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Abstract

:

Resin based covalent organic framework material was used as filler for solid phase extraction (SPE), and the solid phase extraction effect was compared with that of traditional COF material (TpBD COFs). The enrichment capacity of four phthalate esters (dimethyl phthalate, diethyl phthalate, dibutyl phthalate, dioctyl phthalate) in beverage samples was investigated by SPE. Adsorption experiments showed that the kinetic adsorption behavior of COF materials for phthalate esters (PAEs) was more consistent with the quasi-second-order kinetic adsorption model, and the static adsorption behavior is more in line with the Freundlich isothermal adsorption model. Solid phase extraction experiments proved that the SPE column prepared with two COF materials as adsorbents had good adsorption effects, high recovery (water: 97.99–100.56% and beverage: 97.93–100.23%) and were reusable (50 cycles), which could meet the requirements for trace detection of phthalate ester. It was found that the solid phase extraction effect was better than the four types of commercial SPE columns. The new COF material reduced the cost of monomer use and provided the possibility for its industrial production. Meanwhile, it also provided a new feasible scheme for enriching trace phthalate esters in practical samples.
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1. Introduction


As an environmental hormone, phthalate esters (PAEs) have been widely used as plasticizers of polymer materials and as solvents or emulsifiers, which have caused serious threats to human health (including organs, blood system, reproductive system, and certain carcinogenicity [1,2]). Among them, dimethyl phthalate (DMP) and diethyl phthalate (DEP) are often used as stationary liquid and lubricant for gas chromatography and deodorant, respectively [3,4,5], while dibutyl phthalate (DBP) and dioctyl phthalate (DOP) have been used as plasticizers of nitrocellulose and polyvinyl chloride, respectively [6,7,8,9]. These phthalate esters are widely found in the environment, causing potential harm to human health [10,11], and the existence of these interferences in environmental samples is very small. In most cases, solid phase extraction (SPE) is used to analyze and enrich these substances in environmental systems. This technology has the characteristics of less solvent consumption, good reproducibility, and high selectivity [12], and is widely used in trace and poison analysis [13,14] and environmental detection [15]. The key of this technology lies in the selection of adsorbents. Generally, porous materials with large specific surface area and stable properties are selected. However, traditional adsorption materials, such as resin, graphene, and carbon nanotubes, are not suitable for the detection of trace PAEs as SPE fillers due to their low adsorption efficiency and low reusability. Novel adsorbents such as metal organic framework materials, magnetic adsorbents, and molecularly imprinted adsorbents have good adsorption capacities, which are suitable for the study of PAEs as solid phase extraction fillers [16,17,18,19,20]. As a new adsorption material, covalent organic framework materials (COFs) are considered as high efficiency adsorbents with characteristics such as a large specific surface area, porous structure and good thermal stability, which is suitable for the enrichment and separation of PAEs as an SPE filler [21,22,23].



In this paper, an economical resin-based COF material was prepared. The adsorption properties of the materials were studied by adsorption experiments, and the SPE separation ability of four phthalate esters (DMP, DEP, DBP, DOP) in water samples was investigated. At the same time, the solid phase extraction effect between the two COF-filled SPE columns and the commercial SPE columns was detected by High performance liquid chromatography (HPLC). The results demonstrated that this new COF material could provide a theoretical basis for the detection and enrichment of phthalate esters in practical samples.




2. Materials and Methods


2.1. Reagents and Instruments


Dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), and dioctyl phthalate (DOP) were obtained from Aladdin (Shanghai, China); methanol, acetic acid, and ethanol were obtained from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). All of the above reagents were analytically pure. Strata-X, Strata-X-CW, Strata-X-C, and Strata-X-A were obtained from Phenomenex (Tianjin, China).



LC-10AT high performance liquid chromatograph was obtained from Shimadzu Co., Ltd. (Shanghai, China).




2.2. Experimental Methods


2.2.1. Preparation of COF Materials


TpBD COFs and resin-based COFs’ preparation methods and their morphologies, functional groups, thermal stability, structural characteristics, and pore structure are referred to in [24,25].




2.2.2. Determination of PAEs Adsorption Behavior


WE accurately weighed a certain volume of DMP and added it into the volumetric flask, then prepared the solution according to the ratio of acetonitrile:water = 9:1, and finally prepared dimethyl phthalate solution with concentrations of 2, 4, 6, 8, and 10 mL/L, respectively. DEP, DBP and DOP standard solution were also prepared according to the above methods. In the adsorption experiment, the volume of DMP, DEP, DBP, and DOP was 100 mL (molar ratio: 6:5:4:3, respectively), and the adsorption time was 20 min.



Mobile phase: v (acetonitrile):v (H2O) = 90:10; The column temperature was 35 °C; Chromatographic column: specification: 4.6 mm × 10 mm, the fillers were TpBD COFs and resin based COFs, respectively; The flow rate was 1 mL/min; UV detector detection; The detection wavelength was 295 nm (Figure S1); Washed the chromatographic column with mobile phase and run for 30 min to fill the reference cell with mobile phase until the baseline was stable. Then, the concentration of the sample solution to be measured was sucked into the chromatographic column by the pump from low to high for measurement, and the suction time of the sample was recorded. When the response value of the outflow curve of the sample in the column did not increase, changed another sample until all the samples were tested, and recorded the midpoint time of all the penetration curves. Then, we washed the column with mobile phase and saturate the column with pure acetonitrile. The specific methods for analyzing the adsorption behavior of materials by the frontal analysis method can be referred to the literature [26,27].




2.2.3. SPE Experiment


Since the SPE effect of this experiment was compared with that of the commercial SPE filler columns, the filling conditions of this experiment were the same as that of the commercial SPE filler columns when assembling the SPE filler columns. The specific parameters were as follows: the mass of SPE filler of TpBD COFs and resin-based COFs material were 100 mg; the volume of extraction columns was 10 mL; and during activation, load, washing, and elution, the flow rate in the elution step was 1 mL/min. Samples were taken from commercial water and vitamin beverages in plastic containers. The standard samples of four phthalate esters were obtained by dissolving DMP, DEP, DBP, and DOP in acetonitrile solution. The HPLC analysis conditions are as follows:



The wavelength and mobile phase were the same as above. Chromatographic analysis was performed on an Agilent XDB-C18 (4.6 mm × 250 mm, 5 μm) column.



We added TpBD COFs or resin-based COFs into the empty column tube of solid phase extraction with gaskets, respectively. After paving, we pressed another gasket gently on the materials to assemble the COF-filled SPE column. The commercial SPE columns as the control are four different types of SPE columns. The schemes are shown in Figure 1.




2.2.4. Stability Experiment of Four PAEs


We made a determination of the PAEs mixture every half hour, with a precise injection of a 20 μL sample each time. The standard deviation (SD) and relative standard deviation (RSD) was calculated according to the following formula.




2.2.5. Precision Analysis of Four PAEs


Four PAEs mixed solutions were selected, and the mixed solutions were measured in parallel for five times in a day, with 20 μL samples injected each time. The SD and RSD was calculated according to the following formula.


   SD =    1  N − 1     ∑  i = 1  N     (  X i  −  X ¯  )  2        



(1)






   RSD =   SD    X ¯    × 100 %   



(2)








2.2.6. Recovery of Four PAEs


SPE experiments were carried out for the mixed solution and the spiked mixed solution according to the X-A and X-C methods, respectively. The recovered SPE solution obtained was analyzed and determined by HPLC. Each sample was injected 20 μL, and each recovered liquid sample was tested three times in parallel. The average peak area was used to calculate the recovery rate and average recovery rate.




2.2.7. Repetitive Experiment of Four PAEs


In order to investigate the reusability of the materials, the self-made COFs materials filler column was repeated for 50 times of SPE experiment, and the collected SPE recovery solution was determined. Taking the HPLC test results as the evaluation standard, the reusability effects of COFs and resin-based COFs materials were compared.






3. Results


3.1. Adsorption Behavior of Materials


3.1.1. Analysis of Adsorption Effect of COFS on PAEs


By observing the relationship between the concentration and adsorption of dimethyl phthalate, diethyl phthalate, dibutyl phthalate, and dioctyl phthalate (Figure 2), it could be seen that the adsorption capacity of PAEs increased with the increase of concentration, the reason was that the effect of surface adsorbed solute migration to the interior of the material was caused by the synergistic effect of solute re adsorption. The adsorption effect, adsorption capacity, and retention time of substances were as follows: resin-based COFs < TpBD COFs. It could be seen that the new resin-based COFs had better adsorption performance. When comparing the PAEs concentration and retention time (Table 1), it could be seen that the greater the concentration of the PAEs, the shorter the retention time. The reason for this analysis was that when the PAEs concentration was high, the solute content was higher; the faster the binding adsorption with the materials, the shorter the retention time.




3.1.2. Static Adsorption Behavior of PAEs by COFs


In the comparison of Table 2, it could be found that the fitting correlation coefficient of the Fredunlich model was larger than that of the Langmuir model. Therefore, it was considered that the isothermal adsorption process of PAEs adsorbed by the two materials was more in line with Fredunlich isothermal adsorption model.



Since the Langmuir model is more suitable for the situation that the adsorbent surface is uniform, there is no interaction between adsorbates, and the adsorption is monolayer adsorption. In other words, the adsorption only occurs on the outer surface of the adsorbent, and the assumption of the model is sensitive to the changes of experimental conditions. As an empirical adsorption isothermal equation suitable for heterogeneous surface adsorption, the Fredunlich adsorption isothermal model can not only well describe the adsorption mechanism of heterogeneous surface, but also be more suitable for low concentration adsorption. It could well explain the experimental results in a wider concentration range. As an adsorption material with a porous structure, the surface of COF materials was mostly porous in terms of structure. The adsorption behavior was also more diversified, which is consistent with the fitting of isothermal adsorption model and the action mechanism of the Fredunlich isothermal adsorption model. This was consistent with the conclusion of quasi second-order dynamics.




3.1.3. Kinetic Adsorption Behavior of PAEs by COFs


It could be seen from Table 3 that because the fitting parameter R2 of the quasi second-order kinetic model was higher than that of the quasi first-order kinetic model. This proved that the kinetic adsorption behavior of COF materials on PAEs conformed to the quasi second-order kinetic model, and it also showed that the adsorption process of COF materials on PAEs was not determined by physical adsorption under a single force. This was the result of surface adsorption combined with internal pore steric resistance and liquid film resistance.





3.2. Evaluation of SPE Performance


3.2.1. Analysis of Detection Conditions of PAEs by HPLC


Figure 3 shows the HPLC outflow curves of four PAEs under different proportions of mobile phase (acetonitrile:water/v/v) and different elution flow rates. When determining the best separation conditions for the four substances, it was found that the separation effect was not ideal when acetonitrile:water = 94:6 (v/v) and 92:8 (v/v). When acetonitrile:water = 88:12 (v/v) and 85:15 (v/v), the effect was better, but the experimental time was long and there would be interfering peaks. Therefore, acetonitrile:water = 90:10 (v/v) was selected as the mobile phase ratio for the analysis of four phthalate esters. When selecting the eluting velocity, it can be found that when the flow rate is 0.8 mL min−1, the chromatographic outflow curve not only took a long time, but also had interfering peaks. Therefore, a flow rate of 1.0 mL min−1 was selected for the analysis of four phthalate esters.




3.2.2. Determination of Standard Curve of PAEs


After determining the analytical conditions of PAEs by HPLC, the linear relationship and detection limit of this method were investigated. Figure 4 shows the standard curve of mixed substances. Table 4 lists the linear equations of four PAEs. It was found that the method reported in this paper had a good linear relationship for the detection of PAEs, indicating that this method was suitable for the trace detection requirements of PAEs.




3.2.3. Evaluation of the Effect of PAEs SPE Materials


In order to evaluate the SPE effect of prepared COFs on PAEs and compare it with the results in reported articles, Table 5 shows the analysis of the results of enrichment of PAEs by SPE reported in the literature in recent years. It could be seen from Table 6 that the two COF materials prepared in this paper were used as fillers to enrich and separate PAEs by solid phase extraction. The sample recovery was better than other adsorbents, and this method was simple to operate.




3.2.4. Analysis of SPE Scheme for PAEs


Figure 5, Figure 6, Figure 7 and Figure 8 are the chromatographic outflow curves of four PAEs according to the solid phase extraction scheme described in Table 6. Through comparison, the SPE effect of model X and X-CW schemes were: TpBD filler SPE column > commercial extraction column > resin-based COF material filler SPE column. When X-A and X-C schemes were adopted, the SPE effects were: resin-based COF material filler SPE column ≈ TpBD filler SPE column > commercial extraction column. Therefore, when resin-based COF material was used as SPE filler, the enrichment effect of phthalate esters was better when X-A and X-C schemes were adopted (The acid-base free X-C solid phase extraction scheme is shown in Figure S2). Taking this as the evaluation standard, the extraction effects of the four SPE schemes were as follows: X-C > X-A > X > X-CW. The recovery rates of PAEs of the three materials used as SPE fillers were further analyzed in the experiment (Table 6). The analysis found that SPE effect was consistent with the above conclusion. Therefore, it could be concluded that during SPE experiment. The results showed that the solid phase extraction effect of TpBD COFs was better than that of commercially available materials and resin based COFs when X and X-CW schemes were used, and the SPE effect of resin based COFs was better than that of commercially available materials and TpBD COFs when X-A and X-C schemes were used. It also proved that the self-made materials had better solid phase extraction performance as solid phase extraction fillers.




3.2.5. Stability Analysis of Four PAEs


In order to study the enrichment and separation effects of X-A and X-C solid phase extraction schemes on PAEs, the stability of four PAEs under different solid phase extraction schemes was analyzed. It could be seen from Table 7 that under the same conditions, the five measured values of the same sample are relatively close, and the RSD of the two methods are less than 2%, which proves that the chromatographic conditions of this experiment were used to detect four PAEs with good stability.




3.2.6. Precision Analysis of Four PAEs


In order to investigate the enrichment and separation effect of X-A and X-C solid phase extraction schemes on PAEs, the separation precision of four PAEs under different SPE schemes was analyzed. It could be seen from Table 8 that under the same conditions, the five measured values of the same sample were relatively close, and the RSD of the two methods were less than 5%, that was, the chromatographic conditions of this experiment were used to detect four phthalate esters with good accuracy.




3.2.7. Analysis of SPE Results of PAEs


The spiked outflow curves of the water and vitamin drinks are showed in this experiment (Figure 9). Table 9 shows the experimental results of SPE spiked recoveries of phthalate esters in two beverage samples with COF materials as SPE adsorbents. The recoveries of phthalate esters in water were 97.99–100.56%, and the recoveries of PAEs in vitamin drinks were 97.93–100.23%. The experimental results proved that the recoveries of four phthalate esters with two self-made COF materials as SPE fillers met the requirements for the detection and analysis of trace PAEs. The two types of COFs could be used as SPE fillers in the enrichment, detection, and showed good anti-interference ability.




3.2.8. Evaluation of Reuse Effect of Two COFs by SPE


In order to investigate the reusability of the material, the experiment conducted a reusability experiment (Figure 10, Figure S3). The results proved that the recovery rate of the material did not decrease significantly after 50 repeated SPE experiments, and the recovery rates still were between 97–101%, indicating that the material could be reused. When comparing the repeatability of commercial and self-made SPE filler columns, it is found that the recovery rate of commercial SPE filler columns is much lower than that of self-made SPE filler columns (see supporting information). From the perspective of cost, it could be found that the prepared resin-based COF material was more suitable for actual production.






4. Conclusions


Two kinds of COFs (TpBD COFs and resin-based COFs) were prepared. The feasibility of using COFs as SPE fillers to detect four PAEs (DMP, DEP, DBP, and DOP) in beverages were investigated. The adsorption performance of two kinds of COFs on PAEs was analyzed by frontal chromatography, and the solid phase extraction scheme was optimized, and the effect of SPE was evaluated.



	(1)

	
Adsorption experiments showed that the kinetic adsorption behavior of COF materials for PAEs was more consistent with the quasi-second-order kinetic adsorption model, and the static adsorption behavior is more in line with the Freundlich isothermal adsorption model.




	(2)

	
Two COF materials were applied to the SPE of PAEs samples. The recoveries were 97.99–100.56% and 97.93–100.23%, respectively. The most suitable solid phase extraction schemes are X-A and X-C. These two COFs had ideal enrichment and separation effect on four phthalate esters, and had strong anti-interference ability. The SPE effects were better than four commercially available SPE columns.




	(3)

	
The preparation cost of COF materials was greatly reduced after COF materials are compounded with resin. This study provided a new way to introduce COF materials as high performance SPE adsorbent for the preconcentration and determination of trace harmful substances in beverage samples.
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Figure 1. SPE flow chart. 
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Figure 2. Adsorption curve of PAEs. 
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Figure 3. Effect of different mobile phase ratio and flow rate on PAEs separation effect. 
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Figure 4. Standard curve of mixed substances. 
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Figure 5. Outflow curves using the X method. 
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Figure 6. Outflow curves using the X-CW method. 
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Figure 7. Outflow curves using the X-A method. 
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Figure 8. Outflow curves using the X-C method. 
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Figure 9. (a) Labeled outflow curve of water. (b) Labeled outflow curve of vitamin beverage. 
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Figure 10. Recovery rate of SPE of materials. 
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Table 1. Retention time of material to substance.






Table 1. Retention time of material to substance.





	

	
c (mg L−1)

	
tRDMP (min)

	
tRDEP (min)

	
tRDBP (min)

	
tRDOP (min)






	
TpBD COFs

	
237.8

	
9.205

	
9.751

	
9.485

	
9.648




	
475.6

	
8.951

	
9.482

	
9.113

	
9.156




	
713.4

	
8.769

	
9.189

	
8.947

	
9.012




	
951.5

	
8.603

	
8.859

	
8.558

	
8.809




	
1189

	
8.595

	
8.734

	
8.325

	
8.415




	
Resin based COFs

	
237.8

	
8.925

	
9.485

	
9.225

	
9.501




	
475.6

	
8.751

	
9.113

	
8.999

	
9.098




	
713.4

	
8.595

	
8.951

	
8.702

	
8.901




	
951.5

	
8.485

	
8.603

	
8.452

	
8.691




	
1189

	
8.382

	
8.558

	
8.21

	
8.348








(tR is the retention time).
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Table 2. Static parameters of PAEs.






Table 2. Static parameters of PAEs.





	
Material

	
Analyte

	
       C e     q e    =  1   q m   K L    +    C e     q m       

	
    l g  q e  = l g k +  1 n  l g  C e     




	
Linear Formula

	
R2

	
qm (mg·g−1)

	
KL (×10−5)

	
Linear Formula

	
R2

	
n

	
KF






	
TpBD

COFs

	
DMP

	
y = 0.000838x + 10.741

	
0.909

	
1193.32

	
7.802

	
y = 0.954x − 0.928

	
0.999

	
1.048

	
0.118




	
DEP

	
y = 0.00141x + 9.945

	
0.983

	
709.22

	
1.417

	
y = 0.929x − 0.841

	
0.999

	
1.076

	
0.144




	
DBP

	
y = 0.00175x + 10.183

	
0.984

	
571.43

	
1.178

	
y = 0.921x − 0.837

	
0.999

	
1.085

	
0.145




	
DOP

	
y = 0.00176x + 10.083

	
0.952

	
568.18

	
1.745

	
y = 0.923x − 0.837

	
0.999

	
1.083

	
0.145




	
Resin based COFs

	
DMP

	
y = 0.000761x + 11.053

	
0.986

	
1314.06

	
6.885

	
y = 0.961x − 0.955

	
0.999

	
1.045

	
0.111




	
DEP

	
y = 0.00132x + 10.319

	
0.944

	
757.58

	
1.279

	
y = 0.934x − 0.867

	
0.999

	
1.071

	
0.136




	
DBP

	
y = 0.00163x + 10.471

	
0.997

	
613.50

	
1.556

	
y = 0.928x − 0.864

	
0.999

	
1.077

	
0.136




	
DOP

	
y = 0.00174x + 10.219

	
0.979

	
574.71

	
1.702

	
y = 0.925x − 0.848

	
0.999

	
1.081

	
0.141
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Table 3. Kinetic parameters of PAEs.






Table 3. Kinetic parameters of PAEs.





	
Material

	
Analyte

	
    l n (  q e  −  q t  ) = l n  q e  −  K 1  t    

	
     1 /  (  q e  −  q t  )   =  1 /   q e    +  K 2  t    




	
Linear Formula

	
R2

	
K1/(1 min−1)

	
Linear Formula

	
R2

	
K2 (10−3·g/(mg·min))






	
TpBD

COFs

	
DMP

	
y = −0.315x + 5.506

	
0.696

	
0.315

	
y = 0.0272x − 0.157

	
0.963

	
0.027




	
DEP

	
y = −0.253x + 5.169

	
0.790

	
0.253

	
y = 0.0169x − 0.0886

	
0.975

	
0.0170




	
DBP

	
y = −0.275x + 5.129

	
0.754

	
0.275

	
y = 0.0219x − 0.113

	
0.964

	
0.022




	
DOP

	
y = −0.247x + 4.901

	
0.775

	
0.247

	
y = 0.0184x − 0.0855

	
0.981

	
0.018




	
Resin based COFs

	
DMP

	
y = −0.300x + 5.357

	
0.718

	
0.300

	
y = 0.0239x − 0.129

	
0.980

	
0.024




	
DEP

	
y = −0.259x + 5.103

	
0.782

	
0.259

	
y = 0.0179x − 0.0882

	
0.968

	
0.018




	
DBP

	
y = −0.275x + 5.101

	
0.754

	
0.275

	
y = 0.0220x − 0.111

	
0.971

	
0.022




	
DOP

	
y = −0.262x + 4.959

	
0.749

	
0.262

	
y = 0.0211x − 0.102

	
0.987

	
0.021
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Table 4. Detection limit of PAEs.






Table 4. Detection limit of PAEs.





	PAEs
	Linear Equation
	R2
	LOD (μg/L)
	RSD (%) n = 5



	DMP
	y = 8.64 × 107 × x − 7.14 × 104
	0.997
	0.02
	0.118



	DEP
	y = 8.39 × 107 × x + 8.65 × 103
	0.992
	0.05
	0.149



	DBP
	y = 8.26 × 107 × x + 3.84 × 105
	0.996
	0.01
	0.127



	DOP
	y = 2.13 × 108 × x + 2.75 × 105
	0.991
	0.06
	0.306
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Table 5. Comparison with the reported PAEs determination method [21,22,23,24,25].






Table 5. Comparison with the reported PAEs determination method [21,22,23,24,25].





	
Sorbent

	
Method

	
Sample

	
Elution Solution

	
Recovery

	
Ref






	
GO@LDH@SPAN

	
GC-MS

	
water and beverage

	
methanol

	
54.5–112.6%

	
[28]




	
Nanofiber pad

	
SPE-HPLC

	
tap water, rainwater and pool water

	
acetonitrile, methanol

	
>88%

	
[29]




	
polysulfone hollow fiber

	
SPME-FE/GC

	
water

	
ethanol

	
87.0–117.7%

	
[30]




	
CuFe2O4 Nanoparticles

	
SPME

	
water

	
water

	
81.1–103.7%

	
[31]




	
Graphene modified COF

	
HS-SPME-GC-MS

	
water

	
10% (w/v) salt

	
80.5–111.0%

	
[32]




	
TpBD COFs

	
SPE-HPLC

	
water and beverage

	
methanol

	
98.26–100.56%

	
This work




	
Resin based COFs

	
97.99–99.30%
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Table 6. Recovery of different SPE schemes.






Table 6. Recovery of different SPE schemes.





	
Sample

	
Method

	
Material

	
Recovery

(%, n = 3)

	
Material

	
Recovery

(%, n = 3)

	
Material

	
Recovery

(%, n = 3)






	
DMP

	
X

	
Market

	
89.69

	
TpBD COFs

	
93.51

	
Resin based COFs

	
70.23




	
X-CW

	
70.62

	
99.23

	
62.46




	
X-A

	
80.56

	
90.38

	
99.21




	
X-C

	
62.31

	
90.56

	
99.99




	
DEP

	
X

	
86.71

	
92.87

	
69.13




	
X-CW

	
68.75

	
99.99

	
60.35




	
X-A

	
82.56

	
92.51

	
99.23




	
X-C

	
68.89

	
91.88

	
99.87




	
DBP

	
X

	
85.99

	
94.62

	
75.78




	
X-CW

	
60.23

	
97.80

	
59.12




	
X-A

	
86.89

	
92.61

	
96.56




	
X-C

	
65.26

	
91.10

	
95.30




	
DOP

	
X

	
59.56

	
90.83

	
80.89




	
X-CW

	
30.25

	
78.92

	
98.73




	
X-A

	
83.45

	
98.99

	
96.18




	
X-C

	
30.23

	
98.00

	
92.89
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Table 7. Results of SPE of four kinds of PAEs.






Table 7. Results of SPE of four kinds of PAEs.





	
Analyte

	
Method

	
Peak Area (×106)

	
Average (×106)

	
SD (×106)

	
RSD (%)






	
Mixture1

	
X-A

	
DMP

	
2.18

	
2.17

	
2.15

	
2.16

	
2.16

	
2.164

	
0.0114

	
0.526




	
DEP

	
2.16

	
2.16

	
2.16

	
2.14

	
2.15

	
2.154

	
0.00894

	
0.415




	
DBP

	
1.47

	
1.46

	
1.49

	
1.46

	
1.46

	
1.468

	
0.0130

	
0.888




	
DOP

	
1.39

	
1.40

	
1.38

	
1.39

	
1.40

	
1.392

	
0.00836

	
0.601




	
X-C

	
DMP

	
2.34

	
2.36

	
2.32

	
2.34

	
2.35

	
2.342

	
0.0148

	
0.633




	
DEP

	
2.18

	
2.18

	
2.18

	
2.17

	
2.17

	
2.176

	
0.00547

	
0.251




	
DBP

	
1.48

	
1.47

	
1.5

	
1.47

	
1.46

	
1.476

	
0.0151

	
1.027




	
DOP

	
1.42

	
1.42

	
1.42

	
1.40

	
1.40

	
1.412

	
0.0109

	
0.775




	
Mixture2

	
X-A

	
DMP

	
3.99

	
3.99

	
4.02

	
4.00

	
3.98

	
3.996

	
0.0151

	
0.379




	
DEP

	
3.32

	
3.32

	
3.34

	
3.33

	
3.32

	
3.326

	
0.00894

	
0.268




	
DBP

	
2.61

	
2.60

	
2.60

	
2.60

	
2.60

	
2.602

	
0.00447

	
0.171




	
DOP

	
1.92

	
1.90

	
1.93

	
1.91

	
1.90

	
1.912

	
0.0130

	
0.681




	
X-C

	
DMP

	
4.85

	
4.83

	
4.86

	
4.82

	
4.82

	
4.836

	
0.0181

	
0.375




	
DEP

	
2.92

	
2.92

	
2.90

	
2.90

	
2.91

	
2.910

	
0.010

	
0.343




	
DBP

	
2.88

	
2.9

	
2.87

	
2.89

	
2.87

	
2.882

	
0.0130

	
0.452




	
DOP

	
2.23

	
2.23

	
2.21

	
2.22

	
2.23

	
2.224

	
0.00894

	
0.402
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Table 8. Results of SPE of four kinds of PAEs.






Table 8. Results of SPE of four kinds of PAEs.





	
Analyte

	
Method

	
Peak Area (×106)

	
Average (×106)

	
SD (×106)

	
RSD (%)






	
Mixture1

	
X-A

	
DMP

	
2.28

	
2.26

	
2.31

	
2.30

	
2.34

	
2.298

	
0.0303

	
1.31




	
DEP

	
2.17

	
2.18

	
2.18

	
2.20

	
2.19

	
2.184

	
0.0114

	
0.52




	
DBP

	
1.49

	
1.42

	
1.58

	
1.56

	
1.46

	
1.502

	
0.0672

	
2.47




	
DOP

	
1.42

	
1.44

	
1.48

	
1.39

	
1.50

	
1.446

	
0.0444

	
3.07




	
X-C

	
DMP

	
2.74

	
2.68

	
2.68

	
2.71

	
2.80

	
2.722

	
0.0502

	
1.84




	
DEP

	
2.30

	
2.31

	
2.32

	
2.32

	
2.32

	
2.314

	
0.0089

	
0.38




	
DBP

	
1.56

	
1.67

	
1.63

	
1.51

	
1.70

	
1.614

	
0.0610

	
3.78




	
DOP

	
1.70

	
1.72

	
1.82

	
1.86

	
1.86

	
1.792

	
0.0769

	
4.29




	
Mixture2

	
X-A

	
DMP

	
4.01

	
4.20

	
4.11

	
4.06

	
4.04

	
4.084

	
0.0743

	
1.82




	
DEP

	
3.44

	
3.47

	
3.42

	
3.46

	
3.40

	
3.438

	
0.0286

	
0.83




	
DBP

	
2.63

	
2.65

	
2.64

	
2.60

	
2.67

	
2.638

	
0.0258

	
0.98




	
DOP

	
2.19

	
2.10

	
2.14

	
2.16

	
2.09

	
2.136

	
0.0415

	
1.94




	
X-C

	
DMP

	
4.96

	
4.80

	
4.98

	
4.91

	
4.89

	
4.908

	
0.0704

	
1.43




	
DEP

	
3.04

	
3.22

	
3.08

	
3.13

	
3.16

	
3.126

	
0.0698

	
2.23




	
DBP

	
2.91

	
2.90

	
2.68

	
2.81

	
2.87

	
2.834

	
0.0944

	
3.33




	
DOP

	
2.25

	
2.14

	
2.51

	
2.25

	
2.16

	
2.262

	
0.0975

	
3.52
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Table 9. Analysis of labeled recovery.






Table 9. Analysis of labeled recovery.





	
Sample

	
Method

	
Material

	
Targets

	
Spiked (μg/L)

	
Recovery (%, n = 3)






	
Water

	
X-C method

	
TpBD COFs

	
DMP

	
10

	
98.99




	
20

	
100.56




	
30

	
99.00




	
40

	
98.75




	
DEP

	
10

	
99.11




	
20

	
99.23




	
30

	
100.11




	
40

	
100.35




	
DBP

	
10

	
99.99




	
20

	
99.45




	
30

	
99.68




	
40

	
99.87




	
DOP

	
10

	
99.91




	
20

	
98.99




	
30

	
99.16




	
40

	
99.99




	
Resin based COFs

	
DMP

	
10

	
98.26




	
20

	
98.56




	
30

	
98.42




	
40

	
98.80




	
DEP

	
10

	
97.99




	
20

	
98.27




	
30

	
98.46




	
40

	
99.30




	
DBP

	
10

	
98.97




	
20

	
98.71




	
30

	
98.65




	
40

	
98.72




	
DOP

	
10

	
98.61




	
20

	
98.75




	
30

	
99.13




	
40

	
98.79




	
X-A method

	
TpBD COFs

	
DMP

	
10

	
98.72




	
20

	
98.90




	
30

	
98.99




	
40

	
98.60




	
DEP

	
10

	
99.10




	
20

	
98.99




	
30

	
98.10




	
40

	
98.76




	
DBP

	
10

	
98.88




	
20

	
98.60




	
30

	
98.74




	
40

	
98.56




	
DOP

	
10

	
99.16




	
20

	
99.26




	
30

	
99.34




	
40

	
98.91




	
Resin based COFs

	
DMP

	
10

	
98.85




	
20

	
98.66




	
30

	
98.99




	
40

	
98.39




	
DEP

	
10

	
98.79




	
20

	
98.83




	
30

	
98.86




	
40

	
99.15




	
DBP

	
10

	
98.10




	
20

	
98.44




	
30

	
98.96




	
40

	
98.08




	
DOP

	
10

	
99.11




	
20

	
99.01




	
30

	
98.88




	
40

	
98.56




	
Vitamin beverage

	
X-C method

	
TpBD COFs

	
DMP

	
10

	
99.23




	
20

	
99.56




	
30

	
99.78




	
40

	
99.91




	
DEP

	
10

	
100.01




	
20

	
99.88




	
30

	
100.23




	
40

	
100.15




	
DBP

	
10

	
99.46




	
20

	
99.87




	
30

	
99.85




	
40

	
99.45




	
DOP

	
10

	
99.61




	
20

	
99.99




	
30

	
100.01




	
40

	
99.00




	
Resin based COFs

	
DMP

	
10

	
98.80




	
20

	
98.86




	
30

	
99.15




	
40

	
98.85




	
DEP

	
10

	
98.79




	
20

	
98.88




	
30

	
98.62




	
40

	
98.56




	
DBP

	
10

	
98.99




	
20

	
98.75




	
30

	
98.76




	
40

	
99.13




	
DOP

	
10

	
98.67




	
20

	
98.99




	
30

	
98.56




	
40

	
98.89




	
X-A method

	
TpBD COFs

	
DMP

	
10

	
98.26




	
20

	
98.53




	
30

	
98.42




	
40

	
98.21




	
DEP

	
10

	
98.10




	
20

	
98.76




	
30

	
98.52




	
40

	
98.00




	
DBP

	
10

	
98.99




	
20

	
98.23




	
30

	
98.41




	
40

	
97.93




	
DOP

	
10

	
98.08




	
20

	
98.76




	
30

	
99.23




	
40

	
98.45




	
Resin based COFs

	
DMP

	
10

	
98.60




	
20

	
98.61




	
30

	
98.48




	
40

	
98.67




	
DEP

	
10

	
98.58




	
20

	
98.49




	
30

	
98.26




	
40

	
98.00




	
DBP

	
10

	
98.99




	
20

	
98.56




	
30

	
98.70




	
40

	
98.23




	
DOP

	
10

	
98.06




	
20

	
98.88




	
30

	
98.31




	
40

	
98.16
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