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Abstract: To reveal the influence process of land use changes on runoff variation trends, this paper
takes the Luojiang River of China as the study area, and the Soil and Water Assessment Tool (SWAT)
model was constructed to quantitatively analyze the impact of different land uses on runoff formation
in the watershed, and used the Cellular Automata-Markov (CA-Markov) model to predict future land
use scenarios and runoff change trends. The results show that: (1) the SWAT model can simulate the
runoff in the Luojiang River basin; (2) the runoff in the Luojiang River basin has a decreasing trend
in recent 10 years, caused by the decrease of rainfall and runoff due to changes in land use; (3) the
forecast shows that the land-use changes in the basin will lead to an increase in runoff coefficient in
2025. The increase of the runoff coefficient will bring some adverse effects, and relevant measures
should be taken to increase the water storage capacity of urban areas. This study can help plan future
management strategies for the study area land coverage and put forward a preventive plan for the
possible adverse situation of runoff variation.

Keywords: Mann-Kendall; SWAT model; CA-Markov model; land use; runoff simulation

1. Introduction

As the link between the atmosphere and the geosphere, the hydrological cycle is
subject to climatic and human factors [1–3]. The terrestrial branch in the hydrological
cycle is the key to flow generation and convergence mechanisms [4]. Global warming is
currently the most crucial feature of climate factors [2]. Temperature warming has caused
frequent extreme precipitation events in many regions of the world [2], which changes
the hydrological cycle rate and flow generation process in these regions [1]. Land-use
change is one of the most intuitive manifestations of human factors, and it is also the
main driving factor affecting the natural surface environment [2]. Land use is a crucial
parameter affecting hydrological cycle simulation. The change of land use patterns affects
infiltration, interception, evapotranspiration, groundwater, and surface water recharge
in the land branch cycle, and then directly affects the runoff process [1,2,5,6]. Therefore,
using reasonable land-use methods to grasp the changing trend of the impact of land-use
changes on the hydrological cycle can provide a strong scientific basis for water resource
management [4].

Compared with the watershed comparative experiment method [7] and the hydrologi-
cal characteristic parameter method [8], the SWAT model [9,10] considers natural and social
factors more comprehensively. The model can effectively simulate the relationship between
runoff, land-use, and climate change and visualize the output [11,12]. Deng et al. [13] estab-
lished a simulation model of watershed land-use change coupled with Cellular Automata
and Artificial Neural Networks in the upper reaches of the Hanjiang Basin in China, which
provided a new method for potential allocation of land use types and runoff prediction
in the future. Ayivi et al. [14] analyzed the changes of hydrology and runoff in the North
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Carolina basin in the southeast of the United States through the SWAT model. They pre-
dicted the water balance and water yield, which can support the realization of sustainable
management of water resources in the region. Shrestha et al. [15] used the SWAT model
to analyze the single and comprehensive impacts of climate and land-use changes on
runoff and nitrate–nitrogen loads in the Songkram River Basin in Thailand. The results
showed that nitrate–nitrogen loads in this region showed a decreasing trend. Xin et al. [16]
combined the dynamic hydrological response units with a coupled SWAT-MODFLOW,
which can reflect actual land cover changes in the basin, to simulate the vegetation change
in the Bayin River basin, an arid inland river in China. The results can assist in ensuring
revegetation sustainability and rationally allocating water resources in arid areas. Urgessa
et al. [17] studied the hydrological responses to land-use changes in Ethiopia Fincha’a
watershed based on the SWAT model. The results can provide theoretical for future land
use planning in African countries. Hazhir et al. [18] used the CA–Markov model to monitor
and predict land use/land cover changes in Iran’s Ravansar Country. The results showed
that due to urbanization and the development of agricultural areas, the area of construction
land and agricultural land increased significantly, and that this trend would continue. In
addition, the SWAT model is often combined with the CA–Markov model in future runoff
prediction research to compare the impact of land-use change on runoff through land-use
scenario settings, or to study the relationship between land use change and runoff through
land use maps of different periods in the study area [19].

Based on the existing research, this paper takes the Luojiang River Basin in China as
the study area, develops a SWAT model, quantitatively analyzes the impact of different
land use on runoff formation in the basin, and predicts the change of land use scenarios
and runoff variation trends in 2025 by the CA–Markov model. This research can help
plan future management strategies of the study area land coverage and put forward a
preventive plan for the possible adverse situation of runoff variation.

2. Materials and Methods
2.1. Study Area

The Luojiang Riveris located between 110◦ 10′ E~110◦ 50′ E, 21◦ 30′ N~22◦ 30′ N in the
low-latitude region south of the Tropic of Cancer (Figure 1), mostly in Huazhou, Maoming
city, Guangdong Province, China. It is the largest first-class tributary of the Jianjiang River.
Luojiang originates from Wangjiang of Xinyi City, and flows into Guangxi northward to
the southwest of Goujidong first. After that, it flows through Huazhou Baowei, Yinyang,
Nawu to Hejiang and Ping Dingshui confluence, and then flows into Jianjiang River in
Huazhou County by Jianghu, Linchen, Guanqiao and other places. The Luojiang River has
a total length of 143 km, and the controlled watershed area above the Hejiang Hydrology
station is 2055.067 km2, with an average riverbed slope of 0.64‰. The region belongs to
the South Asian tropical monsoon climate, with an annual average temperature between
22.2 ◦C~23.9 ◦C and abundant rainfall. The annual average rainfall is 1890 mm, but the
rainfall distribution is extremely uneven in time and space. The yearly rainfall is mainly
concentrated in May to September, accounting for 75% of the total rainfall. The basin is a
hilly region, and the middle and lower reaches are gentle slopes and plains [20–22].
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Figure 1. Location of the study area.

2.2. Data Source

The data required by the research includes digital elevation data, soil type, land use
type data in 2010, 2015, and 2018, hydrological and meteorological data, and so forth. The
description, pretreatment, and sources of all kinds of data are shown in Table 1. Digital
elevation data are shown in Figure 2a, soil type data in Figure 2b, land use type in three
years in Figure 3.

Table 1. Data description and preprocessing.

Data Type Data Description Data Source Data Processing

DEM Digital elevation model,
resolution 30 m × 30 m

Geospatial data cloud website
http://www.gscloud.cn (accessed

on 24 March 2021)

Projection transformation, flow
direction analysis, watershed

extraction

Land Use
Land use type maps of 2010,

2015 and 2018 with a
resolution of 1 km × 1 km

Data Center for Resources and
Environmental Sciences, Chinese

Academy of Sciences
http://www.resdc.cn (accessed

on 30 March 2021)

Projection conversion, splicing,
reclassification, calibration with

actual data

Soil data Soil database of China,
resolution 1:1,000,000

Nanjing Institute of Soil Sciences,
Chinese Academy of Sciences

http://vdb3.soil.csdb.cn
(accessed on 25 March 2021)

Projection conversion, splicing,
vector output GRID, American

system conversion [23,24]

Hydrological data Monthly runoff at the Hejiang
Station from 2011 to 2019

Guangdong Hydrology and
Water Resources Monitoring

Center Maoming Branch
Data extraction, correlation

analysis, missing data filling [25]

Meteorological data
Daily precipitation at Jialong,
Baowei and Hejiang stations

from 1970 to 2019

Maoming Hydrology Sub-bureau
of Guangdong Hydrology Bureau

http://www.gscloud.cn
http://www.resdc.cn
http://vdb3.soil.csdb.cn
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Figure 2. Digital elevation data (a), and soil type data (b).

Figure 3. Land use type data in 2010 (a), 2015 (b), and 2018 (c).

2.3. Mann–Kendall (MK) Trend Test

The MK non-parametric test is used to judge the upward or downward trend of the
series through the positive or negative of statistic Z, which is often used for trend analysis of
natural events in time series such as precipitation and runoff. This method does not require
a specific distribution test for the data series and allows missing values in the data series.
Therefore, it can effectively avoid the influence of undetected values or detected outliers on
trends [26], which has been recommended by the World Meteorological Organization and
widely used [26–29]. This paper set up the test of significance of the confidence level of 95%
(|Z| > 1.96). Namely, when Z > 1.96, sequence significantly increased; when Z < −1.96,
the sequence decreases significantly. Specific calculation steps refer to reference [26,29].

2.4. SWAT Model Construction and Evaluation

The SWAT model is a semi-distributed hydrological model constructed and developed
by DILE et al. [30] based on ArcGIS software. Firstly, the model divides the whole basin
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into several sub-basins based on DEM data. Then, the sub-basin is classified into several
hydrological response units (HRU) according to soil type, land-use type, and slope grade.
The hydrological behavior of this type of HRU is considered the same in the sub-basin [31].
Finally, the runoff simulation of the basin is realized by combining precipitation, air
temperature, wind speed, and other meteorological data. In this study, surface runoff was
calculated using the runoff curve number method SCS. The river confluence process is
calculated by the water balance principle. Sub-watershed division is based on a digital
elevation model and adopts "Burn-in" algorithm [32]. The total area of the simulated
watershed is 2055.067km2, which is divided into 27 sub-basins and 178 hydrological
response units.

The simulation effect of the SWAT model can be evaluated by the deterministic
coefficient R2, Nash coefficient NSE and bias percentage PBIAS.

R2 =


n
∑

i=1
(Qobs− Qavg)(Qsim− Qsim)√

n
∑

i=1
(Qobs− Qavg)

2 n
∑

i=1
(Qsim− Qsim)

 (1)

NSE = 1−

n
∑

i=1
(Qobs −Qsim)

2

n
∑

i=1

(
Qobs −Qavg

)2
(2)

PBIAS =

n
∑

i=1
(Qobs −Qsim)× 100

n
∑

i=1
Qobs

(3)

where, Qobs is the observed value; Qsimis the simulated value; Qavgis the average value
of measured runoff; Qsim is the simulated average value; n is the number of samples. The
value of R2ranges is 0 ~ 1. Generally, the simulation result is acceptable when R2 ≥ 0.5; it
is accurate when R2 ≥ 0.7; it is very consistent, when R2 = 1. NSE is the degree of fitting
between the simulated value and the measured value of the evaluation model. The closer
the value is to 1, the closer the simulated value is to the measured value [33]. PBIAS is used
to measure whether the average trend of simulated data is greater or less than the observed
value. In the best case, the value is 0. When the value is greater than 0, it indicates that
the model is underestimated. When the value is less than 0, it indicates that the model is
overestimated. When PBIAS<25%, the simulation results are considered reliable, when
PBIAS<15%, the simulation results are considered good, when PBIAS<10%, the simulation
results are considered satisfactory [34].

2.5. CA–Markov Model

The Cellular Automata model is a discontinuous time-space dynamic simulation
model [35], which can effectively characterize the rules of cellular unit interaction in
landscape change. Its principle is to predict the state transformation in the next period
with specific transformation rules through the current state of the cell and its neighborhood
state [36,37]. The expression is:

St+1 = f (St, Nt) (4)

where S stands for cellular state; t, t + 1 represents a certain time; Nt represents cellular
neighborhood; f represents transformation rules for cells.

The Markov model is a common method to predict the occurrence probability of
events based on Markov chain theory [38]. When it is applied to land-use change, the
change between different regions is regarded as a Markov process. The conversion of a
certain land type at a certain moment is regarded as a possible state in the Markov process.
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It is only related to the land type at the previous moment, and the amount of area converted
between different regions is the Markov transfer probability [39]. Its expression is:

St+1 = PijSt (5)

where St+1 Strepresents the ground class state of t + 1 t; Pij is the probability transition
matrix.

The CA-Markov model not only has the quantitative prediction advantage of Markov
model, but also integrates the simulation ability of the CA model in complex space. The
coupling of the two models can simulate and predict land-use change more accurately
from both quantitative and spatial aspects [40,41].

In this study, the CA-Markov model was used to predict future land use pattern
changes in Luojiang Basin, and the Kappa coefficient was used to test the simulation
results:

Kappa = (P0 − Pc)/(PP − PC) (6)

where P0 is the correct proportion of simulation; Pc is the correct proportion simulated
under the random condition of the model; PP is the correct proportion simulated under
ideal classification. When Kappa ≥ 0.75 it indicates that the simulation error is small; when
Kappa ≤ 0.40 it indicates that the simulation error is large.

3. Results and Analysis
3.1. Mann–Kendall Trend Analysis

According to the Mann–Kendall trend analysis (Figure 4), the rainfall and runoff in
the Luojiang Basin showed a downward trend from 2010 to 2019, and the decline in annual
runoff has a more gradual decline. The maximum yearly rainfall was 2669.5 mm in 2010.
The maximum yearly runoff occurred in 2016, which was 2.79 billion m3. Rainfall and
runoff maxima appear in different years and deviate greatly. The minimum annual rainfall
and annual runoff occurred in 2011, 1274.5 mm and 1.41 billion m3, respectively. The
annual precipitation and annual runoff changed synchronously in the other years, except
that the annual precipitation delayed the annual runoff in 2014–2015.

Figure 4. Trend analysis of rainfall and runoff.
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3.2. SWAT Model Calibration and Verification

Set 2009–2010 as the warm-up period, 2011–2015 as the regular rate, and 2016–2019 as
the verification period. Taking land-use in 2018 as the background, combined with soil type
data and measured precipitation data, the construction of the SWAT model was completed.
Through parameter sensitivity analysis [7], 13 sensitivity parameters were selected (Table 2).
Parameter calibration was carried out with the help of the SUFI-2 algorithm in SWAT-CUP,
and the simulation results met the requirements (Table 3). The simulated values of the
periodic rate and each month of the verification period fit well with the measured flow
process line, as shown in Figure 5.

Table 2. Results of parameter sensitivity analysis.

Parameter Name
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Table 2. Results of parameter sensitivity analysis. 

Parameter 
Name ○1  Describe 

Min 
Value 

Max 
Value 

Fitted 
Value 

Sensitivity Order 
t Value 

○2  
p Value 

○3  
R_CN2 SCS runoff curve coefficient 0.511 0.611 0.555 −3.074 0.003 1 

V_ALPHA_B
F Base flow factor 1.500 1.745 1.572 −1.297 0.199 6 

V_GW_DEL
AY Groundwater time lag 207.696 335.202 270.538 −0.586 0.559 9 

V_GWQMN Water level threshold 1.007 1.696 1.258 −0.11 0.912 12 
V_GW_REV

AP 
Coefficient of re evaporation of 

shallow groundwater 
0.054 0.082 0.071 1.404 0.165 5 

V_ESCO Soil evaporation compensation 
factor 0.912 0.937 0.930 1.489 0.141 4 

V_CH_N2 
Main channel Manning coeffi-

cient 0.250 0.293 0.271 −1.169 0.247 7 

V_CH_K2 Effective permeability coeffi-
cient 

62.281 104.042 66.159 0.050 0.960 13 

V__ALPHA_ Base stream alpha factor regu- −0.322 −0.038 −0.165 1.900 0.062 3 

p value represents the significance of t value, the smaller the p value is, the more sensitive the parameter is. This number
is the Sensitivity Order, which is explained as “Sensitivity Order” at the head of the table.

Table 3. Evaluation table of monthly runoff simulated by the SWAT model.

Periods R2 NSE PBIAS

Rate regular period (2011–2015) 0.76 0.74 0.09%
Rate regular period (2011–2015) 0.75 0.72 −7.27%

3.3. Analysis of Land Use Change

We used IDRISI and ArcGIS software to analyze the land use area of the river basin
in 2010, 2015, and 2018. The results are shown in Table 4. Meanwhile, land use transfer
matrices from 2010 to 2015 and 2015 to 2018 can be listed, as shown in Tables 5 and 6. As
can be seen from Table 4, the main types of land use in all calculated years are garden
land, which accounts for more than 80% of the total area, followed by arable land, while
grassland use is relatively small, which accounts for less than 1.5% of the total area. In
three analysis years, the order of land use type area was Garden land > Arable land >
Forest land > Commercial land > Grassland. As can be seen from Table 5, from 2010 to
2015, there was neither an increase nor decrease of grassland, the area of garden land
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decreased slightly, and was transformed into forest land, commercial land, and arable land,
of which the forest land area was most transferred. As can be seen from Table 6, from 2015
to 2018, all kinds of land use types underwent complex bidirectional conversion, in which
the area of grassland, forest, and garden decreased by 6.144 km2, 9.198 km2, and 5.145 km2,
respectively, while the area of commercial land increased by 8.963 km2, followed by the
area of arable land, which increased by 6.609 km2.

Figure 5. Comparison of measured and simulated runoff at periodic and validation periods.

Table 4. Statistical table of land-use types in different years.

Land Type
2010 2015 2018

Area/km2 Percentage/% Area/km2 Percentage/% Area/km2 Percentage/%

Arable land 272.20 13.40 272.21 13.40 278.82 13.77
Garden 1643.11 80.88 1627.75 80.12 1622.60 80.10

Forest land 53.97 2.66 62.34 3.07 53.14 2.62
Grassland 23.21 1.14 23.21 1.14 17.07 0.84

Commercial
land 39.13 1.93 46.09 2.27 55.06 2.72

Table 5. Land use transfer matrix of 2010–2015.

Land Transfer
2015

Grassland Arable Land Forest Land Commercial Land Garden Sum/km2

2010

Grassland 23.213 23.213
Arable land 272.186 0.001 0.008 272.195
Forest land 53.965 53.965

Commercial land 39.126 39.126
Garden 0.026 8.375 6.971 1627.74 1643.112

Sum/km2 23.213 272.212 62.342 46.097 1627.748 2031.611
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Table 6. Land use transfer matrix of 2015–2018.

Land Transfer
2018

Grassland Arable Land Forest Land Commercial Land Garden Sum/km2

2015

Grassland 2.97 4.372 15.857 23.199
Arable land 3.474 58.42 5.341 15.495 189.129 271.859
Forest land 0.306 6.19 13.397 1.092 40.508 61.493

Commercial land 1.17 14.691 0.094 3.918 26.091 45.964
Garden 9.149 195.148 34.312 34.555 1349.44 1622.603

Sum/km2 17.069 278.821 53.144 55.060 1621.025 2025.119

3.4. Impact of Land-Use Change on Runoff

To study the impact of land use change on runoff formation, the land-use data of 2010
and 2015 were used to replace the land use data of 2018 under the same conditions as other
data. The SWAT model was used to analyze the runoff response of land-use changes.

3.4.1. Effects of Land-Use Change on Annual Runoff

This paper analyzes the impact of land-use changes on the annual change of runoff
through the yearly change of average monthly runoff under three land-use scenarios. To
increase the representativeness of simulation results, rainfall data from the regular period
and validation period of 9 years (2011–2019) were selected for monthly scale simulation.
The simulation results of the monthly average runoff are shown in Figure 6.

Figure 6. Simulation results of monthly average runoff, under three land use scenarios.

The analysis shows that the trend of the monthly average runoff simulated under
the three land-use scenarios is basically the same. The overall runoff was first reduced
and then increased. The runoff is concentrated from May to August each year, accounting
for about 48.69% of the annual total. In March, the runoff reached its lowest value, and
then it began to increase significantly. In June, the runoff declined, but the decline was not
obvious, and the runoff reached its maximum in August. Thus, the runoff in this area is
mainly recharged by precipitation.

Compared with the runoff under the background of land use in 2010, the simu-
lated monthly average runoff under the background of land use in 2015 was reduced by
2.179 m3/s. According to the land transfer matrix from 2010 to 2015, the garden area de-
creased, while the forest area increased in 2015. The increase of forest area can improve the
interception rate of precipitation and make surface runoff difficult to form, thus reducing
the runoff.
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Compared with the land-use background in 2015, the monthly average runoff under
the land-use background in 2018 increased by 1.596 m3/s. According to the land transfer
matrix from 2015 to 2018, the area of arable land and commercial land increased significantly
in 2018. With the increase of cultivated land, the retention effect and water retention of the
underlying surface decreased, which promoted runoff confluence. The substantial increase
of commercial land area greatly increases the area of regional hardening, which changes the
original permeability characteristics of the region. In addition, the surface vegetation is less,
and the interception rate of precipitation is low. The occurrence rate of runoff generation
and overland flow is relatively fast, which leads to the increase of surface runoff [42].

3.4.2. Spatial Impact of Land-Use Change on Runoff

The runoff coefficient is often regarded as an important index reflecting runoff produc-
tion, comprehensively reflecting the relationship between rainfall and runoff. The larger
the runoff coefficient is, the more difficult the rainfall is to be absorbed by the soil [43], and
the more likely surface runoff is to occur. In this paper, runoff coefficient is used to analyze
the characteristics of runoff generation in each sub-basin:

α =
R
P

(7)

where α is runoff coefficient; R is the perennial runoff depth, mm; P is the average
annual rainfall of the basin, mm.

The simulation of runoff from 2011 to 2019 under three land-use backgrounds in 2010,
2015 and 2018 is illustrated as an example. The distribution map of multi-year average
precipitation in each sub-basin (Figure 7a). The distribution map of runoff coefficient under
three land-use conditions, are shown in Figure 7b,c,d.

Figure 7. Annual precipitation distribution (a), and runoff coefficient distribution map in 2010 (b),
2015 (c), 2018 (d).
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The comparison shows that under the land-use scenario in 2015, the runoff coefficient
of the whole basin is the smallest, and the runoff coefficient of each sub-basin is between
0.267 and 0.354. Under the land-use scenario in 2010, the runoff coefficient of the basin as a
whole was relatively the largest, and the runoff coefficient of each sub-basin ranged from
0.593 to 0.626. Under the three land use conditions, the runoff coefficients of each sub-basin
in the northeast were larger than those in central and southern regions. The main reason is
that the cultivated type in the northeast of the basin covers more area, while the grassland
is mainly concentrated in the middle and south of the basin. The grassland has a stronger
retention effect on runoff and a more significant effect on water conservation, so the runoff
coefficient is lower.

Based on the runoff coefficient distribution maps corresponding to the three land
use types, the change rate distribution maps of the runoff coefficient of different land
types in the basin can be calculated (Figure 8). Under land use conditions, the average
runoff coefficient of each sub-basin decreased in 2015 compared with that of 2010, and
the most significant decrease was in sub-basins 5, 7, 18, and 22, which were all more than
5.230%. However, the variation of the runoff coefficient was relatively small in most of the
northeastern basins and the most southern sub-basin no. 27, with a decrease of 4.436% to
4.597%. The average runoff coefficient of each sub-basin increased in 2018 compared with
2015, and the southwest of the basin and sub-basin 7, 22, and 26 had the most significant
increase, with a change rate of 2.398%. In the northern part of the basin, sub-basins 1, 2,
3, 6, and 11 had the smallest increase rate, with the change rate ranging from 1.717% to
1.933%.

Figure 8. (a): Variation of runoff coefficient from 2010 to 2015. (b): Variation of runoff coefficient
from 2015 to 2018.

Sub-basins 7, 18, and 22 with the most significant runoff coefficient variation are the
main objects for land-use change analysis (Table 7). Compared with 2010, the garden area
of the basin decreased in 2015, while the forest area increased, which led to the decrease of
the average runoff and runoff coefficient under the background of land use in 2015. In 2018,
the area of arable land decreased compared with 2015, which led to a decrease in average
runoff and a decrease in runoff coefficient in the context of land use in 2018. However, the
reduction effect is not obvious because of the small change.
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Table 7. Area ratio of land use types in sub-catchments.

Proportion of Land
Use Type (%).

Sub-Basin No. 7 Sub-Basin No. 18

Arable
Land Garden Forest

Land GRASSLAND Commercial
Land

Arable
Land Garden Forest

Land Grassland Commercial
Land

2010 0.31 2.21 0.00 0.00 0.00 0.27 2.04 0.00 0.00 0.03
2015 0.31 2.19 0.02 0.00 0.00 0.27 1.93 0.09 0.00 0.05
2018 0.23 2.33 0.00 0.00 0.00 0.14 2.21 0.02 0.00 0.05

2010—2015 0.00 −0.02 0.02 0.00 0.00 0.00 −0.11 0.09 0.00 0.02
2015—2018 −0.08 0.14 −0.02 0.00 0.00 −0.13 0.28 −0.07 0.00 0.00

Proportion of Land
Use Type (%)

Sub-Basin No. 22

Arable
Land Garden Forest

Land Grassland Commercial
Land

2010 0.29 2.07 0.01 0.15 0.10
2015 0.29 2.05 0.05 0.15 0.10

0.25 2.07 0.01 0.10 0.15
0.00 −0.02 0.04 0.00 0.00
−0.04 0.02 −0.04 −0.05 0.05

3.5. Prediction of Runoff Variation Trend in the Future

Using the CA–Markov model, the land use type maps of 2005 and 2010 were used to
simulate the map of 2015. We imported the land use type maps in 2005 and 2010 into IDRISI
software to obtain the land use transfer area matrix from 2005 to 2010. The suitability atlas
of slope, altitude, and geomorphic elements was made, and the transition area matrix was
used as the transition rule to participate in the simulation and prediction of land use in
2015. The 5 × 5 mole field was used as the filtering parameter of CA–Markov model, and
the iteration cycle was 5 years, then the prediction map of spatial distribution of land use
in 2015 was obtained. Analyzed the similarity between the actual land use type map in
2015 and the predicted results, the Kappa coefficient is 0.9271, and the simulated value is
very similar to the actual value. Therefore, this model can be used to map the land use type
in 2025 under natural ecological variation (Figure 9).

Figure 9. Land use map in 2025.
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Compared with the land-use scenario in 2018 (Table 8), the land-use situation in the
basin will change significantly in 2025. The arable land and garden land will be converted
to commercial land, grassland, and forest land. The increase of commercial land area
and the decrease of garden land area are the most significant, 58.680 km2 and 83.432 km2

respectively, while the change of forest land-use type is the least, which is 1.43%.

Table 8. Proportion of land use types in 2025.

Land Type
2018 2025

Area/km2 Percentage/% Area/km2 Percentage/% Change/km2

Arable land 278.82 13.77 239.85 11.82 −38.97
Garden 1622.60 80.1 1539.17 75.82 −83.43

Forest land 53.14 2.62 92.05 4.53 38.90
Grassland 17.07 0.84 46.06 2.27 28.99

Commercial land 55.06 2.72 113.74 5.60 58.68

The predicted land use type map was used as the land-use background to simulate
the runoff from 2011 to 2019 and compare it with the runoff process under the land-use
scenario in 2018. We calculated the change rate of the runoff coefficient under the two
land-use scenarios, as shown in Figure 10. It can be seen from the figure that the runoff
coefficient will increase under the land-use scenario in 2025. Among them, sub-basins
no. 5, 10, 16, and 24 had the most significant increase, between 1.277% and 1.512%, while
the northeastern sub-basins no. 4 and 12, the southernmost sub-basin no. 27, and the
southwest and central sub-basins NO.17, 21, 18, 14, and 15 had a relatively small increase,
between 0.247% and 0.910%.

Figure 10. Runoff coefficient variation map from 2018 to 2025.
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4. Discussions
4.1. Impact of Land Use Change on Runoff

Through the simulation analysis of the runoff generation under two land-use scenarios
in 2010 and 2015, it can be seen that in 2015, compared with the background of land use in
2010, the runoff coefficient of the watershed decreased, and the average monthly runoff
decreased by 2.179 m3/s. Combined with the 2010–2015 land use transfer matrix, it can be
seen that the main reason for this is that the area of gardens in the study area has decreased,
while the area of forest has increased. According to the simulation analysis of two land-use
scenarios in 2015 and 2018, the runoff coefficient of the basin under the background of
land use in 2018 has increased, and the annual average monthly runoff has increased by
1.596 m3/s. Based on the land use transfer matrix from 2015 to 2018, the main reason is
the increase of arable land and commercial land areas. However, the decreased degree of
runoff coefficient caused by land-use conversion from 2010 to 2015 exceeds the increased
degree of the average runoff coefficient caused by land-use conversion from 2015 to 2018.

Combined with the above analysis, the Mann–Kendall trend analysis shows that the
runoff in Luojiang River Basin had a decreasing trend in recent 10 years. The reasons are as
follows: firstly, the rainfall is decreasing; secondly, the change of land use also leads to the
decrease of runoff coefficient.

4.2. Reflection on Future Land Use Type Change

Combining the SWAT model and the CA–Markov model can predict future land use
types and simulate the runoff variation trend. Based on the land use scenario in 2015 and
the CA–Markov model, this paper predicts the land use scenario in 2025, and simulates the
runoff process from 2011 to 2019. The results show that compared with the 2018 land use
scenario, the runoff coefficient of the whole basin has increased. The main reasons are that
the urbanization construction rate will accelerate in the future, the area of arable land and
garden will decrease, the area of commercial land will continue to expand, and the surface
infiltration capacity will weaken, leading to an increase in the runoff coefficient.

The results are consistent with the studies by Zubaidai, Muibra [33], and Tian et al. [1].
However, this study has some shortcomings with regard to the detailed description of
the long-term, multi-stage hydrological response, which can be further improved and
discussed in future studies.

4.3. Recommendations

The increase of urban land leads to the increase of runoff coefficient, which is the
decline of regional water conservation capacity and increases the flood control pressure
of downstream channels. Urbanization is a trend of regional development. Under this
premise, it is necessary to increase water storage engineering measures in urban areas to
reduce the above-mentioned adverse effects. For example, sponge city projects are built in
urban areas to enhance water storage capacity in urban areas and realize comprehensive
utilization of water resources in rainy and flood periods.

5. Conclusions

In this paper, the Luojiang River Basin was taken as a research area. The main content
of the research included three aspects: Analyzing the trend of rainfall and runoff in the
past 10 years by using the Mann–Kendall test; according to the land-use scenarios in 2010,
2015, and 2018, using the SWAT model to study the impact of land-use change on runoff,
where the CA–Markov model predicted the future land use situation; and analyzing the
future flow situation based on the land-use scenario. The main conclusions are as follows:

(1) The R2 and NSE of the constructed SWAT model can reach more than 0.70 in both
periodic and validation periods. The deviation coefficient PBIAS is less than 20%,
which can better simulate the flow yield situation in the Luojiang River Basin.

(2) The Mann–Kendall trend analysis shows that the runoff in the Luojiang River Basin
has a decreasing trend in the past 10 years. The reason for this lies in two aspects:
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first, rainfall presents a downward trend; second, the change of land use also leads
to the decrease in the runoff coefficient. The area of the orchard in the study area
has decreased, and the increase of woodland area leads to the decrease of the runoff
coefficient, while the increase of the cultivated land and commercial land area leads
to the increase of the runoff coefficient. The general trend is that the runoff coefficient
increases.

(3) The CA–Markov model is used to simulate the 2025 land-use type, and the prediction
shows that the garden area will decrease and the commercial area will increase
greatly in 2025, which will lead to an increase of the runoff coefficient in the future.
The increase of the runoff coefficient will bring some adverse effects, and relevant
measures should be taken to increase water storage capacity in urban areas.
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