
water

Article

Mechanisms and Countermeasures on Sediment and Wood
Damage in Sediment Retarding Basins

Norio Harada 1,*, Kana Nakatani 2, Ichiro Kimura 3, Yoshifumi Satofuka 4 and Takahisa Mizuyama 2

����������
�������

Citation: Harada, N.; Nakatani, K.;

Kimura, I.; Satofuka, Y.; Mizuyama, T.

Mechanisms and Countermeasures

on Sediment and Wood Damage in

Sediment Retarding Basins. Water

2021, 13, 3283. https://doi.org/

10.3390/w13223283

Academic Editor: Haw Yen

Received: 14 September 2021

Accepted: 11 November 2021

Published: 19 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 MCC Research Institute, Mitsui Consultants Co., Ltd., Osaka 552-0007, Japan
2 Faculty of Agriculture, Kyoto University, Kyoto 606-8502, Japan; nakatani.kana.4z@kyoto-u.ac.jp (K.N.);

mizuyama@kais.kyoto-u.ac.jp (T.M.)
3 Faculty of Sustainable Design, University of Toyama, Toyama 930-8555, Japan; ichiro@sus.u-toyama.ac.jp
4 Faculty of Engineering, Ritsumeikan University, Kusatsu 525-8577, Japan; satofuka@se.ritsumei.ac.jp
* Correspondence: harada@mccnet.co.jp; Tel.: +81-6-6599-6019

Abstract: Improvements in sediment retarding basin design are required to mitigate flood damage
caused by bed load and wood debris outflow in lower river reaches. We used a scaled sediment
retarding basin model to optimize our basin design, with the goal of improving sediment and wood
debris transport and capture. Changes to the structural dimensions and elements of the sediment
retarding basin were assessed under experimental debris flow conditions. The results obtained from
the experiments and simulations were in good agreement regarding sediment flow and containment.
The proposed one-dimensional model is useful for showing the effects of flow conditions within a
sediment retarding basin on sediment transport.

Keywords: calculation; experiment; sediment and flooding damage; sediment retarding basin

1. Introduction

In recent years, many large-scale sediment-related disasters due to unexpected tor-
rential rains have been reported (for example, the Japan-Hiroshima heavy rain disaster
in July 2018, as shown in Figure 1) [1]. Countermeasures against these disasters are vital
for mitigating the damage to communities and loss of life. Figures 2 and 3 show typical
damage situations [2] and the rainfall conditions [3] at the time of multiple sediment-related
disasters (August 2014 and July 2018) that occurred in Hiroshima. The landslide event
in 2014 (Figure 2) was mainly caused by a gravel-type sediment flow, mixed with wood
debris [4]. The right side of Figure 2 shows the sediment flooding of 2018, in which the
outflow of fine-grain sediment and wood debris damaged areas downstream [5]. The
difference in damage caused by the 2014 and 2018 events was due to the effects of re-
erosion that occurred under the extended torrential rainfall conditions in 2018 (Figure 3:
right axis). To address this, new measures which employ sediment retarding basins have
been proposed [3]. The relationship between the shape of the sediment retarding basin
and the effectiveness of the structure to control sediment flow have been discussed in
numerous experimental studies and analyses [6,7]. Matsumura et al. (2001) proposed
sediment dynamics for sediment retarding basins; the width of the proposed sediment
retarding basin is more than three times that of the upstream channel, and the length is
more than 1.33 times the width, for effective sedimentation [6]. In addition, Takahashi
and Satofuka (1999) proposed a riverbed variability model for analyzing fluctuations in
sediment movement in a planar flow path in a sediment retarding basin, and accurately
reproduced the experimental results [7].
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Figure 1. Damage caused by sediment and wood debris (H30, Hiroshima: Oya Okawa). Left: before 

the disaster; right: after the disaster [2]. 

 

Figure 2. Damage caused by heavy rain in Hiroshima (left: H26, right: H30) [2]. 

 

Figure 3. Heavy Rainfall in Hiroshima (H26, H30) [3]. 
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Figure 1. Damage caused by sediment and wood debris (H30, Hiroshima: Oya Okawa). Left: before
the disaster; right: after the disaster [2].
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Figure 2. Damage caused by heavy rain in Hiroshima (left: H26, right: H30) [2].
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Figure 3. Heavy Rainfall in Hiroshima (H26, H30) [3].
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Computational models for debris flows are challenging to devise; many researchers
have made significant efforts to build models with high accuracy and computational ef-
ficiency. Computational models for debris flow usually involve a two-phase approach,
in which fluid flows (water including small grains) and motions of large scale obstacles,
such as boulders or driftwood, are modeled separately. In the fluid phase, computational
fluid dynamics (CFD), smoothed particle hydrodynamics (SPH), and the lattice Boltz-
mann method (LBM) have been applied. For modeling obstacles, the discrete element
method (DEM) and finite element method (FEM) were used in most of the existing models.
Hasanupour et al. (2021) employed a SPH-FEM coupling model, in which fluid motion
was modeled using a particle-based Lagrange approach (SPH), and debris and structures
were modeled using a mesh-based FEM [8]. The model was applied to tsunami and debris
interactions and showed excellent applicability. Leonardi (2015) developed a DEM-LBM
coupling model for simulating debris flow [9]. In the model, the granular phase of the de-
bris flow was modeled using DEM and the fluid phase was modeled using LBM. Leonordi
successfully computed the spatial reorganization of particles and fluid in debris flows. In
addition, the DEM-LBM model was combined with FEM and applied to the interaction of
debris flows with cable-net type barriers. Trujillo-Vela et al. (2020) used an SPH-DEM cou-
pling model for computing debris flows. In the model, fluid and soil were modeled using
SPH, while immersed bodies such as boulders and solid boundaries were modeled using
DEM [10]. The computed results aligned with experimental results and field observations.
Zhao (2014) developed the DEM-CFD model, in which fluid flows were computed with a
Eulerian-type CFD model and grain motions were modeled using DEM [11]. The model
was applied to landslide-induced debris flow in terrestrial and submarine conditions. Zis-
chg et al. (2018) proposed an interesting driftwood dynamic model in a real river. Since
the spatial scale targeted of the model was larger than that of the models discussed above,
the computational efficiency was much more important [12]. Therefore, the river flow was
modeled using a two-dimensional shallow flow model. The dynamics of the driftwood,
including the generation process (recruitment of standing trees), transport process (floating,
rolling and sliding conditions), and clogging at bridges, were modeled using conceptual
and statistical approaches. The model was applied under extreme flood conditions and its
accuracy was examined through comparison with observed data. However, the general
design guidelines [13] do not sufficiently describe the processing functions of various
components of the basin structure, thus limiting the ability to optimize their configuration.
In this regard, the recent revision of standards in Japan has provided the opportunity to
formulate new countermeasures to control sediment and debris damage. Many numerical
analyses of the basin structure have been conducted to develop a model to better predict
sediment transport and capture under various conditions, and to determine the ability of
the sediment basin to minimize damage [3].

In this study, we investigated the structural design of sediment retarding basins using
a scaled basin–waterway model for controlling the transport of sediment and simulated
driftwood debris. Based on our experimental results, we constructed an analysis model to
describe the functionality of the sediment retarding basin and its ability to contain sediment
and debris flow [14,15].

2. Analysis of the Sediment Control Function of Sediment Retarding Basins
2.1. Experimental Outline

Figure 4 shows the waterway set-up used in the sediment-control experiments for the
sediment retarding basin, in which the installation was assumed to be in the proximity
of a valley exit. A scale of 1/100 was used for our basin model with reference to the
experimental scale of previous studies [6,7]. As shown in the figure, a straight channel
(width, Ww = 100 mm) was connected upstream of the planar flooding platform (θp = 2◦:
maximum and minimum gradient of the debris flow). Water (at a rate of qin) and earth and
sand (Vs_in, silica sand [15] was injected independently) were supplied from upstream of
the channel (θw = 10◦ to 15◦). The sediment basin had a length (Lp) of 450 mm and a width
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(Wp) of 100 to 300 mm. We measured the amount of sediment (Vs_out) that passed through
the sediment retarding basin and flowed downstream [13]. The amount of sediment supply
Vs_in was approximately equal to the maximum amount captured by the sediment retarding
basin under each condition of the preliminary experiment. In the experiments, sediment
was laid on the bottom of the straight channel in advance. Running water was then allowed
to flow through the channel, which gradually eroded away the sediment. The sediment
was transported from the upstream channel downstream to the basin as a sediment flow.
Here, the water supply was limited to the time at which all of the upper sediment had been
eroded away and flowed downstream. The maximum width of the sediment retarding
basin (Wp_max = 300 mm) was set as the width required for sedimentation when no side
wall was present in the preliminary experiment. The length of the sediment retarding
basin (Lp = 450 mm) was set with reference to the current construction guidelines. In the
preliminary experiment, Lw = 2000 mm was applied, in consideration of the influence of
the change in the channel length Lw.
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Figure 4. Outline of the experimental set-up.

There is a need to understand the effects of different conditions (e.g., rainfall rate or
water supply rate, qin) and basin configurations (e.g., basin width Wp and installation of
corners Figure 5 and Ref. [13]) on the effectiveness of the basin to control the sediment and
debris flow. Considering the non-uniformity of the experimental results, we conducted
three experimental trials under the same conditions and averaged the results. In the
preliminary experiment, the average error of the extreme value with respect to the average
value of the results of the three experiments was approximately 5%.
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Figure 5. Sediment retarding basin plan view (left: with corners, right: without corners).

2.2. Experimental Results and Discussion

The sediment capture rate fs of our sediment retarding basin is given by

fs = (Vs_in − Vs_out)/Vs_in. (1)

Hereafter, we describe our experimental results with respect to the basic basin design
shown in Figure 4.
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Figures 6 and 7 show the effects of changing the basin width Wp on the capture rate fs
of the basin. The numbers in the figure indicate the result range and average value of the
three trials. When Wp was 10 cm (i.e., identical to the width of the upstream straight channel
Ww), the average value of fs was approximately 28% (minimum value: 26%; maximum
value: 30%). When the width was widened to Wp = 30 cm, the fs was approximately 52%;
under these conditions (Figure 7), a large amount of sand passed through the sediment
retarding basins and flowed downstream. Notably, changing the longitudinal gradient
to θw/θp = 15◦/2◦ improved the functionality by 30%, while widening the flow path to
Wp/Ww = 30 cm/10 cm provided an improvement of approximately 20% in functionality.
According to our observations during the experiment, the sediment was captured at some
point by the sediment retarding basin. However, this sediment was then eroded away
gradually by subsequent flow to the downstream area; thus, the final capture rate fs was
approximately 50%. When the water supply time was further extended, and water was
supplied until there were no significant changes, the sediment capture rate fs changed by
approximately 10% (e.g., decreased from 52% to 42%). Thus, these results indicate that the
shape of the sediment retarding basin is an important factor for sediment capture.
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Figure 7. Experimental status (left: experimental equipment, right: sediment control status).

Figure 8 shows the effects of changing the water supply flow rate qin on the sediment
capture rate fs, in which fs increased with qin. According to our observations during
the experiment, when the flow rate is large, a large amount of sediment transports the
sediment in the canal downstream. Additionally, a large amount of sediment is trapped in
the sediment retarding basin, which is significantly affected by the change in flow between
the canal and sediment retarding basin.

Figure 9 shows the effect of the presence or absence of corners in the basin (referring to
Figure 5 that shows 45◦ corners [13]) on the capture rate fs. There was little to no effect on
fs between the absence of corners (Corner: NO) and the presence of upstream corners (Up).
Conversely, when corners were installed on the downstream side (Down), fs decreased by
approximately 10% with respect to the absence of corners (i.e., NO).
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Figure 8. Effects of changes in the supply flow qin rate on the sediment catch rate in the sediment
retarding basins.
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Figure 9. Effect of the presence or absence of corners in the sediment retarding basins on the capture
rate fs.

Figure 10 shows the effects of changing the downstream opening width Wout of
the sediment retarding basin on the sediment capture rate fs. When Wout was gradually
contracted with respect to the inflow width Ww, the capture rate fs significantly improved
(Figure 11).
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Figure 10. Effects of changes in the downstream opening width Wout of the sediment retarding basins
on the sediment capture rate fs.
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Figure 12 shows diagrams of the changes in the sediment flow with respect to the
basin shape. When Wout was wide and corners were installed in the basin (Figure 12, left), a
planar flow was generated from the area upstream to the area downstream inside the basin,
with outward flow of the sediment from the basin to further downstream. In contrast,
when Wout was narrow and no corners were installed (Figure 12, right), sediment capture
improved, due to the influence of a planar outward vortex generated in the downstream
area inside the sediment basin.
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Figure 12. Effect of shape changes in the sediment basin on the flow conditions and containment
(left: with corners; right: without corners).

Taken together, these results indicate that the shape of the sediment retarding basin and
the backwater effect in the flooded area due to gradual flow contraction at the downstream
opening, as well as the width of this opening, affect the sediment control function of
sediment retarding basins. In the future, further detailed studies will be needed to resolve
the effects of differences in the flow rate, sand supply conditions, longitudinal gradient
changes (θw/θp), and other aspects over time on the sediment treatment function. This
was a small-scale (1/100) experiment due to the restrictions of the experimental conditions,
but a large-scale experiment should be conducted in the future. Furthermore, the average
value was obtained from three experiments for each condition, so it will be necessary to
increase the number of experiments in future studies.

3. Analysis of Sediment Control Function of Wood Debris Retarding Basins
3.1. Experimental Outline

Figure 13 shows the waterway used in the experiment for the sediment retarding
basin. As shown in Figure 4, water (qin) and wood debris (number: Nw_in) were supplied
from upstream of the straight channel, and the amount of wood debris (Nw_out) that flowed
out of the basin was measured. The wood debris consisted of cylindrical pieces of wood
(diameter: 3 mm; length Lw = 5 to 10 cm; specific gravity: 0.75). The wood debris was
added manually (the amount of wood debris input per hour was approximately 1 piece
every 0.5 s [16]), and the amount of debris captured was measured [14].
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As a potential countermeasure against the outflow of wood debris from the basin due
to overflow when the downstream opening width Wout of the basin becomes narrowed,
we proposed a countermeasure stake structure, as shown in Figure 14. Figure 15 shows
verification of the effectiveness of the capture structure. In the preliminary experiments, in
the absence of this countermeasure, a large amount of wood debris flowed downstream
due to the overflow caused by the narrow opening.
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Figure 14. Wood debris trapping installation in the downstream opening of the sediment retarding
basin as a countermeasure.

Water 2021, 13, x FOR PEER REVIEW 8 of 18 
 

 

  

Figure 13. Outline of the experiment. 

As a potential countermeasure against the outflow of wood debris from the basin due 

to overflow when the downstream opening width Wout of the basin becomes narrowed, 

we proposed a countermeasure stake structure, as shown in Figure 14. Figure 15 shows 

verification of the effectiveness of the capture structure. In the preliminary experiments, 

in the absence of this countermeasure, a large amount of wood debris flowed downstream 

due to the overflow caused by the narrow opening. 

  

Figure 14. Wood debris trapping installation in the downstream opening of the sediment retarding 

basin as a countermeasure. 

 

Figure 15. Wood debris control/capture status. 

The effects of each condition on the capture function in the sediment retarding basin 

and the behavior of the wood debris in the basin were examined with respect to corner 

installations (Figure 5). These aspects were also examined by changing qin, Wp, the down-

stream opening width Wout of the basin, and the number of supplied wood debris pieces 

Nw_in (32 cases) (Figure 13). To address the non-uniformity of the experimental results, we 

conducted three experimental trials under the same conditions and averaged the results 

P

θw= 10～15deg.

Waterway

Flood plain

Debris wood Nw in

Water qin

θp= 2deg.Debri wood Nw_out

Sediment
basin

Wout

Wout Wp
hp =10 cm

hout = 5 cm

Stakes

Overtopping

Wp /3

Figure 15. Wood debris control/capture status.

The effects of each condition on the capture function in the sediment retarding basin
and the behavior of the wood debris in the basin were examined with respect to corner
installations (Figure 5). These aspects were also examined by changing qin, Wp, the down-
stream opening width Wout of the basin, and the number of supplied wood debris pieces
Nw_in (32 cases) (Figure 13). To address the non-uniformity of the experimental results, we
conducted three experimental trials under the same conditions and averaged the results
of these trials. In the preliminary experiment, the average error of the extreme value with
respect to the average value of the results of the three experiments was approximately 7%.

3.2. Experimental Results and Discussion

From our experimental results on wood debris control, the wood debris capture rate
fw of the sediment retarding basin is given by

fw = (Nw_in − Nw_out)/Nw_in. (2)

Hereafter, we consider experimental results for the basin set-up shown in Figure 13.
Figure 16 shows the effects of changes in the downstream opening width Wout of

sediment retarding basins on the wood debris capture rate fw. When the sediment retarding
basin opening width Wout was narrowed, the wood debris capture rate fw significantly
improved. Figure 17 shows the effect of the difference in the presence or absence of
corners (Figure 5) installed upstream and downstream in the sediment retarding basin on
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wood debris capture. There was no significant difference in fw between a configuration
without corners installed (Corner: NO) and a configuration with upstream corners installed
(Up), similar to the sediment findings. However, when corners were installed on the
downstream side (Down), the control function was significantly reduced (by approximately
30%) compared with the control function in the absence of corner installations; similar to
the sediment capture effect shown in Figure 9.
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Figure 16. Effects of the change in the downstream opening width of the sediment retarding basin
on the wood debris capture rate.
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Figure 17. Effects of the difference in the presence or absence of corners on the wood debris
capture rate.

Figure 18 shows the effect of the difference in the shape of the sediment retarding
basin on the flow conditions and the capture function. When Wout was wide and down-
stream corners were installed (Figure 18, left), a smooth flow downstream occurred in the
sediment retarding basin, and most of the wood debris flowed out of the basin to areas
downstream. In contrast, when Wout was narrow and no corners were installed (Figure 18,
right), the wood debris accumulated as a flat vortex in the transverse direction, which was
affected by the narrowing of the downstream opening width. In the presence of a large
water level difference due to backwater near the sediment retarding basin opening, the
generated planar vortex became more prominent, and a large amount of wood debris was
captured. With the addition of stakes installed as a debris flow countermeasure (Figure 14),
a large amount of the wood was captured by the basin. There was no outflow of wood
debris downstream due to changes in the flow conditions, such as the disappearance of
backwater due to suspension of the water supply. Although there is some concern that
these capture mechanisms are affected by the specific gravity and shape of the wood
debris, these countermeasures are considered generally appropriate, compared with earlier
configurations described in the literature [2].

Figure 19 shows the effects of changes in the supply flow rate qin on the wood debris
capture rate fw of the sediment retarding basins. The capture rate fw decreased with the
supply flow rate qin. From our observations during the experiment, the flat vortex flow
became remarkable due to the backwater effect, and most of the wood debris was captured
by the sediment retarding basin.
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Figure 18. Effect of different basin shape/configuration (corner installation) on the flow conditions
and capture function of the basin. (Left: with corners; right: without corners).
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Figure 19. Effects of differences in the supply flow rate on the capture rate.

Finally, Figure 20 shows the effects of changes in the amount of supplied wood debris
Nw_in on the sediment capture rate fw. Although the change was not remarkable, fw slightly
improved as the amount of supplied wood debris increased. According to our observations
during the experiment, when the amount of supplied wood was large, the wood debris
that flowed down after the initial influx of wood debris was easily captured at the opening
by the blockage [16].
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Figure 20. Effect of the difference in the amount of supplied wood debris on the capture rate.

These experimental results were applied to devise the shape of the sediment retarding
basin. Future studies should further investigate the effects and necessity of downstream
corners; we will focus on this and the differences in other conditions using additional
experiments and analytical models [17]. In addition, the average value was obtained from
three experiments for each condition, so it will be necessary to increase the number of
experiments in future studies. As shown in previous studies ([11,18,19]), it is necessary
to pay attention to the load-bearing performance of stakes in the actual design. In this
experiment, the water depth was shallow, and the three-dimensional effect of the water
flow was small. Future studies should examine the effect of the load on structures due to
the change in water depth when the flow rate is high [20].

4. Numerical Analysis of the Control Function of Sediment Retarding Basins

Numerical analysis was used to simulate the ability of the sediment retarding basin to
control sediment flow; the simulation results were compared with the experimental results
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described in the previous section. In this study, a one-dimensional analysis model was
used for the manual [21].

4.1. Flow Equation

As the basic equation of flow in a fluidized bed, one-dimensional unsteady flow was
applied for uniform gravel [4,15]. The equation of motion of the flow, the continuous
equation of the total volume, the continuous equation of the sediment in running water,
and the continuous equation of the riverbed are expressed as Equation (3), Equation (6),
respectively, as follows:

∂u
∂t

+ u
∂u
∂x

= − g
∂H
∂x
− τb

ρmh
, (3)

∂h
∂t

+
∂uh
∂x

= ib , (4)

∂(Ch)
∂t

+
∂(uhC)

∂x
= ibC∗ , (5)

∂z
∂t

+ ib = 0 , (6)

where h is the flow depth, u is the cross-sectional average flow velocity, g is the acceleration
due to gravity, H is the flow surface elevation, z is the riverbed height, C is the sediment
concentration of the fluid layer, t is the time, C* is the sediment concentration of the
sedimentary layer, Pm is the unit volume weight of the liquid phase containing fine particles
(fine gravel), τb is the riverbed shear stress, and ib is the erosion rate.

The riverbed shear force considering the motion form [4] is as follows, with respect to
the sediment concentration:

When C ≥ 0.4 C* (debris flow):

τb
ρh

=
1
8

d2
m

h3
u|u|

G(C)
, (7)

G (C) =
{

C + (1 − C)
ρ

σ

}{(C∗
C

)1/3
− 1

}2

. (8)

When 0.01 < C < 0.4 C* (bed load collective flow):

τb
ρh

=
d2

m
h3

u|u|
0.49

. (9)

When C < 0.01 or h/d ≥ 30 (quicksand):

τb
ρh

=
gn2

mu|u|
h4/3

. (10)

Here, ρ is the unit volume weight of the sand particles, nm is the Manning roughness
coefficient, and dm is the particle size. The erosion and sedimentation of the riverbeds are
described as follows:

Erosion (ib ≥ 0):

ib = δe
C∞ − C

C∗ − C∞

uh
dm

. (11)

Sedimentation (ib < 0):

ib = δd
C∞ − C

C∗
uh
h

, (12)

C∞ =
ρmtanθ

(σρ)(tanφ − tanθ)
.
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where δd is the deposition rate coefficient, δe is the erosion rate coefficient, C∞ is the
equilibrium sand concentration, θ is the water surface gradient, and ϕ is the internal
friction angle of the gravel. For others, refer to the literature [4].

4.2. Analysis Conditions

For the analysis conditions, we assumed the following: a unit volume weight of sand
particles (σ) of 2650 kg/m3, a unit volume weight of the liquid phase containing fine
particles (fine grain gravel, ρm) of 1100 kg/m3, an internal friction angle of the sand gravel
(ϕ) of 37◦, a sediment concentration (C*) of the sedimentary layer of 0.65, acceleration due
to gravity (g) of 9.8 m/s2, an erosion rate coefficient (δe) of 0.0007, a sedimentation rate
coefficient (δd) of 0.1, ∆t of 0.001 s, ∆x of 0.5 m, rough Manning, and a degree coefficient
nm of 0.01 m−1/3s. The other conditions were varied to determine the effect.

4.3. Reproduction of the Experimental Results

Using the one-dimensional analysis model constructed for the sediment control func-
tion of sediment retarding basins, the experimental results (scale: 1/100) were reproduced
and calculated to determine the applicability of the proposed analysis model. Figure 21
shows a comparison between the experimental and simulation results with respect to
changes in the sediment retarding basin width Wp (Figure 4) on the sediment capture rate fs
with respect to the straight channel width Ww. Figure 21 generally shows good agreement
between the model and the results. The analysis results were more susceptible to widening,
compared with the experimental results. As one of the factors, the one-dimensional analysis
model was presumed to be significantly affected by the change in flow velocity due to
the widening.
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Figure 21. Comparison of the experimental results and the numerical analysis results for changes in
the width of the sediment retarding basin.

Figure 22 shows the reproduction results for changes in the most downstream outlet
opening width Wout (Figure 5) of the sediment retarding basin. General reproducibility was
confirmed (correlation coefficient: 0.98). The reproducibility associated with the change
in the downstream opening width was smaller than the experimental results, in contrast
to the tendency shown in Figure 18. In this case, the backwater effect and the flow in the
transverse direction due to the narrowing of the opening width could not be sufficiently
reproduced by the one-dimensional analysis model.

Figure 23 shows the reproduction results for changes in the supply flow rate qin
(Figure 4) from the upstream; as shown in Figure 23, general reproducibility was confirmed
(correlation coefficient: 0.95).
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Figure 22. Comparison of the experimental results and numerical analysis results for changes in the
downstream opening width of the sediment retarding basin.
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Figure 23. Comparison of the experimental results and numerical analysis results for changes in the
supply flow rate.

Figure 24 shows the reproduction results of sediment trapping fs when corners were
added to the sediment retarding basin (Figure 5). As shown in Figure 24, the reproducibility
decreased, dissimilar to the previous trends (correlation coefficient: 0.59). In particular,
the installation of downstream corners (Down) could not be reproduced. In this case, the
one-dimensional analysis model was unable to describe the planar flow in the transverse
direction in the basin due to the corner installations.
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Figure 24. Comparison of the experimental results and numerical analysis results for differences in
corner installations.

The results thus far indicate that the proposed one-dimensional analysis model was
able to reproduce the experimental results regarding the sediment trapping function of the
sediment retarding basins. However, local changes in the flow (e.g., the backwater effect
and cross-sectional flow) require further consideration. From the experimental results, the
control functions for sediment and wood debris tended to be similar. It was found that the
conditions that enhance the soil capture effect also contribute to the wood debris capture
effect. In addition, we will investigate study measures to describe backwater and down-
stream corner effects that we were unable to address with the one-dimensional model.
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5. Understanding the Impact on Sediment Control Function Using an Analytical Model

The proposed one-dimensional analysis model can be applied to describe the effects of
changes in the width Wp, planar shape, and inflow slope (Figure 4: θw/θp) of the sediment
retarding basin on sediment control. Regarding the shape of the sediment retarding basin,
the length Lp and width Wp of the basin can be changed, such that the installation area Ap
(Lp·Wp) of the sediment retarding basin remains constant.

Figure 25 shows the effects of changing the width (Wp/Ww) and vertical gradient
(θw/θp) of the sediment retarding basin directly upstream on the sediment capture rate fs.
The results showed that widening of the sand area and changing the slope upstream affect
sediment capture. This is likely due to changes in the water depth and flow velocity that
affect sedimentation.

Water 2021, 13, x FOR PEER REVIEW 14 of 18 
 

 

 

Figure 24. Comparison of the experimental results and numerical analysis results for differences in 

corner installations. 

The results thus far indicate that the proposed one-dimensional analysis model was 

able to reproduce the experimental results regarding the sediment trapping function of 

the sediment retarding basins. However, local changes in the flow (e.g., the backwater 

effect and cross-sectional flow) require further consideration. From the experimental re-

sults, the control functions for sediment and wood debris tended to be similar. It was 

found that the conditions that enhance the soil capture effect also contribute to the wood 

debris capture effect. In addition, we will investigate study measures to describe backwa-

ter and downstream corner effects that we were unable to address with the one-dimen-

sional model.  

5. Understanding the Impact on Sediment Control Function Using an Analytical 

Model 

The proposed one-dimensional analysis model can be applied to describe the effects 

of changes in the width Wp, planar shape, and inflow slope (Figure 4: θw/θp) of the sedi-

ment retarding basin on sediment control. Regarding the shape of the sediment retarding 

basin, the length Lp and width Wp of the basin can be changed, such that the installation 

area Ap (Lp·Wp) of the sediment retarding basin remains constant.  

Figure 25 shows the effects of changing the width (Wp/Ww) and vertical gradient 

(θw/θp) of the sediment retarding basin directly upstream on the sediment capture rate fs. 

The results showed that widening of the sand area and changing the slope upstream affect 

sediment capture. This is likely due to changes in the water depth and flow velocity that 

affect sedimentation.  

 

Figure 25. Effects of changes in the sediment retarding basin width and gradient on sediment cap-

ture. 

Conditions
Water discharge q in : 80 ㎥/s

Waterway inclination θ w: 15 deg.

Flood plain inclination θ p: 2 deg.

Particle size : 0.3 m

Corner setting (45deg.) : －

Waterway out-width W out: 10 m

Sediment basin width W p: 30 m

○: Experimental results f s_exp  (%)

●: Calculation results f s_cal (%)

52(50-55)

43(42-44)

51(50-52)

59 58 58

0

25

50

75

100

No Up Down

C
a
p
tu

r
e
 

r
a
te

 f
s

(%
)

Corner

52 51 
43 

Conditions

 Water discharge q in : 80 ㎥/s Corner setting (45deg.) : Nothing

 Waterway inclination θ w: -deg. Waterway out-width W out: 10m

 Flood plain inclination θ p: -deg. Sediment basin width W p: -m

 Particle size : 0.3m Waterway width W w: 10m

 Sediment basin length L p : 45m ○△●: Capture rate f w (%)

0

20

40

60

80

1.0 2.0 3.0 4.0

C
a
p
tu

r
e
 

r
a
te

 f
s

(%
)

Wp /Ww (Ww=const.)

7.5 (15°/2°)

2.5 (10°/4°)

1.0 (7°/7°)

θ＊(θw / θp)

○: 7.5 (15 deg. / 2 deg.)

△: 2.5 (10 deg. / 4 deg.)

●: 1.0 (7 deg. / 7 deg.)

Conditions

Water discharge q in : 80 m
3
/s Corner setting (45 deg. ): Nothing

Waterway inclination θw : - deg. Waterway out-width Wout : 10 m

Flood plain inclination θ p : - deg. Sediment basin width Wp : - m

Particle size: 0.3 m Waterway width Ww : 10 m

Sediment basin length L p : 45 m ○△●: Capture rate f w  %

Figure 25. Effects of changes in the sediment retarding basin width and gradient on sediment capture.

Figure 26 shows the effects of the downstream opening width (Wout/Wp) of the
sediment retarding basin and the gradient change (θw/θp) directly upstream on sediment
capture fs. A backwater effect is expected due to narrowing of the downstream opening
width of the basin; changes in the water depth and flow velocity are also expected with
changes in the gradient. When the gradient change was small and there was no gradual
contraction of the basin opening width, most sediment flowed downstream from the basin.
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Figure 26. Effects of changes in the downstream opening width and gradient of the sediment
retarding basin on sediment capture.

Figure 27 shows the effects of changes in the plane shape (Lp/Wp) of the sediment
retarding basin, in which the installation area Ap of the sediment retarding basin is constant,
and changes in the supply flow rate qin on sediment capture fs. When the ratio of the
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sediment retarding basin width to the basin length (Lw/Lp) was 1 or more (long shape in
the longitudinal direction), there was little to no change in fs.
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Figure 27. Effects of changes in the planar shape of the sediment retarding basin and the supply flow
rate on sediment capture.

Figure 28 shows the effects of the planar shape (Lp/Wp) of the sediment retarding
basin and the gradient change (θw/θp) immediately upstream of the sediment retarding
basin on sediment capture fs. The change in the gradient showed a different tendency in the
relationship between the shape of the sediment retarding basin and the sediment capture.
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Figure 28. Effects of changes in the planar shape and gradient of the sediment retarding basin on
sediment capture.

Figure 29 shows the sedimentation shape (longitudinal view) in the final sediment
retarding basin for each gradient change (7◦/7◦, 10◦/4◦, and 15◦/2◦). When the gradient
change was small (θw/θp = 10◦/4◦), a large amount of debris was deposited near the
downstream opening. In contrast, when the gradient change was large (θw/θp = 15◦/2◦),
the entire debris amount was deposited in the basin. This suggests that a wide river channel
(Lp/Wp <<) shape is significant for sediment capture fs in the sediment retarding basin with
a small gradient change. The change in Lp/Wp is related to Wp/Ww; thus, the difference in
these ratios affects sediment capture. This also explains why the sediment was transported
continuously while the flow velocity remained high, because the water depth increased
significantly due to narrowing of the basin width due to the side wall, despite the change
in the gradient.
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Figure 29. Effect of different gradient changes on sediment shape (longitudinal view).

Based on the results shown in Figures 27 and 28, we suggest that a sediment retarding
basin with a width aspect ratio (Lp/Wp) of approximately 1 (nearly square planar shape)
is more effective, compared with existing land constraints. Furthermore, regarding the
installation position of the sediment retarding basin, the effectiveness of countermeasures
near the gradient change point close to the valley exit should also be considered, as
discussed in Section 3.

In the future, further detailed examinations are required, because there are many
parameters and conditions to consider for achieving a highly functional sediment retarding
basin design. In particular, the one-dimensional model adopted in this study cannot
reproduce the effect of the planar eddy current shown in Figure 12 in detail, so we plan to
upgrade it with a two- or three-dimensional model in the future.

6. Conclusions

In this study, the detailed structure of sediment retarding basins was examined ex-
perimentally and through simulations to optimize the functionality of the basin and its
ability to control sediment and wood debris runoff during serious flooding conditions. We
constructed a one-dimensional analysis model to describe our basic experimental results
and verified its reproducibility. Finally, using our analysis model, we considered the effects
of different conditions (for example, changes in the gradient and opening widths of the
waterway and basin) on the control aspects of the basin.

According to the results of the channel experiment, the ability of the sediment retard-
ing basin to control flood water and debris depended on the flow conditions, the shape
of the basin, and the opening width of the basin at the downstream end. The installation
of downstream corners reduced the control function; however, continuing investigation
is necessary.

A one-dimensional analysis model was constructed to describe the sediment and
wood debris transport observed in our experiments. We confirmed that our model could
reproduce our experimental results. However, more detailed structures and basin config-
urations will likely require a more complex model. Finally, our results indicated that the
overall shape of the basin could be optimized to allow for better control over sediment and
debris flow. Specifically, an aspect ratio (basin extension/length-to-width ratio) of approxi-
mately 1 (square or nearly square) was especially effective in capturing the sediment and
wood debris; this would also need to be examined in greater detail to adjust for variations
in the runoff gradient and the conditions leading to flooding.
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