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Abstract: Nitrogen and phosphorus are key elements in controlling eutrophication in the aquatic
system. Water and sediment samples were collected from Hongfeng Lake, a seasonally strat-
ified reservoir in southwest China, in winter and summer. Diffusion fluxes of NH4

+, NO3
−,

and labile P in summer using diffusive gradients in thin films technology were 3.4, −37.2, and
0.9 mg m−2 day−1, respectively, based on Fick’s first law. The diffusion flux of labile P was
2.05 mg m−2 day−1 in winter. The contributions fraction of the labile P diffusion flux from sediment
to the overlying water were higher in winter than those in summer, because of the relatively lower ex-
ternal input, concentrations and higher diffusion fluxes in winter. After the external input decreased,
all of the three diffusion fluxes were lower than the previous record. To understand the influence
effect of hydrodynamics, environmental fluid dynamics code modeling was used to simulate the flow
and temperature field in winter and summer. Modeling results showed that velocity in summer was
higher than that in winter due to concentrated rainfall within the catchment. Moreover, the velocity
and temperature in the euphotic zone were higher than that of the hypolimnion in summer. Less
variation of velocity and temperature in vertical profile in winter than that in summer was observed,
which may be attributable to the high specific heat capacity and the low heat conductivity of water.
There was no significant correlation among velocity, hydrochemistry, nitrogen, and phosphorus con-
centrations. Hydrodynamics, solar radiation, and water depth affect the position of the thermocline,
which was consequently to water temperature, hydrochemistry, dissolved nitrogen, and phosphorus
concentration. Correlation analysis suggested that the higher bottom velocity and total bed shear may
accelerate labile P, NH4

+, and NO3
− diffusion fluxes. These results provide evidence and suggestions

for preventing and controlling reservoir eutrophication and water safety management.

Keywords: environmental fluid dynamics code; total bed shear; internal release; Hongfeng Lake

1. Introduction

Nitrogen (N) and phosphorus (P) are essential elements in photosynthesis and
metabolism [1], particularly P, which is one of the threshold elements of the aquatic
system [2]. Nowadays, human-induced N and P imbalances altered freshwater, marine,
and terrestrial ecosystems to eutrophication states [3,4]. One modeling work by N retention
in reservoirs and lakes model result showed that approximately 33% of the total N was
removed by lentic systems, which only occupy 6% of the global lentic surface area [5].
Meanwhile, as more and more dams are built, the retained fraction of P load increases
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from 7% to 17% from 1970 to 2030 [6]. Dual control of N and P should be the status quo for
lacustrine eutrophication controlling [7–9], particularly the reduction of P external inputs
and internal release [10,11].

The monsoon climate in the temperate zone results in seasonal variation of temper-
ature (T), which consequently leads to the external N and P transportation on seasonal
with high loading in the summer [12–14]. As for the internal source in the lake/reservoir
system, the biogeochemistry processes of N and P are sensitive to redox conditions [15],
particularly, degradation of organic matter, the redox of iron (Fe) and sulfur (S), which can
regulate the internal N/P ratio at the sediment-water interface (SWI) and pose a potential
challenge to understand nutrients cycles [11,16,17]. Therefore, more study is required on
the contribution from internal N and P release and driver factors affecting the diffusion
fluxes of the N and P in the reservoirs that be regulated frequently.

In seasonal hypoxia aquatic ecosystems of deep and sub-deep-water reservoir con-
trolled strongly by hydrodynamic, the internal release of N and P is more than just a
static release process [18]. The internal release flux may be beyond those of chronically
oxygen-rich natural lakes and (or) lakes without the strong hydrodynamic [19–21]. It may
be inferred that more N and P may be released in the period with the higher hydrodynamic
and more oxygen-deprived environment at SWI than that in the period with the lower
hydrodynamic and aerobic conditions. However, there was still a lack of hydrodynamic
effect on the release of N and P in the previous research. For example, a previous study
found that the estimations for the bed shear stress are essential to predict the erosion and
deposition processes [22]. However, the direct measurement of bed shear stresses presents
some difficulties [22,23]. Fortunately, total bed shear stress was calculated using waves and
currents, which are interacted in a non-linear way [23], and the most widely used theories
are the log-profile method, the turbulent kinetic energy (TKE) method, the modified TKE
method, the Reynolds stress method, and the inertial dissipation method [22]. Environ-
mental fluid dynamics code (EFDC), which was initially developed by the United States
Environment Agency, has proved a powerful tool to simulate hydrodynamics, T, water
quality, and sediment [12–14].

Diffusive gradients in thin layers (DGT) technique could collect and show the con-
centrations of the special forms in high resolution with micron and millimeter scales,
which calculated the molecular diffusion flux at SWI using Fick’s first law [24]. Addi-
tionally, the simulated flow field can reflect the influence of hydrodynamic inside the
reservoir [12]. Thus, the simulation of hydrodynamics helps in understanding the diffusion
at SWI. Combing the DGT technology and modeling may provide useful information for N
and P biogeochemistry processes.

In the present study, the N/P concentration of water profiles, at SWI, N/P diffusion
flux at SWI and hydrodynamic of a reservoir system were analyzed to (1) know spatial
and temporal distribution characteristic of hydrochemistry; (2) assess the effects of internal
diffusion on water and sediment; (3) understand the hydrodynamic influence in spatial-
temporal scale. This study highlighted the hydrodynamic contribution to the internal P
and N release and potential biogeochemical processes.

2. Materials and Methods
2.1. Site Description

Hongfeng Lake is a seasonal anoxic reservoir in Yunnan-Guizhou Plateau built in 1958
and provides drinking water for Guiyang city, the capital of Guizhou Province, China [25].
This lake, with an elevation of 1291 m and a mean water depth of 10.5 m (max 45 m),
is located in the mountainous canyon consisting of South lake and North lake, which
are connected by a long and narrow channel. This study area has a subtropical humid
monsoon climate, with an average annual rainfall of about 1200 mm. The 30-year historical
average daily values showed that solar radiation in July and August was highest, and
precipitation in June and July was highest. Both in December and January were the lowest,
respectively (Figure S1). The water area of Hongfeng Lake (Figure 1a 26◦31′~26◦34′ N,
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106◦24′~106◦43′ E) is 57.2 km2 with length and width of approximately 16 km and 4 km,
respectively. The hydraulic retention time is about 0.82 years [26].

Figure 1. Water and sediment sampling sites of Hongfeng Lake (a), the red point represents the location of the reservoir in
China map, precipitation (b), flow (c), and water level (d) from 1959 to 2020. The dotted line represented the average value
in (b–d).

Based on hydrometric station statistics (Figure 1b–d), the average precipitation, flow,
and water level were 1175.44 mm, 26.37 m3/s, and 1233.48 m, respectively. The total
storage capacity is 7.5 × 108 m3 and the adjusted storage capacity is 4.3 × 108 m3, with
the functions of drinking water supply, flood control, hydropower, shipping, tourism and
aquaculture [26].

2.2. Sampling and Analysis

To understand the variation between the mixing period (winter) and the stratification
period (summer), water samples and sediment cores were collected at two sites (South lake,
HF1, and North lake, HF2) in January 2017 (winter). Considering the spatial heterogeneity
during the stratified period, more sampling sites were selected in July 2019 (summer) than
in January 2017, including 6 sediment sites (HF1~HF6) and 24 water sites (1~24) (Figure 1a
and Table S1). Sediment cores were collected with a portable gravity sediment sampler
(Xiaohe, Guiyang, China) and wrapped with aluminum foil to prevent light influence
during transportation (Figure S2a–c).

Hydrochemistry of water profiles in Hongfeng Lake was measured by YSI 6600 (Xylem
Inc., New York, OH, USA), including T, pH, and DO in winter, T, pH, DO, chlorophyll, total
dissolved solids (TDS) and oxidation-reduction potential (OPR) in summer, respectively.
Before using YSI6600, DO, pH, chlorophyll, ORP, and TDS probes were calibrated according
to the equipment calibration guide [27]. Transparency was measured by a black and white
plate. The total nitrogen (TN) and total phosphorus (TP) were measured after oxidation
by alkaline potassium persulfate and potassium persulfate, respectively [28]. NH4

+-N,
NO2

−-N, NO3
−-N, and PO4

3−-P concentrations were measured after filtration by Epoch
microplate spectrophotometer (Bio Tek, Winooski, VT, USA). The samples were tested
within 24 h.

T, pH, DO, and ORP were analyzed by multi-parameters HQ4001 (Hach, Loveland,
CO, USA) at the overlying water of the sediment cores. Before using HQ4001, DO, pH, and
ORP probes were calibrated according to the equipment guideline. In summer, ZrO-AT
devices (Easysensor Ltd., Nanjing, China) were plugged after standing for 24 h, the films
were cut with a 2-mm interval by the ceramic knife (Figure S2d–f) [29]. The films were
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extracted with 1 mol/L (M) NaCl standing for 24 h to measure NH4
+-N, and NO3

−-N
of pore water. Then, labile P of pore water was extracted with 1M NaOH standing for
24 h [29]. NH4

+, NO3
−, and labile P concentrations at SWI were calculated according to

Equation (1) [24].
cDGT= M∆g/DAt (1)

where, M (µg) is the mass accumulated over the deployment time, A (cm2) is the exposure
area of the gel, t (s) is the deployment time, ∆g (cm) is the thickness of the diffusion layer,
D (cm2/s) is the diffusion coefficient in the agarose gel. D of NH4

+, NO3
−, and labile P of

ZrO-AT were (17.41, 5.47 and 5.97) × 10−6 cm2/s at 20 ◦C.
ZrO devices (Easysensor Ltd., Nanjing, China) were used to collect labile P of pore

water in winter using computer imaging density measurement [30]. The ZrO binding
gels were put in molybdenum antimony color reagent to a water bath at 35 ◦C for 45 min
(Figure S2g). The thin film of ZrO was scanned in a scanner (Figure S2h) and transformed
with a software, ImageJ, and the gray value was calculated [30] and shown by Equation (2),
and the concentrations are shown by Equation (1). The P accumulation, M (µg/cm2) in a
thin film of ZrO was calculated according to the following Equation [30].

Gray value = −177e−M/4.46+223 (2)

At last, the sediment cores were separated by ceramic knife at the interval of 1 cm
(Figure S2i), the pore water was extracted by centrifugation (Heraeus Multifuge X1R,
Thermo Fisher Scientific, Waltham, MA, USA), and the NH4

+, NO3
−, PO4

3−, Fe2+, Mn2+,
and S2− concentrations were measured by spectroscopy after filtration [28–30]. Total carbon
(TC), total organic carbon (TOC) (treated by 0.5M HCl), TN, and total sulfur (TS) contents of
sediment were analyzed by an elemental analyzer (Vario EL III, Elementar, Langenselbold,
Germany) after freeze-drying (Labconco, Kansas City, MO, USA), grinding and screening
(size 100 mesh). The NH4

+-N, NO2
−-N, and NO3

−-N in the sediment extracted by 2 M
KCl. For each core, 0.5 g dry surface sediment was incinerated for 2 h by muffle furnace
under 500 ◦C, extracted by 3.5 M HCl, and the TP content was determined after oscillation
for 16 h. Total inorganic P (TIP) was determined using a similar method without calcining.
Total organic P (TOP) was the difference between TP and TIP. The P forms in sediment were
determined by chemical sequential extraction [31], including NH4Cl-P (loosely adsorbed
P), bicarbonate dithioniote-P (BD-P, P forms sensitive to redox potentials), NaOH-soluble
reactive phosphorus (NaOH-SRP, exchangeable with hydroxide ions), NaOH-non-reactive
phosphorus (NaOH-NRP, microbial phosphorus), HCl-P (Ca-bound fraction), and residual-
P (refractory P of the Si crystal lattice and organic P fraction) (Text S1). The continuous
extraction solution of Fe forms in sediment was selected as follows, including exchangeable
form, carbonate bounded form, ferric and manganese oxide form, organic matter bounded
form and residual form [32]. Total Fe in sediment was pretreated by microwave digestion
using HNO3-HF-HCl (3:1:1) and monitored by an inductively coupled plasma optical
emission spectrometer (Agilent, Santa Clara, CA, USA) [32]. The details are provided in
Text S1. The reference soil standards of TC, TN, TS, TP, and Fe were GBW07407/GSS-7
and GBW07405/GSS-5. They were used to calculate the instrument accuracy and the
extraction recovery.

2.3. Data Analysis

The molecules’ diffusion fluxes were calculated by Fick’s first law from the sediment
culture experiment [33]. It was assumed that there was no benthic and hydrodynamic
disturbance. According to Fick’s first law, the diffusion fluxes of NH4

+-N, NO3
−N, and

labile P at SWI were as the following Equation [33]:

Fdiffusion= Fw+Fs= −D0
∂Cw

∂Z
− ϕ × Ds

∂Cs

∂Z
(3)
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where, Fw means the diffusion flux of the overlying water. Fs means the diffusion flux of
the pore water in the surface sediment. Therefore, if the Fdiffusion value is higher than 0, the
sediment will play a nutrients contributor to the overlying water as the internal source. Its
contribution can be quantified as the release flux by Fdiffusion. ∂Cw/∂Z is the concentration
gradient with the linear variation of P and N in the overlying water at SWI, ∂Cs/∂Z is that
in surface sediment at SWI, which was usually within a spatial range of several tens of mm.
ϕ is the porosity of surface sediment. D0 is the ideal diffusion coefficient of the infinite
dilution solution. Ds denotes the effective diffusion coefficient of ions in sediment. The
details are provided in Text S2.

The contribution of diffusion flux of NH4
+-N, NO3

−-N and labile P at SWI to the
overlying water, ContributionOverlying, was calculated by Equation (4) [28]:

ContributionOverlying= Cd/C = tw/td

Cd= Fdiffusion·tw/H

td= C·H/Fdiffusion

(4)

where, Cd is the concentrations of diffused NH4
+-N, NO3

−-N, and labile P from the
pore water in the sediment to the overlying water, C is NH4

+-N, NO3
−-N, and labile P

concentration of the overlying water, H is water depth, td is the diffusion lodging time of
NH4

+-N, NO3
−-N, and labile P, tw is hydraulic retention time. The higher the Fdiffusion and

tw and the lower the H, the higher the Cd .
The contribution of diffusion flux of NH4

+-N, NO3
−-N, and labile P at SWI to the

sediments, Contributionsediment, was calculated by Equation (5) [28].

ContributionSediment= Fdiffusion/Fdeposited= Fdiffusion/Cs·ks (5)

where, Fdeposited is deposited rate,ks is sediment accumulation rate, 0.176 g/(cm2·year) for
Hongfeng Lake [34], Cs is molecule concentration in surface sediments. The details are
provided in Text S2. The correlation analysis and the heat map were drawn, and diagrams
of vertical sections were through spatial interpolation by Origin Pro Learning Edition 2021.

2.4. Hydrodynamics Modeling by Environmental Fluid Dynamics Code

EFDC was used to simulate velocity, total bed shear, and T. About 1418 grids of
Hongfeng Lake were divided using CVLGrid1.1 (DSI, LLC., Washington, DC, USA).
Notepad++ was used for data input. The three-dimensional hydrodynamic models were
structured and simulated by EFDC Explorer 10.1.4 (DSI, LLC., Edmonds, WA, USA) [12]
with a time step of 0.795 s and 40 layers vertically. The boundary was the water level of
Hongfeng Lake, within which the flow field was simulated. The wave parameters, e.g.,
wave height, wave direction and wave period, are calculated by the Sverdrup, Munk, and
Bretschneider (SMB) model, and then used to calculate total bed shear stress via the Grant
Madsen approach [22]. The climate data were obtained from National Meteorological
Science Data Center (https://data.cma.cn/), including wind direction, wind speed, air T,
humidity, air pressure, precipitation (Figure S1), and solar radiation. Cloud-cover data
were obtained from weather databases. Topographic data were obtained by 3.5 kHz and he
correlation analysis and the dual sonar (Stratabox, SyQwest Inc., Cranston, RI, USA). The
detailed flow and water level data of inflow rivers were available from the Environmental
Protection Monitoring Station of Two Lakes and One Reservoir, Guiyang. EFDC simulation
was carried out to adjust the parameters and validate the model using data in 2013. The
model parameters are shown in Table S2. Initial conditions are input to the model based on
the measured values. The 6 monitoring sites of T inside Hongfeng Lake were used for the
validation (Table S3). The data of flow and total bed shear inside the reservoir are lacking,
and the model is validated by T. The deviation of simulated water T was he correlation
analysis and the compared with the measured value (Table S4), indicating this model is
practicable. Hydrodynamics of January 2017 and July 2019 were simulated.

https://data.cma.cn/
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3. Results
3.1. The Seasonal Variation of Hydrochemistry

In the winter, T, pH, and DO in Hongfeng Lake have little vertical change, ranging
from 12.3 to 14.8 ◦C, 7.92 to 8.45, and from 6.19 to 8.63 mg·L−1, respectively. There are
slight differences between North lake and South lake sites, with 1.5 ◦C, 0.7, and 2.2 mg/L,
respectively. Large variation can be observed in the summer, particularly DO ranging
from 0.23~10.13 mg/L. T and pH ranged from 20.39 to 28.29 ◦C and 7.21~9.11, respectively.
The chlorophyll, TDS and ORP were 3.11~90.07 µg/L, 176~314 mg/L, and −200~232 mV,
respectively (Figures 2 and S4).

Figure 2. Hydrochemistry distribution in 24 profiles on 29 July 2019 (from Taoguayuan river outlet to Yangchang river
outlet, which was 4 km and 14 km from the dam, respectively). (a) water T, (b) pH, (c) chlorophyll, and (d) TDS.

In summer, the values of T, pH, and DO concentration decreased with depth, while
TDS showed a reversed trend (Figure S4). There did appear to be an oxycline in that
oxygen is present in the epilimnetic zone (area with water depth ranges from 0 to 5 m).
Nutrients were taken up by plankton in the epilimnetic zone. There is a stratification
of DO. Degradation of organic matter consumed a large amount of oxygen, producing
TDS in the hypolimnion (Figures 2d and S4c,d). It can be observed that there was a
sharp decline at a depth of 3.0~5.0 m (the thermocline) (Figure 2a). The thermocline and
hypolimnion occurred in the static reservoir, not in the river-transition zone and river
outlet (Figure S5). The variation of pH (Figure 2b) was consistent with that of water T and
DO. The transparency was 1.75 m. Algae growth was mainly distributed in the euphotic
zone (area with water depth < 1.75 m) (Figure 2c). Higher chlorophyll concentration also
was corresponding to a higher concentration of DO produced by photosynthesis owing to
plenty of light.

3.2. The Seasonal Difference of N and P Concentrations in Water

In winter, there was little vertical difference of N and P concentrations. The con-
centrations of TN, NH4

+, NO3
−-N, TP, and PO4

3−-P in water in winter were lower than
those in summer, while high NO2

−-N concentration was observed in winter (Figure 3
and Table 1). However, the vertical changes of N and P did not show an obvious trend in
summer (Figure 3), which may be related to the rainstorm of 57.3 mm during the sampling
period, indicating the influence of hydrodynamic and external input by runoff during a
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rainfall event. The average ratio of NO3
−-N: PO4

3-P was 111 ± 7 in winter and 100 ± 52 in
summer. Relatively higher average concentrations and standard deviations at the water
depths of 17 m, 18 m, 28 m, and 36 m in summer were observed, particularly at the bottom
water of HF1, HF2, HF4 and HF6 (water depths are provided in Table S1). Spatially, the
contents of TN and NH4

+ in North lake were higher than those of South lake both in winter
and summer, whereas NO2

−-N concentrations were reversed (Table 1).

Figure 3. The profile variation of TN (a), NH4
+-N (b), NO2

− -N (c), NO3
−-N (d), TP (e), PO4

3−-P (f), NO3
−/PO4

3− mole
ratio (g), and TDS (h) of water in Hongfeng Lake during winter (2 January 2017, HF1~HF2) and summer (12 July 2019,
HF1~HF6). Red squares and black cycles represented the values in winter and summer, respectively.

Table 1. The average concentration of N and P (mg/L) at South lake and North lake of water profiles
in Hongfeng Lake during winter and summer.

Number
Winter Summer

North Lake South Lake North Lake South Lake
12 8 69 61

TN 2.57 ± 0.21 2.51 ± 0.12 4.41 ± 1.48 3.51 ± 1.59
NO3

−-N 1.62 ± 0.18 1.56 ± 0.06 1.63 ± 0.57 1.76 ± 0.93
NO2

−-N 0.03 ± 0.01 0.04 ± 0.00 0.01 ± 0.01 0.02 ± 0.02
NH4

+-N 0.25 ± 0.14 0.20 ± 0.06 0.28 ± 0.22 0.21 ± 0.17
TP 0.04 ± 0.01 0.04 ± 0.01 0.04 ± 0.02 0.04 ± 0.02

PO4
3−-P 0.03 ± 0.00 0.03 ± 0.00 0.04 ± 0.01 0.04 ± 0.01
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3.3. The NH4
+-N, NO3

−-N and Labile P Concentrations in Overlying Water and Pore Water

In winter, the average labile P concentration of overlying water was 0.007 mg/L,
which is lower than that in the pore water (0.056 mg/L). In summer, the average NH4

+-
N, NO3

−-N, labile P concentrations, and the N/P mole ratio of overlying water were
0.85 mg/L, 0.48 mg/L, 0.15 mg/L, and 14, respectively. Similarly, all the concentrations
in the overlying water were lower than those in the pore water, 1.11 mg/L, 0.88 mg/L,
0.33 mg/L and 62, respectively (Figure 4). The standard deviations of NH4

+-N, NO3
−-N

and labile P concentrations were mainly caused by the large redox difference at SWI.

Figure 4. The concentrations of labile P at SWI in winter (a), labile P concentrations (a), NO3
−-N concentrations (b),

NO3
−-N: labile P mole ratio (c), and NH4

+-N concentrations (d) at SWI in summer.

3.4. The TC, TOC, TN, TP, TOP, TS, and Fe Content in the Sediment

The average TC, TN, TP, TS, and total Fe concentration of surface sediment was 8.24%,
0.50%, 0.16%, 0.61%, and 2.23% in winter, which were higher than in summer with average
values 4.48%, 0.44%, 0.11%, 0.10%, and 2.13%, respectively. TOC and TOP concentration
were 5.03% and 0.13% in winter, 2.68% and 0.07%, in summer, respectively. For other
forms, the average NH4

+-N and NO3
−-N content of surface sediment was 205 mg/kg and

21 mg/kg, accounting for 5% and 0.51% of TN, respectively. NH4Cl-P, BD-P, NaOH-SRP,
NaOH-NRP, HCl-P, and Residual P accounted for 1.24%, 5.12%, 50.01%, 13.41%, 13.21%,
and 17.01% of TP in winter, respectively. However, the fraction of NaOH-SRP and Residual
P was changed more than other forms in summer, accounting for 29.37%, and 25.87% of
TP, respectively (Figure S6). Therefore, the major forms of P were varied. Exchangeable P
with hydroxide ions (NaOH-SRP) and Residual P in winter were two major forms, while
microbial P (NaOH-NRP), Residual P, and Ca-P (HCl-P) were three major forms, accounting
for more than 70% of TP in summer. The higher pH and DO at SWI in winter than in
summer may result in the change of NaOH-SRP.

Compared with C:N:P of planktonic algae (Redfield-Ketchum-Richards reaction) of
106:16:1 (Redfield, Ketchum and Richards 1963), TC:TN ratio (10~52) and TC:TP ratio
(22~115) in sediments of Hongfeng Lake were much higher. The average TOC/TOP ratio
of the sediment profile was about 40 in Hongfeng Lake, which may be caused due to P
depletion by aquatic organisms that provided the source of organic matter. The main Fe
forms were ferric oxide form, and residual form in sediment accounting for 92.57% in
winter. The main Fe forms were carbonate bounded form, ferric oxide form, and residual
form accounting for 96.75%, in summer (Figure S6). The proportion of ferric oxide form
in winter was 53.64%, which was higher than that in summer of 48.76%, and aerobic
environment in winter is favorable for Fe enrichment in this form.
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3.5. The Seasonal Difference of Diffusion Fluxes of NH4
+-N, NO3

−-N and Labile P

The mean release of labile P in Hongfeng Lake calculated by Equations (1)–(3) was
2.05 mg/(m2·day) in winter. The average diffusion fluxes of NH4

+-N, NO3
−-N and labile

P at SWI calculated by Equations (1) and (3) were (3.4, −37.2 and 0.9) mg/(m2·day) in
summer, respectively. As for NH4

+-N, the release flux in North lake was higher than that of
South lake. NO3

−-N in HF2 (North lake) and HF3 (South lake) was released from sediment
to overlying water, whereas in other sampling sites was not released. The release flux of
labile P in HF5 was the largest in summer (Table 2). The contribution of diffusion fluxes
of NH4

+-N, NO3
−-N, and labile P at SWI to overlying water in summer were calculated

by Equation (4) ranging from 0.067 to 0.176, 0 to 0.847, and 0 to 0.602, respectively, which
were lower than the previous study in the 1990s under serious eutrophication condition
(Table 2) [28]. The contribution of diffusion fluxes of NH4

+-N, NO3
−-N and labile P to the

sediments in summer were calculated by Equation (5) and ranged from 0 to 0.009, from 0
to 0.012, and from 0 to 0.520 in summer, respectively. The contribution is related to water
depth, N and P concentration of overlying water and sediment, mainly determined by
diffusion flux. The higher the diffusion flux, the higher the concentration.

Spatially, the average NO3
−-N and labile P diffusion fluxes in Southlake were lower

than that in North lake in summer, whereas high labile P diffusion flux in winter was
observed in South lake (Table 2). In winter, the deposited fluxes of TP and dissolved
inorganic phosphorus were 612 and 179 times of the release flux of labile P calculated by
Equations S5 and S6 in Supporting Information, respectively. In summer, the deposited
fluxes of TN and TP were 429 and 5447 times of the diffusion flux of dissolved inorganic
N and labile P, respectively (Table S5). The deposited fluxes of NH4

+-N, NO3
−-N, and

phosphate were 28, 1515, and 1591 times of their diffusion fluxes, respectively (Table S6).

3.6. The Hydrodynamic Seasonal Difference by Modeling

The simulated results of velocity and T by EFDC showed that there was water
exchange between North lake and South lake through the narrow, tortuous waterway
(Figure 5), which may be attributable to the water plant, which uses 400,000 m3 of water
every day in South lake (Figure 5a, “-water plant”, data form Environmental Protection
Monitoring Station of Two Lakes and One Reservoir, Guiyang). Correlation analysis
showed that higher input river flow increased the velocity and total bed shear (Figure S7).
There was a correlation that water vertical velocity = 2.0 × 10−6 cumulative daily radiation
+ 0.0003 (R2 = 0.01, p < 0.01, Figure S8). Solar radiation has little effect on the mean vertical
velocity of the water. The velocity of water and total bed shear in summer were greater
than those in winter (Table S7). The potential reason mainly was the higher inflow of rivers
and more rainfall in summer. The vertical velocity was very slow and barely changed
in the winter of HF1, HF2~HF5 (Figure S9). The reason why the vertical velocity of HF2
fluctuated greatly is that it is located near the dam outlet. The total bed shear in HF2 was
also the highest in summer (Table 2). Vertical velocities of HF1 and HF2 in summer were
higher than those in winter (Table 2). The variations of water velocity and total bed shear
were greater in summer than that in winter (Figures S9 and S10).
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Table 2. Diffusion fluxes, their contribution to overlying water and sediment of NH4
+-N, NO3

−-N and labile P, bottom velocity, vertical velocity, and total bed shear at HF1~HF6,
Hongfeng Lake.

Sites
Mixing Period Stratified Period

HF1 HF2 HF1 HF2 HF3 HF4 HF5 HF6 HF1 b HF2 b

NH4
+-N flux c 6655 a 6233 a 37 ± 105 83 ± 131 5 ± 22 −47 ± 68 e 15 ± 45 78 ± 403 6258 10458

Contribution Overlying 70.9 66.4 0.005 ± 0.014 0.008 ± 0.012 0.006 ± 0.023 0.016 ± 0.050 0.002 ± 0.008 28.3 54.4
Contribution Sediment 9.3 19.4 3.13 ± 8.85 0.59 ± 0.18 1.24 ± 5.09 1.31 ± 2.04 0.56 ± 0.29 12.9 25.1

NO3
−-N flux c 1744 a 2116 a −1553 ± 3371 643 ± 893 328 ± 359 −362 ± 231 e −466 ± 1654 e −436 ± 777 e 1472 1447

Contribution Overlying 37.1 56.3 0.052 ± 0.072 0.044 ± 0.048 16.6 22.6
Contribution Sediment 0.0479 0.119 0.024 ± 0.033 0.110 ± 0.120 0.0528 0.0751

Labile P flux c 102 a, 55 a, 71.7 108 a, 55 a, 82.0 1.5 ± 0.3 15 ± 39 1.3 ± 1.3 3 ± 3 25 ± 42 8 ± 8 38, 31 25, 15
Contribution Overlying 0.20 a; 0.40 0.20 a; 0.06 0.003 ± 0.001 0.006 ± 0.013 0.010 ± 0.010 0.004 ± 0.004 0.098 ± 0.162 0.007 ± 0.007 0.14; 0.15 0.08; 0.08
Contribution Sediment 239 a, 12.6 223 a, 5.64 0.061 ± 0.011 2.22 ± 4.92 0.35 ± 0.35 0.14 ± 0.15 3.46 ± 5.73 5.31 ± 5.47 239 223

Bottom velocity 10−2 m/s 3.75 ± 1.11 3.62 ± 1.40 1.85 ± 1.10 2.36 ± 0.84 0.30 ± 0.11 1.10 ± 0.32 1.69 ± 0.70 1.16 ± 0.85
Vertical velocity 10−4 m/s 2.67 ± 2.78 12.96 ± 9.02 2.81 ± 0.41 15.76 ± 5.94 −0.35 ± 0.43 −3.8 ± 0.89 f −6.2 ± 0.39 f 1.29 ± 1.36
Total bed shear 10−2 N/m2 3.92 ± 2.10 3.88 ± 2.48 1.23 ± 2.72 1.45 ± 1.35 0.04 ± 0.04 0.55 ± 0.63 1.31 ± 2.43 1.31 ± 2.43

Note: a means the HPO4
2− data on 12 February 1999, and 29 April 1998, N data on 29 April 1998, b means P data on 30 July, 3 September 1999, N data on 3 September 1999 [28]. c the unit of flux is

10−6 nmol·cm−2·s−1. e minus sign, −, means molecule’s diffusion from overlying water to pore water. f minus sign, −, refereed to the negative direction in sigma three dimensions coordinate. The unit of
Contribution Sediment was 10−3. HF1, HF3, HF4 and HF5 were in South lake, HF2 and HF6 were in North lake.



Water 2021, 13, 3232 11 of 17

Figure 5. Flow field in winter (a) and summer (b); average velocity of the vertical profile in winter
(c) and summer (d) simulated by EFDC. The arrow represents the direction of flow, + means input
river, −means the output of the reservoir.

4. Discussion
4.1. Factors Affecting Hydrochemistry, N and P Concentrations in Water and Sediment

The characteristics of T changed in the river-transition zone and static water area were
varied due to the difference in the absorbing capacity by light radiation and hydrodynam-
ics [12]. T simulation results did not show good thermal stratification in the river areas
and transition areas which resulted in strong hydrodynamics, and frequent exchange of
water (Figure S11). However, simulation of T showed good thermal stratification in the
static and deep-water zone. T and water depth were the most important factors regulating
hydrochemistry, especially in the stratified period [35]. There were positive correlations
between T and pH, DO and ORP. The strong solar radiation continuously heated the surface
water of the reservoir, the high specific heat capacity, and the low heat conductivity of
water blocked the vertical mixing of the sub-deep lake [12,35]. Correlation analysis showed
that TDS was negatively correlated with T, pH, ORP, DO, and water depth. Although
velocity had poor correlations with hydrochemistry, vertical velocity had more effect on
TDS, ORP, and DO than horizontal velocity. The chlorophyll content of the euphotic zone
was higher in the area with a lower velocity, which may decrease the NH4

+ and PO4
3−

concentrations owing to algal growth under lower velocity (Figures 2 and 5). Correlation
analysis showed that water T, ORP, and DO affected TN, NH4

+ concentrations, and ORP
affected TP concentration (Figure 6a). In the stratified period, organic biological oxidation
at SWI led DO of bottom water was reduced [36]. The hydrodynamic and photosynthesis
after the oxygen mechanism of the euphotic zone and the hypolimnion were not enough to
offset the decrease of DO in the bottom water. The relatively high N and P concentrations in
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summer mainly was attributable to more contribution from the external input and flow [7].

Figure 6. Correlation analysis among N, P, and other indexes of surface water ((a), n = 104), overlying water ((b), n = 50),
and pore water ((c), n = 212) in Hongfeng Lake in summer.

As for the pore water of the whole sediment cores, PO4
3− concentration was negatively

correlated with that of NH4
+ and Fe2+ (Figure 6c). This may be related to the competitive

adsorption of inorganic acids from organic matter degradation [26]. The organic-metal ion
binding group increases the P adsorption capacity of sediments [31]. As the limited DO in
sediments, the oxidative degradation of organic matter was completed by replacing O2 with
other electron acceptors, MnOOH, NO3

−, Fe3+, and SO4
2− (provided in Text S3). Under

the reduction environment of the deeper sediment, S was easily reduced and generated
the insoluble metal sulfide, e.g., MnS, FeS2. Mn2+ and S2−, which were less than Fe2+, had
little correlation with other factors.

4.2. Factors Affecting the Diffusion Fluxes of NH4
+, NO3

−, and Labile P

The change of seasonal redox conditions at SWI affects the internal release of N and P.
Generally, anaerobic conditions promoted the reproduction of anaerobic microorganisms
and accelerate the decomposition and release of N (particularly NH4

+) and P in organic
matter, which resulted in higher release flux in summer than an oxygen-rich environment
in winter [28,37] (Table 3). The adsorption and desorption of unformed iron oxides and
P in sediments was the main mechanism of P burial and release in sediments. The BD-P
combined with Fe and Mn oxides exchanged between the overlying water and sediment,
when the redox conditions changed [36,38]. The total Fe: total P ratio ~5 (adsorption of
HPO4

2− by iron oxide) [38] of suspended particles was lower than that in sediments of
a range from 13 to 17, where P (HPO4

2−) was adsorbed by iron oxides and iron hydrox-
ides [17]. Fe concentration of ferric oxide form in winter was much large than that in
summer, the decreased ferric oxide form Fe also led to more reduced Fe, further affecting P
release [16,17].

After the effective external pollution control, the average diffusion flux of NH4
+-N,

NO3
−-N, and labile P in the present study was 39.8, 10.7, and 3.4 times lower than in

1998 [28]. Compare with the result in 2014, the average diffusion flux of labile P in the
present study was only half of it of 2014 [21], which may be because of the increasingly
strict watershed management [28], e.g., sewage treatment plant and fertilizer application
control [39–41]. The internal control, inactive agent placement in the water intake area
of the water plant (HF3) was tried in 2013. The release fluxes of NH4

+-N and labile P in
HF3 were the lowest among the 6 sampling sites. After 6 years, the inactive agent seems
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to be working. However, the diffusion fluxes of Hongfeng Lake in this study may be on
the low side. The treatment of lake eutrophication is very difficult. Therefore, long-term
control of internal and external N and P could reduce the release flux of N and P in the
reservoirs system.

Table 3. The diffusion fluxes of labile P, NH4
+-N and NO3

−-N at SWI.

Sites Conditions
Diffusion Flux

NH4
+-N

(g m−2 yr−1)
NO3

−-N
(g m−2 yr−1) Labile P (mg m−2 yr−1)

Baihua Lake, China [28] Fick’s First Law 31.6 (28.0~34.9) 5.8 (3.8~8.2) 524.5 (288.3~755.6)
Hongfeng Lake, China [28] Fick’s First Law 31.9 (26.8~45.0) 7.5 (6.4~9.3) 521.9 (146.0~1051.2)
Hongfeng Lake, China [44] Static incubationconditions 456.3
Hongfeng Lake, China [19] Fick’s First Law 270 (11~596)

Hongfeng Lake, China This studyFick’s First Law 0.8 (−2.7~1.8) −0.7 (−22.4~12.7) 154.9 (1.6~910.8)
Three Gorges Reservoir, China [45] 0.8 (0.1~1.4) 2.2 (−1.1~4.7)
Danjiangkou Reservoir, China [43] Fick’s Fist Law 1.0~2.6 14.6~65.7

Static incubation conditions 4.8~9.1 1116.9~2197.3
Shanzi Reservoir, China [46] 251.9~897.9

Zhouchun Reservoir, China [47] 22.9~48.6 146.0~474.5
Daheiting Reservoir, China [14] 1.3~40.3 36.5~584.0

Yuqiao Reservoir, China [42] 7.5~91.6 401.5~4854.5
Hengshan Reservoir, China [21] 1.3~15.3 138.7~416.1

Taihu Lake, China −41.6~48.1 [48] −12.8~1.5 [49] −1186.3~2069.6 [50]
Dianchi Lake, China [51] 7.2 (N) 270.0

Erhai Lake, China [52] 2.3~3.7 (TON),1.9~5.2 (DIN) 25.5~32.9 (DIP), 14.6~18.2
(DOP)

Yangcheng Lake, China [53] 0.4 0.6 43.8 (TP)
Luoma Lake, China [54] 4.4 50
Apopka Lake, USA [37] 9.1 365.0
Eucha Lake, USA [55] Aerobic 378.0

Anaerobia 1606.0
Aerobic add alum 401.5

Anaerobic add alum 200.8
Western Lake Erie, Canada [20] Anoxic 401.5~4296.0

To compare the nutrient release flux with other lakes, Table 3 listed other research re-
sults from references. It can be found that the labile P release fluxes of Yuqiao Reservoir [42],
Western Lake Erie [20], and Danjiangkou Reservoir [43] were 17, 15, and 11 times higher
than that in Hongfeng Lake, respectively (Table 3). The NH4

+-N release fluxes of Yuqiao
Reservoir [42], Baihua Lake [28], Daheiting Reservoir [14], Hengshan Reservoir [21], and
Danjiangkou Reservoir [43] were 66, 42, 28, 15, 11, and 9 times higher than that in Hongfeng
Lake, respectively (Table 3). The release flux ratio of NH4

+-N/labile P in 18 reservoirs or
lakes (Table 3) varied from 4 to 345 with the average value was 61 ± 81, indicating the
imbalance of internal N and P release.

To identify the potential influence from hydrodynamic, correlation analysis was done
and shown in Figure 7. It is worth noting that positive correlations among the bottom
velocity and the diffusion fluxes of labile P, NH4

+-N, and NO3
−-N were observed (Figure 7),

indicating that hydrodynamic drive the diffusion fluxes of N and P. The fluxes were higher
in winter 2017 than those in summer 2019, which agreed with the velocity of the bottom
water and total bed shear. In addition, the negatively correlated relationships among
sediment thickness, the bottom velocity and total bed shear, which indicated that there
may be less sediment in the area with strong hydrodynamic. However, based on available
data from 12 reservoirs or lakes (Table 3), the catchment area, water depth, catchment area:
water area and water area: depth had little effect on labile P and NH4

+-N diffusion flux.
There were positive relationships between labile P and NH4

+-N diffusion fluxes.



Water 2021, 13, 3232 14 of 17

Figure 7. Correlation analysis among labile P, NH4
+-N and NO3

−-N diffusion fluxes, velocity, total bed shear, sediment
thickness and water depth in Hongfeng Lake on 29 July 2019 ((a), n = 6), correlation analysis among labile P, NH4

+-N
diffusion fluxes, water depth, catchment area and water area (data were referred to Table 3) ((b), n = 12).

5. Conclusions

There were significant seasonal and spatial differences in N and P concentrations,
diffusion fluxes, velocity, and total bed shear of Hongfeng Lake. The concentrations of N
and P of water in winter were lower than that in summer, expected NO2

−. The average
concentration of labile P of pore water was 8 times that of overlying water in winter. The
concentrations of NH4

+, NO3
−, and labile P of pore water were 1.3, 1.8, and 2.2 times that

of overlying water in summer, respectively. N and P contents in sediment in winter were 1.1
and 1.6 times that in summer. The main P forms changed from NaOH-SRP and residual P
in winter to NaOH-NRP HCl-P and residual P in summer. The main Fe forms changed from
ferric oxide form and residual form in winter to carbonate bounded form, ferric oxide form,
and residual form in summer. In summer, the calcium deposited by river erosion combines
with P and Fe under alkaline conditions. Excess Fe can effectively inhibit P release. The
mean release of labile P was 2.05 mg/(m2·day) in winter, 2017. The average diffusion fluxes
of NH4

+-N, NO3
−-N and labile P were 3.4, −37.2, and 0.9 mg/(m2·day) in summer, 2019,

respectively. The effect of diffusion fluxes on overlying water and sediment was very weak.
Those values were less than the previous study in Hongfeng Lake. This is mainly due to
internal and external N and P control. Under effective water management, the nutrient
release fluxes greatly decrease compared to 30 years ago. Using EFDC modeling, the
bottom velocities, vertical velocities, and total bed shear in summer (1.2, 2.3, and 1.5 times,
respectively) were observed than in winter. Solar radiation and water depth affected the
distribution of the T field, which affected the vertical distribution of hydrochemistry, N
and P, subsequently resulting in the position of the thermocline during the stratified period.
Correlation analysis suggested that bottom velocity and total bed shear accelerated the
diffusion fluxes of NH4

+-N, NO3
−-N, and labile P, which is consistent with our previous

hypothesis. The results also suggested it is static necessary to control the input of the
external N and P in summer. In the future, atmospheric dry and wet deposition, sediment,
and water quality models need to be combined to understand the nutrient cycles in lake or
reservoir systems.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/w13223232/s1. Figure S1: Average solar radiation and precipitation in 30 years. Atmo-
spheric pressure, dry bulb temperature, relative humidity, rainfall, evaporation, wind speed and
wind direction in 2013, 2017 and 2019, Figure S2: Sediment core sampling, storage, and treatment.
(a) portable sediment sampler, (b) Sediment cores collected with a portable sediment sampler, (c) clear
sediment-water interface, (d,e) DGT technology devices added at sediment-water interface, (f) films
of ZrO-AT devices cut with 2-mm interval by the ceramic knife, (g) color film of ZrO device by

https://www.mdpi.com/article/10.3390/w13223232/s1
https://www.mdpi.com/article/10.3390/w13223232/s1
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molybdenum antimony color reagent in winter, (h) the thin film of ZrO scanned in a scanner,
(i) sediment cut with 1-cm interval. Figure S3: Water temperature (a), pH (b), and DO (c) of water
profiles in Hongfeng Lake in winter, Figure S4: Water temperature (a), pH (b), DO (c), ORP (d),
Chlorophyll (e), and TDS (f) of water profiles in Hongfeng Lake in summer, Figure S5: Water tem-
perature of river outlets(a) and still water zone (b) of water profiles in Hongfeng Lake in summer,
Figure S6: P and Fe concentration and proportion of surface sediment of Hongfeng Lake, Figure S7:
Correlation analysis among inflow, lake water velocity and total bed shear, Figure S8: Linear rela-
tionship between water vertical velocity and cumulative daily radiation, Figure S9: The simulated
velocity magnitude of surface water, the vertical velocity, bottom water, and total bed shear in sample
sites in January. The legend from top to bottom showed HF1~ 6 in turn, Figure S10: The simulated
velocity magnitude of surface water, the vertical velocity, bottom water, and total bed shear in sample
sites in July. The legend from top to bottom showed HF1~ 6 in turn, Figure S11. The water velocity
(a) Day 14:00 29/07/ 2013; (b) Light 20:00 30/07/2013; (c) Temperature in the profiles of Hongfeng
Lake; (d) The black line in Hongfeng Lake is the section. Table S1: Characteristics of the 24 water
sampling sites and 6 sediment sampling sites, Table S2: Hydrodynamic and temperature modules
parameter of Hongfeng Lake in EFDC, Table S3: Sample points information for verification and input
data, Table S4: Verification of temperature module of Hongfeng Lake by EFDC and measured data,
Table S5: Concentration in sediment, deposit rate, enrichment degree in sediment, release flux of N
and P at the sediment-water interface in Hongfeng Lake, Table S6: Porosity ϕ, diffusion coefficient
Ds, diffusion flux of NH4

+, NO3
−, labile P surface sediment concentration, deposited fluxes of N

and P, and the contribution rate of diffusion flux on the overlying water and sediment in Hongfeng
Lake, Table S7: Velocity and total bed shear at HF1~HF6, Hongfeng Lake, in winter (W) and summer
(S) (mean ± standard deviation).
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