depth that maximizes net income. Based on a combination of numerical
simulation and public WF, the scheme could boost the net income by a 4% due to an
increase in yield production of 7% and a reduction in applied water of 11%, compared with
the automated irrigation scheme. In addition, both simulated water content and ET agreed
well with the observed values, indicating the accuracy of the numerical model, WASH_2D,
at least for two periods, during which we could calculate actual ET. The combination of
weather forecast and numerical simulation has a significant impact on irrigation scheduling
during drought periods, saving water, reducing nutrient leaching, and increasing crop
productivity. In accordance with the study by Abd El Baki et al. [33], the scheme may
be considered as a useful technology to determine irrigation depths that maximizes net
income while securing the costs required to build automated irrigation systems.
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