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Abstract: Landslide represents an increasing menace causing huge casualties and economic losses,
and rainfall is a predominant factor inducing landslides. Landslide susceptibility assessment (LSA)
is a commonly used and effective method to prevent landslide risk, however, the LSA does not
analyze the impact of the rainfall on landslides which is significant and non-negligible. Therefore, the
spatiotemporal LSA considering the inducing effect of rainfall is proposed to improve accuracy and
applicability. In this study, the influencing factors are selected using the chi-square test, out-of-bag
error and multicollinearity test. The spatial LSA are thus obtained using the random forest (RF)
model, deep belief networks model and support vector machine, and compared using receiver
operating characteristic curve and seed cell area index to determine the optimal assessment result.
According to the heavy rainfall characteristics in the study area, the rainfall period is divided into
four stages, and the effective rainfall model is employed to generate the rainfall impact (RI) maps
of the four stages. The spatiotemporal LSAs are obtained by coupling the optimal spatial LSA and
various RI maps and verified using the landslide warning map. The results demonstrate that the
optimal spatiotemporal LSA is obtained using the spatial LSA of the RF model and temporal LSA of
the rainfall data in the peak stage. It can predict the area where rainfall-induced landslides are likely
to occur and prevent landslide risk.

Keywords: landslide susceptibility; RF model; DBN model; SVM model; effective rainfall model;
spatiotemporal LSA

1. Introduction

Landslides are one of the most common geo-hazards on Earth and result in consider-
able damage to life and property [1,2]. It is critical to accurately evaluate landslide-prone
areas to effectively determine the locations and times of landslides [3]. Landslide suscepti-
bility assessment (LSA) is thus an effective risk management measure to prevent landslides
and reduce landslide risk [4].

Rainfall-induced landslides are a typical cascading geo-hazard and are attracting the
increasing attention of many researchers [5,6]. Rainfall-induced landslides commonly
occur after heavy rainfall and may develop into potentially catastrophic movements [7,8].
Heavy rainfall or prolonged rainfall may result in the increase of pore-water pressure and
the significant decrease of friction force, which causes slope instability [9–11]. Hence, in
addition to analyzing the spatial LSA using the environmental condition factors, it is also
necessary to analyze the temporal LSA using the rainfall data to illustrate the impact of
heavy rainfall on landslides, which ensures the availability and accuracy of LSA [12–14].
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Spatiotemporal landslide susceptibility mapping (LSM) is thus studied as an excellent
method of susceptibility assessment and provides information on potential landslides
under the impact of heavy rainfall [15,16].

The analysis of spatial LSA generally assumes that future landslides are more likely
to occur in similar environmental conditions to previous landslides [17]. The LSA thus
can predict the potential risk areas using the historical landslide data and environmental
condition factors [18]. The selection of influencing factors is an essential part of LSA,
and most current research selects the influencing factors using correlation test and multi-
collinearity test to prove the correlation between influencing factors and landslides and
avoid a redundancy of influencing factors [19–21].

Meanwhile, the LSA results are affected by evaluation models, and it is very important
to select the appropriate models for LSA [22–24]. There are various models to analyze the
LSA, and these are generally classification models [25]. Early studies map the landslide sus-
ceptibility using traditional statistical analysis models, such as linear discriminant analysis,
weights of evidence, frequency ratio models and regression models [26–29]. Most current
studies propose various machine learning algorithms, such as support vector machines
(SVM), naive Bayesian model, random forest (RF) models, and artificial neural networks,
to evaluate the landslide susceptibility [28,30–33]. Because of the complex environmental
conditional factors of landslides in study areas, the accuracy and applicability of LSA
obtained using various models are very different. It is thus essential to select the evaluation
models that are more applicable to the study area.

On the other hand, rainfall is one of the most critical inducing factors, especially heavy
and prolonged rainfall, and rainfall analysis is thus one of the core steps in the temporal
LSA [34,35]. The impact of rainfall intensity and duration on landslides has long been an
issue of great interest for researchers in LSA [36,37]. The effective rainfall model (ERM) is
a common and effective method and employs the rainfall data of some days before the
study time to indicate the impact of rainfall, which can illustrate the temporal landslide
susceptibility of the study area [38,39].

The present study proposes a methodology to evaluate spatiotemporal landslide
susceptibility incorporating the effects of heavy rainfall, and the methodology is applied
to the Kitakyushu, Fukuoka, Japan. Multi-source data such as the condition factors,
historical landslides, heavy rainfall data and landslide warning map are considered. In the
spatial LSA, the chi-square (χ2) test, out-of-bag (OOB) error and multicollinearity test are
employed to select the influencing factors, and the spatial LSMs are thus obtained using
the RF model, deep belief networks (DBN) model and SVM model. The accuracies of the
spatial LSMs are proved using receiver operating characteristic (ROC) curve and seed cell
area index (SCAI) to obtain the optimal spatial LSM used for spatiotemporal LSM. Based
on the heavy rainfall data in August of the study area, the heavy rainfall period is divided
into four stages, and the rainfall impact (RI) maps of the four stages are thus generated
using ERM. The spatiotemporal LSMs are obtained by coupling the optimal spatial LSM
and temporal LSMs and verified using the landslide warning map to determine the optimal
spatiotemporal LSM, which provides a reference for landslide prevention.

2. Materials and Methods
2.1. Methodological Flow

The steps and processes of the LSM procedures involved in the present study (Figure 1)
are as follows:
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Figure 1. Schematic flowchart representing the methodology.

The methodology framework of the proposed LSM can be divided into seven steps:
(a) data collection: the data of various condition factors of landslides and the historical
landslides are collected, and heavy rainfall data in August and landslide warning map are
prepared. (b) Influencing factor selection: the influencing factors are selected as the LSA
indices using the χ2 test, OOB error and multicollinearity test. (c) LSA: the LSMs are ob-
tained using the RF model, DBN model and SVM model. (d) Result verification: the results
of LSA are verified using ROC curve, area under the curve (AUC) and SCAI to determine
the optimal spatial LSA. (e) Rainfall map generation: the heavy rainfall period in the study
area is divided into four stages, namely the development stage, peak stage, stagnation
stage and decline stage, and the rainfall maps of various stages are generated using the
interpolation method, and the RI maps of various stages are obtained and normalized by
the effective rainfall model. (f) Spatiotemporal LSA: various RI maps are coupled with the
optimal spatial assessment result to obtain the spatiotemporal susceptibility maps under
the influence of heavy rainfall in August. (g) Spatiotemporal assessment verification: the
various spatiotemporal LSMs are verified using the landslide warning map to determine
the optimal spatiotemporal LSM.

2.2. Factor Selection Methods

The χ2 test is one of the most common methods to determine the correlation between
influencing factors and landslides, and the variance inflation factor (VIF) is a commonly
used index to test multicollinearity which refers to the linear correlation between indepen-
dent variables [19–21]. The χ2 test determines the accuracy of the hypothesis by calculating
the deviation of the actual value from the theoretical value, and the χ2 can be obtained
using Equation (1). The hypothesis is verified by comparing the χ2 with the critical value
of a significance test.

χ2 = ∑n
i=1

(Ai − T)2

T
, (1)

where Ai is the ith actual value and T is the theoretical value.
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Multicollinearity of influencing factors is verified using VIF. The smaller the VIF value,
the less significant the multicollinearity, and the greater the VIF value, the more significant
the multicollinearity. The VIF value is thus closer to 10 indicating stronger multicollinearity
between the influencing factors [26,40,41]. The VIF can be obtained using Equation (2).

VIF =
1

1− R2
i

, (2)

where Ri is the correlation coefficient of the ith independent variable to other indepen-
dent variables.

The OOB error is a widely employed method to select the influencing factors and
determine their significance. The OOB error is calculated using the ratio of misclassification
number to the total number. In the present study, based on the recursive feature elimination
(RFE), the OOB error is thus used to eliminate the factor with the least importance using
variable importance measures (VIM) and to determine the optimal number of landslide
influencing factors [42].

2.3. Landslide Susceptibility Assessment (LSA) Methods

The RF model and SVM model are currently commonly used models [28,31], while
the DBN model is a relatively novel model used for the LSA [43]. The applicability of the
three models for the LSA is proved, and the present study thus selects the three models,
namely the RF model, DBN model and SVM model to analyze the LSA.

2.3.1. Random Forest (RF) Model

The RF model was proposed as an advanced integrated learning algorithm using
the ensemble of unpruned classification trees in 1995. It is a classifier training samples
by multiple trees [44,45]. The trees are constructed according to the following four steps:
(a) N denotes the number of training samples, while M denotes the number of characteris-
tics. (b) The number of characteristics is inputted to determine the decision result of the
previous node on the decision tree. (c) The training set is generated using the bootstrap
sampling method, and the unselected samples are used to predict and evaluate the errors.
(d) The characteristics are selected randomly to determine the decision of each node on the
decision tree, and the optimal splitting method is calculated [46].

2.3.2. Deep Belief Networks (DBN) Model

The DBN model is an efficient unsupervised learning algorithm and is also a proba-
bilistic generative model [47]. Compared with the traditional neural network, it generates a
joint distribution between the observation data and the label. The DBN model is composed
of restricted Boltzmann machines (RBM) which consists of the visual layer υ and hidden
layer h. There is no connection between the neurons in a layer, while there are connections
between layers, and every layer can be considered as a logistic regression model. The
hierarchical structure is very close to the structure of the human brain. Several RBMs
structure a DBN, and the hidden layer of the previous RBM is the visual layer of the current
RBM. The structure of the DBN model is presented in Figure 2.

In RBM, each neuron has a bias coefficient b for visual neuron and c for hidden neuron,
and the weight W between two connected neurons is the connection weight. The energy of
the RBM can be obtained using Equation (3).

E(υ, h) = −∑Nυ

i=1 biυi −∑Nh
j=1 cjhj −∑Nυ ,Nh

i,j=1 Wijυihj, (3)

where Nυ is the number of visual neurons; Nh is the number of hidden neurons.
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2.3.3. Support Vector Machines (SVM) Model

The SVM model is a classifier developed from the generalized portrait algorithm
in pattern recognition. It can be used for classification, regression and outlier detection
based on the principle of minimizing statistical and structural risk. The sample data
are normalized and mapped using kernel functions to build the SVM model, and the
hyperparameters of the SVM model are optimized to train the model. The SVM model
can be performed using various kernel functions, such as linear kernel (Equation (5)),
polynomial kernel (Equation (6)), radial basis function kernel (Equation (7)) and sigmoid
kernel (Equation (8)). The main control hyperparameters are the penalty parameter and
kernel function parameter. The penalty parameter is introduced, and the objective function
can be obtained using Equation (4):

f (x) = min
1
2
‖w‖2 + C ∑n

i=1 ξi, (4)

where 1
2‖w‖

2 is the geometric interval; C is the penalty parameter; and ξi is the slack
variable. And the various kernel functions can be obtained using Equations (5)–(8):

K(xi, x) = xi·x, (5)

K(xi, x) = [(xi·x) + 1]m, (6)

K(xi, x) = exp

(
−‖xi − x, ‖2

2δ2

)
, (7)

K(xi, x) = tan h(η < xi, x > +θ). (8)

2.4. Effective Rainfall Model (ERM)

The ERM reflects the rainfall accumulation that stays in the rock and contributes to
the development of landslides. The model was proposed by Kohler and Linsley in 1951
as an antecedent precipitation index to predict the surface runoff based on hydrological
data [48]. The effective rainfall can be obtained using Equation (9).

Re = ∑n
i=0 KiRi, (9)

where K is the attenuation coefficient and considered as 0.8; and Ri is the rainfall of the
previous ith day.

In the present study, the rainfall data are collected from meteorological observation
stations in the study area. The maps of rainfall during the study time are thus generated
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using the kriging interpolation method, and the effective rainfall map can be obtained
using the ERM.

2.5. Validation Methods

Verifying the accuracy of susceptibility assessment results obtained using various
models is a key task of susceptibility research. In the present study, the SCAI and ROC
curve methods were selected to verify the accuracy of susceptibility assessment. The SCAI
can be obtained using Equation (10).

SCAI =
Pi
P′i

, (10)

where Pi is the areal percentage of the susceptibility level i; and P′ i is the areal percentage
of the landslides at level i.

The ROC curve is a commonly used method to verify the accuracy of assessment
results [49]. The ROC curve was obtained using two variables, namely the specificity and
sensitivity. The variables can be obtained using Equations (11) and (12):

Speci f icity =
TN

FP + TN
, (11)

Sensitivity =
TP

TP + FN
, (12)

where FP is the false positive; TN is the true negative; TP is the true positive; and FN is
the false negative.

The threshold for AUC values is 0.5 to 1, and the closer it is to 1, the more accurate the
model is [50].

3. Study Area and Dataset
3.1. Study Area

In the present study, Kitakyushu, belonging to Fukuoka in Japan, was selected as the
study area (Figure 3). Geographically, the area is located within 33◦58′00′′ N to 33◦43′00′′

N and 130◦40′00′′ E to 131◦01′00′′ E, with an area of 488.78 km2. Kitakyushu is on the
northern Kyushu Island, and the southern side of the area is the hibikinada of the Japan Sea,
while its eastern side is Suwou of SetoNaikai. Geologically, the whole area is characterized
by rugged topography and tilting terrain from north to south. The highest and lowest
altitudes of the study area are about 900 m and –68 m, respectively. Meanwhile, the area
can be mainly divided into four regions: southern mountain region, central plain region,
northeastern mountain region and northwestern hilly region. In accordance with the
Ministry of Land, Infrastructure, Transport and Tourism of Japan, the study area has active
geological tectonic movements with complex geological conditions. The lithology of the
study area dominates sedimentary rock and igneous rocks, with a landfill area of more
than 5% of the study area.

The annual average precipitation of the study area is about 1265 mm, which is the
main inducing factor for landslides. The area is warm and humid throughout the year
with an average annual temperature of 16.2 ◦C. Under the influence of the geographical
environment, the northern region has a typical Japan Sea climate, while the eastern region
has a Seto Inland Sea climate. The precipitation significantly varies, concentrated in the
rainy season and typhoon season. Because the study area is located in the Pacific Rim
Volcanic Seismic Zone at the junction of Eurasian and Pacific plates, it has frequent crustal
movements. The heavy rainfall and crustal movement are thus factors inducing landslides.
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Kitakyushu and Fukuoka are considered as the center of the metropolitan area and the
hub of all administrative activities of the Kyushu area. According to the census of Japan,
2017, Kitakyushu has a population of 935,000. According to the Bureau of Land Policy in the
Ministry of Land, Infrastructure, Transport and Tourism of Japan, the historical landslide
areas can be obtained in Figure 3. The frequent landslides thus restrict the development of
the industry and the socio-economic growth of the study area.

3.2. Condition Factors

Taking the appropriate relevant factors into consideration is essential for evaluating
landslide susceptibility. Based on the previous survey study of the study area, the following
14 condition factors were collected and prepared: soil thickness (ST), elevation, slope,
topographic wetness index (TWI), topography, cumulative runoff (CR), lithology, curvature,
plane curvature, profile curvature, distance to the road (DRO), distance to the railway
(DRA), distance to a river (DRI) and distance to a structure line (DSL).

The data of the condition factor were obtained by the field environmental survey
and related literature research. The digital elevation model (DEM) data were provided
by the Geospatial Information Authority of Japan, and the maps of elevation, slope, TWI,
curvature, plane curvature and profile curvature in the study area were thus prepared.
The geology factors, namely the soil thickness, topography, cumulative runoff, structure
line and lithology, were provided by the Ministry of Land, Infrastructure, Transport and
Tourism of Japan. Information about the roads, railways and rivers was provided by the
Ministry of Land, Infrastructure, Transport and Tourism Kyushu Regional Development
Bureau. The factors involve both quantitative and qualitative elements. The quantitative
factors are divided into five levels using the natural breakpoint method, and Figure 4
shows the maps of the 14 factors.
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3.3. Heavy Rainfall Data and Landslide Warning Map

Heavy rainfall is one of the most significant landslide-inducing factors, and because
of the climate characteristic of the rainy season in the study area, there always is heavy
rainfall in August. The daily rainfalls in August at various monitoring stations are collected
from the Japan Meteorological Agency of Ministry of Land, Infrastructure, Transport and
Tourism (Figure 5).
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As can be seen from Figure 5, the heavy rainfall started on 7 August and ended on
27 August. According to the rainfall variability and trends in Figure 5, the heavy rainfall can
be divided into four stages, namely the development stage (from 7 August to 10 August),
peak stage (from 11 August to 15 August), stagnation stage (from 16 August to 20 August)
and decline stage (from 21 August to 27 August). Meanwhile, the geo-hazard warning
map after the heavy rainfall also can be collected from the Japan Meteorological Agency of
Ministry of Land, and the map is shown in Figure 6.
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4. Results
4.1. Selection of Spatial Influencing Factors

The spatial influencing factors are selected using the χ2 test, OOB (out-of-bag) error
and multicollinearity test. The χ2 values of the 14 factors can be obtained using Statistical
Product and Service Solutions (SPSS) in Table 1.

Table 1. χ2 values of the 14 factors.

Factors χ2 Values Factors χ2 Values

Soil thickness 36.77 Curvature 5.85
Elevation 41.27 Plane curvature 8.15

Slope 31.71 Profile curvature 3.10
TWI 9.56 DRO 3.10

Topography 27.77 DRA 3.22
Cumulative runoff 0.73 DRI 10.79

Lithology 14.73 DSL 4.60

The χ2 values of various factors are compared with the critical value (k = 3.84), and
the factors whose χ2 values are smaller than the critical value are eliminated. Therefore,
10 factors, namely the soil thickness, elevation, slope, TWI, topography, lithology, curvature,
plane curvature, DRI and DSL, are selected as evaluation indices. According to the RFE, the
OOB errors of various factor selection and the VIMs of selected factors are calculated, and
the factor with the least VIM is eliminated. The process is repeated, and the OOB errors
and VIMs are thus shown in Figure 7.
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As can be seen from Figure 7a, the number of factors in the optimal factor selection is
10, and the VIMs of the 10 factors are shown in Figure 7b. The VIFs of the 10 factors are
then obtained to verify the multicollinearity in Table 2.

Table 2. Variance inflation factors (VIFs) of the 10 factors.

Factors VIFs Factors VIFs

Slope 1.327 Lithology 1.105
Soil thickness 1.186 Plane curvature 1.109

Elevation 1.446 Curvature 1.103
Topography 1.384 TWI 1.173

DRI 1.078 DSL 1.033

As shown in Table 2, the VIFs are far less than 10, and this indicates there is no
strong correlation between the factors, which proves that there is no redundancy in the
factor selection.

4.2. Spatial Landslide Susceptibility Mapping (LSMs) and Validation

The spatial landslide susceptibility of the study area is evaluated using the RF model,
DBN model and SVM model. The landslide region is set to 1, while the non-landslide region
is set to 0, and the map of historical landslide region is coupled with the maps of selected
influencing factors. We selected 70% of grid data as the training data to predict the landslide
susceptibility of each grid in the study area. The spatial LSMs were thus divided into
five categories—very low susceptibility, low susceptibility, moderate susceptibility, high
susceptibility and very high susceptibility—using a natural breakpoint method and shown
in Figure 8, and the area percentages of various susceptibility levels are thus presented
in Table 3.
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Table 3. Area percentages of various susceptibility levels.

Models Very Low Low Moderate High Very High

RF model 15.25% 15.30% 40.05% 27.45% 1.95%
DBN model 12.27% 9.48% 53.62% 19.13% 5.50%
SVM model 20.14% 1.16% 71.37% 6.24% 1.09%

As shown in the figure and table above, the distribution of the LSMs is similar, and
the very low susceptibility area is mainly concentrated in the northern part of the study
area. The area with the moderate susceptibility level is the largest area of the study area,
while the area with the very high susceptibility level is the smallest. Then, the SCAI and
ROC curve are used to verify the accuracy of the three LSMs using the RF model, DBN
model and SVM model. The SCAI is an effective method to verify the accuracy of the three
assessment results, and the SCAIs of various models are shown in Table 4.

Table 4. Seed cell area indexes (SCAIs) of RF model, DBN model and SVM model.

Model Level Area
Percentage

Landslide
Area (km2)

Landslide
Percentage SCAI

RF model

Very low 15.25% 0.208 0.24% 63.40
Low 15.30% 12.888 14.90% 1.03

Moderate 40.05% 40.603 46.95% 0.85
High 27.45% 26.342 30.46% 0.90

Very high 1.95% 6.443 7.45% 0.26

DBN model

Very low 12.27% 0.367 0.42% 28.91
Low 9.48% 0.482 0.56% 17.01

Moderate 53.62% 57.368 66.34% 0.81
High 19.13% 18.391 21.27% 0.90

Very high 5.50% 9.876 11.42% 0.48

SVM model

Very low 20.14% 1.668 1.93% 10.44
Low 1.16% 2.396 2.77% 0.42

Moderate 71.37% 73.135 84.57% 0.84
High 6.24% 4.955 5.73% 1.09

Very high 1.09% 4.329 5.01% 0.22

Table 4 shows that the very high susceptibility has the smallest SCAI value, while the
very low susceptibility has the greatest SCAI value. It indicates that the three models are
applicable to the LSA in the study area. Meanwhile, the ROC curve and AUC are methods
commonly used to evaluate quantitatively the accuracy of the assessment result, and they
are thus drawn in Figure 9.
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The ROC curves and AUCs illustrate that the RF model presents the best LSA perfor-
mance. The RF model can be considered as the optimal model in the three models for the
LSM in the study area.

4.3. Spatiotemporal LSMs and Validation

There is always heavy rainfall in August in the study area, and the heavy rainfall is
divided into four stages, namely the development stage, peak stage, stagnation stage and
decline stage. The effective rainfall in the four stages is obtained using ERM to analyze the
spatial impact of rainfall in the various stages on the landslide susceptibility. According to
the rainfall data collected from various monitoring stations, the daily rainfall maps during
the heavy rainfall period are thus obtained using kriging interpolation. The effective
rainfall maps of the four stages are then generated, and the RI is normalized and calculated
using Equation (13).

RI =
ER− ERmin

ERmax − ERmin
, (13)

where ER is the effective rainfall of the grid; ERmin is the minimum effective rainfall in the
study area; and ERmax is the maximum effective rainfall in the study area. The RI maps are
thus obtained and presented in Figure 10.
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Figure 10. Rainfall impact (RI) maps of (a) development stage; (b) peak stage; (c) stagnation stage;
and (d) decline stage.

The RI maps of the four stages are coupled to the spatial assessment result using the
optimal model. The temporal landslide probability, namely the RI, in the study area is thus
accumulated with the spatial landslide probability obtained using the RF model to obtain
the spatiotemporal LSA. The accumulation results are then divided into five categories:
very low susceptibility, low susceptibility, moderate susceptibility, high susceptibility and
very high susceptibility using the natural breakpoint method, and the spatiotemporal LSMs
of the four stages are generated and shown in Figure 11.
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Figure 11. Spatiotemporal LSMs of (a) development stage; (b) peak stage; (c) stagnation stage; and
(d) decline stage.

Figure 11 shows that the spatiotemporal LSMs are tightly associated with the temporal
LSAs, namely the RI maps. The area with the very high susceptibility is highly concentrated
in the central-south region in the study area, while the area with the very low susceptibility
is mainly located in the northern region. Meanwhile, the changes of the susceptibility
assessment are fluctuating with the volatility of changing heavy rainfall. According to the
geological hazard warning area after the heavy rainfall, the spatiotemporal LSMs are then
validated using the ROC curve to determine the optimal stage used for spatiotemporal
LSA. The ROC curves and AUC of the various stages are generated in Figure 12.
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The above ROC curves indicate that the rainfall data in the development stage and
peak stage show better applicability of the LSMs, and the spatiotemporal LSM result using
the effective rainfall of the peak stage is the most accurate. The spatiotemporal LSM in the
peak stage can be considered as the optimal spatiotemporal assessment result incorporating
the effects of heavy rainfall.
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5. Discussion

In previous studies, the spatial LSA has been investigated sufficiently, and the spatial
LSMs are optimized from various aspects, such as the evaluation units, evaluation indices
and evaluation models [6,51,52]. The spatial models perform well in evaluating spatial
LSMs using the condition factors and historical landslides, but the temporal factors, such
as climate change and heavy rainfall, may rapidly reshape the environment in the study
area and thus increase the incidence of landslides. This further increases the landslide risk
in the study area and reshapes the distribution of landslide susceptibility levels [53,54].

The present study considers the impact of condition factors and temporal factors
based on the variability and trends of heavy rainfall in the study area. Although this study
analyzes the fluctuating variation of the spatiotemporal LSA which is affected by volatility
changes of heavy rainfall, the analysis may only be applied to the area where heavy rainfall
is the main landslide-inducing factor. On the other hand, the spatial LSA in the previous
study is validated using the historical landslide data, because they considered that the
areas under the same spatial conditions as the landslide area are more prone to landslides.
However, real-time rainfall data need to be employed to analyze the temporal LSA, and it
is thus inaccurate to validate the accuracy of spatiotemporal LSA using historical landslide
data. The future landslide data or landslide warning area can be used for the spatiotemporal
LSA validation, however, it is difficult to implement if there is no landslide warning map
because it is hard to collect the future landslide data.

6. Conclusions

In heavy rainfall areas, rainfall-induced landslides are always an important threat.
The present study thus proposes a methodology to generate a spatiotemporal LSM, and
the proposed method is applied to Kitakyushu, Fukuoka, Japan, under the impact of heavy
rainfall in August 2021. The condition factors are selected as evaluation indices using the
χ2 test, OOB error and multicollinearity test. The spatial LSMs are then generated using the
RF model, DBN model and SVM model, and the results are compared and verified using
ROC curves, AUCs and SCAIs to determine that the RF model is the optimal model for the
spatial LSM in the study area. According to the rainfall variability and trends, the heavy
rainfall period is divided into four stages, and the RI maps of various stages are obtained
using ERM. The spatiotemporal LSMs under the influence of heavy rainfall in August
are generated by coupling the four RI maps with the landslide probability map obtained
using the RF model, and the changes of the susceptibility assessment are fluctuating over
time. The spatiotemporal LSMs of various stages are verified using the landslide warning
map, which illustrates that the four spatiotemporal results are accurate and the evaluation
performance of spatiotemporal LSMs with the spatial LSM obtained using the RF model
and RI map of the peak stage is the highest. The proposed method is scientific and feasible
in spatiotemporal LSA and useful for areas with rainfall-induced landslides threatening
human lives and property.

Author Contributions: J.L. lead the research program; J.L. and W.W. wrote the manuscript. Y.L., Z.H.
and G.C. reviewed and edited the manuscript. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the High-Speed Railway Infrastructure Joint Fund of the
National Natural Science Foundation of China (No. U1734208) and the National Natural Science Foun-
dation of China (Grant No. 51478483, W. Wang). The financial supports are gratefully acknowledged.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in this study are available on request from the corre-
sponding author.

Conflicts of Interest: The authors declare no conflict of interest.



Water 2021, 13, 3312 15 of 16

References
1. Wang, W.; Li, J.; Qu, X.; Han, Z.; Liu, P. Prediction on landslide displacement using a new combination model: A case study of

Qinglong landslide in China. Nat. Hazard. 2019, 96, 1121–1139. [CrossRef]
2. Li, J.; Wang, W.; Han, Z. A variable weight combination model for prediction on landslide displacement using AR model, LSTM

model, and SVM model: A case study of the Xinming landslide in China. Environ. Earth Sci. 2021, 80, 386. [CrossRef]
3. Wang, W.-D.; Li, J.; Han, Z. Comprehensive assessment of geological hazard safety along railway engineering using a novel

method: A case study of the Sichuan-Tibet railway, China. Geomat. Nat. Hazards Risk 2020, 11, 1–21. [CrossRef]
4. Li, J.; Wang, W.-D.; Han, Z.; Chen, G. Analysis of secondary-factor combinations of landslides using improved association rule

algorithms: A case study of Kitakyushu in Japan. Geomat. Nat. Hazards Risk 2021, 12, 1885–1904. [CrossRef]
5. Zhang, S.; Xu, D.; Shen, G.; Liu, J.; Yang, L. Numerical Simulation of Na-Tech Cascading Disasters in a Large Oil Depot. Int. J.

Environ. Res. Public Health 2020, 17, 8620. [CrossRef] [PubMed]
6. Li, J.; Wang, W.-D.; Han, Z.; Li, Y.; Chen, G. Exploring the Impact of Multitemporal DEM Data on the Susceptibility Mapping of

Landslides. Appl. Sci. 2020, 10, 2518. [CrossRef]
7. Xing, X.; Wu, C.; Li, J.; Li, X.; He, R. Susceptibility assessment for rainfall-induced landslides using a revised logistic regression

method. Nat. Hazard. 2021, 106, 97–117. [CrossRef]
8. Liu, X.; Wang, Y. Probabilistic simulation of entire process of rainfall-induced landslides using random finite element and material

point methods with hydro-mechanical coupling. Comput. Geotech. 2021, 132, 103989. [CrossRef]
9. Calcaterra, D.; Parise, M.; Palma, B.; Pelella, L. The influence of meteoric events in triggering shallow landslides in pyroclastic

deposits of Campania, Italy. In Landslides in Research, Theory and Practice, Proceedings of the 8th International Symposium on Landslides,
Cardiff, UK, 26–30 June 2000; Thomas Telford Publishing: London, UK, 2000.

10. Andrea, C.; Pierluigi, B.; Claudia, S.; Ivano, R. Relationships between geo-hydrological processes induced by heavy rainfall and
land-use: The case of 25 October 2011 in the Vernazza catchment (Cinque Terre, NW Italy). J. Maps 2013, 9, 289–298. [CrossRef]

11. Bordoni, M.; Meisina, C.; Valentino, R.; Lu, N.; Bittelli, M.; Chersich, S. Hydrological factors affecting rainfall-induced shallow
landslides: From the field monitoring to a simplified slope stability analysis. Eng. Geol. 2015, 193, 19–37. [CrossRef]

12. Ng, C.; Yang, B.; Liu, Z.Q.; Kwan, J.; Chen, L. Spatiotemporal modelling of rainfall-induced landslides using machine learning.
Landslides 2021, 18, 2499–2514. [CrossRef]

13. Dahal, R.K.; Hasegawa, S.; Nonomura, A.; Yamanaka, M.; Masuda, T.; Nishino, K. GIS-based weights-of-evidence modelling of
rainfall-induced landslides in small catchments for landslide susceptibility mapping. Environ. Geol. 2008, 54, 311–324. [CrossRef]

14. Schilirò, L.; Cepeda, J.; Devoli, G.; Piciullo, L. Regional Analyses of Rainfall-Induced Landslide Initiation in Upper Gudbrands-
dalen (South-Eastern Norway) Using TRIGRS Model. Geosciences 2021, 11, 35. [CrossRef]

15. Roessner, S.; Wetzel, H.U.; Kaufmann, H.; Sarnagoev, A. Potential of Satellite Remote Sensing and GIS for Landslide Hazard
Assessment in Southern Kyrgyzstan (Central Asia). Nat. Hazard. 2005, 35, 395–416. [CrossRef]

16. Wu, C. Landslide Susceptibility Based on Extreme Rainfall-Induced Landslide Inventories and the Following Landslide Evolution.
Water 2019, 11, 2609. [CrossRef]

17. Choi, J.; Oh, H.J.; Lee, H.J.; Lee, C.; Lee, S. Combining landslide susceptibility maps obtained from frequency ratio, logistic
regression, and artificial neural network models using ASTER images and GIS. Eng. Geol. 2012, 124, 12–23. [CrossRef]

18. Pourghasemi, H.R.; Sadhasivam, N.; Amiri, M.; Eskandari, S.; Santosh, M. Landslide susceptibility assessment and mapping
using state-of-the art machine learning techniques. Nat. Hazard. 2021, 108, 1291–1316. [CrossRef]

19. Goyes-Peñafiel, P.; Hernandez-Rojas, A. Landslide susceptibility index based on the integration of logistic regression and weights
of evidence: A case study in Popayan, Colombia. Eng. Geol. 2021, 280, 105958. [CrossRef]

20. Mandal, K.; Saha, S.; Mandal, S. Applying deep learning and benchmark machine learning algorithms for landslide susceptibility
modelling in Rorachu river basin of Sikkim Himalaya, India. Geosci. Front. 2021, 12, 101203. [CrossRef]

21. Tanyu, B.F.; Abbaspour, A.; Alimohammadlou, Y.; Tecuci, G. Landslide susceptibility analyses using Random Forest, C4.5, and
C5.0 with balanced and unbalanced datasets. CATENA 2021, 203, 105355. [CrossRef]

22. Hong, H.; Tsangaratos, P.; Ilia, I.; Loupasakis, C.; Wang, Y. Introducing a novel multi-layer perceptron network based on
stochastic gradient descent optimized by a meta-heuristic algorithm for landslide susceptibility mapping. Sci. Total Environ. 2020,
742, 140549. [CrossRef] [PubMed]

23. García-Rodríguez, M.; Malpica, J.A. Assessment of earthquake-triggered landslide susceptibility in El Salvador based on an
Artificial Neural Network model. Nat. Hazards Earth Syst. Sci. 2010, 10, 1307–1315. [CrossRef]

24. Chen, X.; Chen, W. GIS-based landslide susceptibility assessment using optimized hybrid machine learning methods. CATENA
2021, 196, 104833. [CrossRef]

25. Hong, H.; Aiding, K.; Adel, S.; Razavi, T.; Liu, J.; Zhu, A.X.; Yari, H.A.; Bin, A.B.; Wang, Y. Landslide susceptibility assessment in
the Anfu County, China: Comparing different statistical and probabilistic models considering the new topo-hydrological factor
(HAND). Earth Sci. Inform. 2018, 11, 605–622. [CrossRef]

26. Du, J.; Glade, T.; Woldai, T.; Chai, B.; Zeng, B. Landslide susceptibility assessment based on an incomplete landslide inventory in
the Jilong Valley, Tibet, Chinese Himalayas. Eng. Geol. 2020, 270, 105572. [CrossRef]

27. Nepal, N.; Chen, J.; Chen, H.; Wang, X.A.; Pangali Sharma, T.P. Assessment of landslide susceptibility along the Araniko Highway
in Poiqu/Bhote Koshi/Sun Koshi Watershed, Nepal Himalaya. Prog. Disaster Sci. 2019, 3, 100037. [CrossRef]

http://doi.org/10.1007/s11069-019-03595-3
http://doi.org/10.1007/s12665-021-09696-2
http://doi.org/10.1080/19475705.2019.1699606
http://doi.org/10.1080/19475705.2021.1947904
http://doi.org/10.3390/ijerph17228620
http://www.ncbi.nlm.nih.gov/pubmed/33233584
http://doi.org/10.3390/app10072518
http://doi.org/10.1007/s11069-020-04452-4
http://doi.org/10.1016/j.compgeo.2020.103989
http://doi.org/10.1080/17445647.2013.780188
http://doi.org/10.1016/j.enggeo.2015.04.006
http://doi.org/10.1007/s10346-021-01662-0
http://doi.org/10.1007/s00254-007-0818-3
http://doi.org/10.3390/geosciences11010035
http://doi.org/10.1007/s11069-004-1799-0
http://doi.org/10.3390/w11122609
http://doi.org/10.1016/j.enggeo.2011.09.011
http://doi.org/10.1007/s11069-021-04732-7
http://doi.org/10.1016/j.enggeo.2020.105958
http://doi.org/10.1016/j.gsf.2021.101203
http://doi.org/10.1016/j.catena.2021.105355
http://doi.org/10.1016/j.scitotenv.2020.140549
http://www.ncbi.nlm.nih.gov/pubmed/32629264
http://doi.org/10.5194/nhess-10-1307-2010
http://doi.org/10.1016/j.catena.2020.104833
http://doi.org/10.1007/s12145-018-0352-8
http://doi.org/10.1016/j.enggeo.2020.105572
http://doi.org/10.1016/j.pdisas.2019.100037


Water 2021, 13, 3312 16 of 16

28. Saha, A.; Saha, S. Comparing the efficiency of weight of evidence, support vector machine and their ensemble approaches in
landslide susceptibility modelling: A study on Kurseong region of Darjeeling Himalaya, India. Remote Sens. Appl. Soc. Environ.
2020, 19, 100323. [CrossRef]

29. Ozdemir, A.; Altural, T. A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide
susceptibility mapping: Sultan Mountains, SW Turkey. J. Asian Earth Sci. 2013, 64, 180–197. [CrossRef]

30. Wang, Y.; Feng, L.; Li, S.; Ren, F.; Du, Q. A hybrid model considering spatial heterogeneity for landslide susceptibility mapping in
Zhejiang Province, China. CATENA 2020, 188, 104425. [CrossRef]

31. Hu, Q.; Zhou, Y.; Wang, S.; Wang, F. Machine learning and fractal theory models for landslide susceptibility mapping: Case study
from the Jinsha River Basin. Geomorphology 2020, 351, 106975. [CrossRef]

32. Thi Ngo, P.T.; Panahi, M.; Khosravi, K.; Ghorbanzadeh, O.; Kariminejad, N.; Cerda, A.; Lee, S. Evaluation of deep learning
algorithms for national scale landslide susceptibility mapping of Iran. Geosci. Front. 2021, 12, 505–519. [CrossRef]

33. Wang, Y.; Fang, Z.; Wang, M.; Peng, L.; Hong, H. Comparative study of landslide susceptibility mapping with different recurrent
neural networks. Comput. Geosci. 2020, 138, 104445. [CrossRef]

34. Hoang, N.D.; Tien Bui, D. Spatial prediction of rainfall-induced shallow landslides using gene expression programming integrated
with GIS: A case study in Vietnam. Nat. Hazard. 2018, 92, 1871–1887. [CrossRef]

35. Tseng, C.-M.; Chen, Y.-R.; Wu, S.-M. Scale and spatial distribution assessment of rainfall-induced landslides in a catchment with
mountain roads. Nat. Hazards Earth Syst. Sci. 2018, 18, 687–708. [CrossRef]

36. Conte, E.; Troncone, A. Stability analysis of infinite clayey slopes subjected to pore pressure changes. Géotechnique 2012, 62, 87–91.
[CrossRef]

37. Conte, E.; Troncone, A. Analytical Method for Predicting the Mobility of Slow-Moving Landslides owing to Groundwater
Fluctuations. J. Geotech. Geoenviron. Eng. 2011, 137, 777–784. [CrossRef]

38. Baymani-Nezhad, M.; Han, D. Hydrological modeling using Effective Rainfall routed by the Muskingum method (ERM).
J. Hydroinf. 2013, 15, 1437–1455. [CrossRef]

39. Ma, T.; Li, C.; Lu, Z.; Wang, B. An effective antecedent precipitation model derived from the power-law relationship between
landslide occurrence and rainfall level. Geomorphology 2014, 216, 187–192. [CrossRef]

40. Akinwande, O.; Dikko, H.G.; Agboola, S. Variance Inflation Factor: As a Condition for the Inclusion of Suppressor Variable(s) in
Regression Analysis. Open J. Stat. 2015, 05, 754–767. [CrossRef]

41. Garcia, C.; Pérez, J.; López Martín, M.; Salmerón, R. Collinearity: Revisiting the variance inflation factor in ridge regression.
J. Appl. Stat. 2015, 42, 648–661. [CrossRef]

42. Sun, D.; Wen, H.; Wang, D.; Xu, J. A random forest model of landslide susceptibility mapping based on hyperparameter
optimization using Bayes algorithm. Geomorphology 2020, 362, 107201. [CrossRef]

43. Wang, W.; He, Z.; Han, Z.; Li, Y.; Dou, J.; Huang, J. Mapping the susceptibility to landslides based on the deep belief network: A
case study in Sichuan Province, China. Nat. Hazards 2020, 103, 3239–3261. [CrossRef]

44. Youssef, A.M.; Pourghasemi, H.R.; Pourtaghi, Z.S.; Al-Katheeri, M.M. Landslide susceptibility mapping using random forest,
boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at
Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides 2016, 13, 839–856. [CrossRef]

45. Sun, D.; Xu, J.; Wen, H.; Wang, Y. An Optimized Random Forest Model and Its Generalization Ability in Landslide Susceptibility
Mapping: Application in Two Areas of Three Gorges Reservoir, China. J. Earth Sci. 2020, 31, 1068–1086. [CrossRef]

46. Xie, X.A.; Fu, G.A.; Xue, Y.A.; Zhao, Z.A.; Chen, P.A.; Lu, B.B.; Jiang, S.C. Risk prediction and factors risk analysis based on
IFOA-GRNN and apriori algorithms: Application of artificial intelligence in accident prevention. Process Saf. Environ. Prot. 2019,
122, 169–184. [CrossRef]

47. Lü, Q.; Dou, Y.; Niu, X.; Xu, J.; Xia, F. Remote Sensing Image Classification Based on DBN Model. J. Comput. Res. Dev. 2014, 51,
1911–1918.

48. Kohler, M.; Richards, M. Multicapacity Basin Accounting for Predicting Runoff from Storm Precipitation. J. Geophys. Res. 1962, 67,
5187–5197. [CrossRef]

49. Alatorre, L.C.; Raquel, S.A.; Santos, C.; Santiago, B.; Salvador, S.C. Identification of Mangrove Areas by Remote Sensing: The ROC
Curve Technique Applied to the Northwestern Mexico Coastal Zone Using Landsat Imagery. Remote Sens. 2011, 3, 1568–1583.
[CrossRef]

50. Tsangaratos, P.; Ilia, I.; Hong, H.; Chen, W.; Xu, C. Applying Information Theory and GIS-based quantitative methods to produce
landslide susceptibility maps in Nancheng County, China. Landslides 2017, 14, 1091–1111. [CrossRef]

51. Napoli, M.; Carotenuto, F.; Cevasco, A.; Confuorto, P.; Calcaterra, D. Machine learning ensemble modelling as a tool to improve
landslide susceptibility mapping reliability. Landslides 2020, 17, 1897–1914. [CrossRef]

52. Li, Y.; Liu, X.; Han, Z.; Dou, J. Spatial Proximity-Based Geographically Weighted Regression Model for Landslide Susceptibility
Assessment: A Case Study of Qingchuan Area, China. Appl. Sci. 2020, 10, 1107. [CrossRef]

53. Mukherji, A.; Scott, C.; Molden, D.; Maharjan, A. Megatrends in Hindu Kush Himalaya: Climate Change, Urbanisation and
Migration and Their Implications for Water, Energy and Food. In Assessing Global Water Megatrends; Springer: Singapore, 2018.

54. Wester, P.; Mishra, A.; Mukherji, A.; Shrestha, A.B. The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability
and People; Springer Nature: Cham, Switzerland, 2019.

http://doi.org/10.1016/j.rsase.2020.100323
http://doi.org/10.1016/j.jseaes.2012.12.014
http://doi.org/10.1016/j.catena.2019.104425
http://doi.org/10.1016/j.geomorph.2019.106975
http://doi.org/10.1016/j.gsf.2020.06.013
http://doi.org/10.1016/j.cageo.2020.104445
http://doi.org/10.1007/s11069-018-3286-z
http://doi.org/10.5194/nhess-18-687-2018
http://doi.org/10.1680/geot.10.T.002
http://doi.org/10.1061/(ASCE)GT.1943-5606.0000486
http://doi.org/10.2166/hydro.2013.007
http://doi.org/10.1016/j.geomorph.2014.03.033
http://doi.org/10.4236/ojs.2015.57075
http://doi.org/10.1080/02664763.2014.980789
http://doi.org/10.1016/j.geomorph.2020.107201
http://doi.org/10.1007/s11069-020-04128-z
http://doi.org/10.1007/s10346-015-0614-1
http://doi.org/10.1007/s12583-020-1072-9
http://doi.org/10.1016/j.psep.2018.11.019
http://doi.org/10.1029/JZ067i013p05187
http://doi.org/10.3390/rs3081568
http://doi.org/10.1007/s10346-016-0769-4
http://doi.org/10.1007/s10346-020-01392-9
http://doi.org/10.3390/app10031107

	Introduction 
	Materials and Methods 
	Methodological Flow 
	Factor Selection Methods 
	Landslide Susceptibility Assessment (LSA) Methods 
	Random Forest (RF) Model 
	Deep Belief Networks (DBN) Model 
	Support Vector Machines (SVM) Model 

	Effective Rainfall Model (ERM) 
	Validation Methods 

	Study Area and Dataset 
	Study Area 
	Condition Factors 
	Heavy Rainfall Data and Landslide Warning Map 

	Results 
	Selection of Spatial Influencing Factors 
	Spatial Landslide Susceptibility Mapping (LSMs) and Validation 
	Spatiotemporal LSMs and Validation 

	Discussion 
	Conclusions 
	References

