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Abstract: In this work, we analyze the complexity of monthly rainfall temporal series recorded from 
1962 to 2012, at 133 gauge stations in the state of Pernambuco, northeastern Brazil. To this end, we 
employ the modified multiscale entropy method (MMSE), which is well suited for short time series, 
to analyze the rainfall regularity across a wide range of temporal scales, from one month to one 
year. We identify the temporal scales that distinguish rainfall regularity in the inland semiarid 
Sertão region, the transitional inland Agreste region, and the coastal, tropical humid Zona da Mata 
region, by comparing the results for stations across the study area and performing statistical signif-
icance tests. Our work contributes to the establishment of multiscale methods based on information 
theory in climatological studies. 
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1. Introduction 
The northeast of Brazil (NEB) is one of the world’s most densely populated drought 

regions, and thus among the global regions most vulnerable to the effects of climate 
change. It covers 18.26 percent (1,542,000 km²) of the total national territory, and consists 
of nine Brazilian states: Maranhão, Piauí, Ceará, Rio Grande do Norte, Paraíba, Pernam-
buco, Alagoas, Sergipe, and Bahia. These states (except Maranhão), together with part of 
the Minas Gerais state, form the so-called Drought Polygon (Polígono de Secas), whose 
population of more than 53 million is severely affected by the economic, social, and envi-
ronmental consequences of recurring droughts [1,2]. 

Observational information and climate change projections from regional climate 
models suggest an increase in dryness in the region, with rainfall reductions and longer 
dry spells, leading to drought and the growth of areas with arid conditions in the second 
half of the 21st century [3]. The spatial and temporal variability of rainfall in NEB, and its 
relation to global circulation patterns, was extensively studied [4–9]; however, much less 
is known about precipitation on the local state level [10–13], which is important for the 
planning of water-related mitigation measures for adverse events such floods and 
droughts, as well as for the sustainable use of water resources. 

In order to increase the understanding of the temporal and spatial rainfall variability, 
which is important for better planning of use of water resources and protection from re-
lated natural hazards, as well for the evaluation and development of climate models, it is 
necessary to augment the knowledge about climate variability on different temporal and 
spatial scales. Traditionally, rainfall data were analyzed using methods from classical sta-
tistics, and that remains the main quantitative tool in hydrological studies providing in-
formation about spatial and temporal variability, long-term trends, extreme values [14–
18], and the validation of data from satellite products and reanalysis [19–21]. 
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On the other hand, over the last decades, novel concepts from complex systems sci-
ence have been increasingly used for data analysis, thus contributing to a better under-
standing of hydrological processes. These studies include fractal and multifractal methods 
[22–25], chaos theory [26,27], information measures [28–30], and complex networks [31–
33] that have been extensively used to assess the degree of nonlinearity and the complexity 
of rainfall dynamics. Recently, entropy measures have attracted considerable attention as 
a tool to analyze the irregularity and the rate of information flow in order to access differ-
ent regimes in hydrological temporal series [34–38]. 

However, hydrological time series such as rainfall and streamflow exhibit variability 
at different temporal scales, and comprehensive analysis should be performed through a 
multiscale approach. Multiscale sample entropy (MSE) was introduced by Costa et al. [39] 
as a generalization of sample entropy [40], which is calculated for multiple time scales and 
can describe the structural complexity of different components of underlying stochastic 
processes. In hydrology, MSE was used to analyze streamflow data and was useful to 
study the alterations related to human activities [41–43], though much less is known about 
the multiscale complexity of rainfall. 

Chou [44] used the MSE method to study the multiscale complexity of rainfall and 
runoff and showed that the entropy measures increase with the scale factors, and that at 
all temporal scales the rainfall time series exhibit higher entropy values (a lower degree 
of regularity) than the runoff time series. However, MSE has reliability issues when ap-
plied on short time series due to the coarse-grained procedure (used to access multiple 
time scales) that shortens the length of time series. 

In this work, we study the multiscale complexity of rainfall dynamics for the state of 
Pernambuco, whose large part of the territory (about 70%) belongs to the “Drought Poly-
gon” (Polígono das Secas) and is heavily affected by rainfall seasonal and interannual var-
iability. We analyze the monthly data recorded during the period from 1962 to 2012, in 
133 pluviometric stations which are rather homogeneously distributed over the state’s 
territory and the spatial distribution of rainfall complexity and its relations with different 
climate regimes. Each dataset contains 612 monthly rainfall values, and in order to access 
the different temporal scales, we use the modified multiscale entropy method (MMSE) 
[45], which uses a coarse-grained procedure that is more suitable for short time series. 

2. Methods 
2.1. Study Area 

Pernambuco is a state located in the eastern part of the NEB, between the parallels 7° 
15′45′′ S and 9°28′18′′ S and meridians 34°48′33′′ W and 41°19′54′′ W. It is bordered by the 
states of Alagoas and Bahia (south), Piaui (west), Paraiba and Ceará (north), and the At-
lantic Ocean in the east (Figure 1). Pernambuco is divided into three geographical regions: 
the Atlantic Forest zone (Zona da Mata), which stretches approximately 70 km from the 
sea to the Borborema mountain chain, a subhumid transition zone (Agreste), and, to the 
west of the Borborema chain, the largest semiarid region (Sertão). 
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Figure 1. Geographical location of the state of Pernambuco, Brazil, and the spatial distribution of the ITEP weather stations. 
The three representative stations located in Zona de Mata (lat = −8.05, lon = −34.92, Recife), Agreste (lat = −8.34, lon =−36.43, 
Belo Jardim), and Sertão (lat = −8.09, lon = −37.65, Custódia) are shown by red circles. 

The coastal region of Zona da Mata is covered by small patches of Atlantic rainforest, 
mostly on the tops of low hills (50–100 m high), and sugar cane fields at lower elevations. 
Caatinga is a semiarid biome dominated by tropical dry forest, pastures, and agricultural 
fields of subsistence crops (maize, beans, and cassava) that covers the majority of the 
Sertão region, while both the Atlantic Forest and Caatinga coexist in the transition zone 
of Agreste [46,47]. The climate in the coastal region is tropical humid with a rainfall gra-
dient from east (1500 mm) to west (700 mm), a rainy season from May to July, and a dry 
season from September to December. 

Sertão has a semiarid climate with less than 500 mm of precipitation annually, con-
centrated between February and April, and for the rest of the year, 9 months of dry 
weather [48]. Pernambuco is affected by both the droughts in Sertão and the floods in the 
coastal area, which increase risks to water, energy, food security, and natural hazards such 
as flash floods and landslides, and these conditions are expected to become more severe 
until the end of the century due to climate change. Future projections of those risks de-
pend on the reliability of information about future trends in regional precipitation, which 
is the main climatic variable used in the modeling of water-related risk indices such as the 
aridity index, and the flash floods and landslides vulnerability indices [3,49]. 

2.2. Data 
The data used in this work are monthly precipitation time series recorded during the 

period from 1962 to 2012 at 133 meteorological stations in the state of Pernambuco, Brazil, 
which are shown in Figure 1. Data are provided by the Meteorological Laboratory of the 
Institute of Technology of Pernambuco (Laboratório de Meteorologia do Instituto de 
Tecnologia de Pernambuco—LAMEP/ITEP). More details about this dataset can be found 
in ref. [50]. 

The original and deseasonalized (anomalies) monthly rainfall series for three repre-
sentative stations, chosen to illustrate the rainfall regime in different climatic zones, are 
shown in Figure 2. The rainfall anomalies are calculated as 

𝑋𝑋(𝑡𝑡) = (𝑥𝑥(𝑡𝑡) − 𝜇𝜇𝑡𝑡)/𝜎𝜎𝑡𝑡 
where 𝜇𝜇𝑡𝑡 and 𝜎𝜎𝑡𝑡 are the mean and the standard deviation of monthly rainfall 𝑥𝑥(𝑡𝑡), cal-
culated for each calendar month by averaging over all the years in the record. 
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The spatial distribution of the mean annual accumulated rainfall over the state of 
Pernambuco is shown in Figure 3, where a clear pattern can be observed: the decrease in 
annual rainfall amounts in the east–west direction, more rainfall in the costal Zona de 
Mata region, much less rain in the inland semiarid Sertão region, and intermediate rainfall 
amounts in the transition Agreste region. 

This pattern can also be observed in the rainfall series for three representative stations 
in Figure 2a. The anomalies series (Figure 2b) show more erratic behavior for Sertão and 
Agreste, where (especially in Sertão) droughts are more pronounced than in Zona de 
Mata, where the anomalies series are more uniform throughout the analyzed period. 

 
Figure 2. The original monthly rainfall series (a) and monthly anomalies (b) for three representative stations (red circles 
on the map in Figure 1). 

 
Figure 3. Mean yearly accumulated rainfall data (for the period 1962–2012) for the state of Pernambuco. 

2.3. Sample Entropy (SampEn) 
Richman and Moorman [40] introduced sample entropy (SampEn) as a measure of 

the rate at which new information is generated in a temporal series. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑆𝑆, 𝑟𝑟,𝑁𝑁) is 
defined as the negative natural logarithm of the conditional probability that two se-
quences that are similar at 𝑆𝑆 points remain similar at 𝑆𝑆 + 1 points, assuming that self-
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matches are excluded from the probability calculation. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 can be used to describe 
the regularity of temporal series, as it has lower values for time series with more frequent 
occurrence of sequences of similar consecutive values. Sample entropy method was used 
in physiology [51,52], geophysics [53], climatology [54], hydrology [30,34,35], and engi-
neering [55]. 

Sample entropy algorithm can be described through the following steps [40]: 
i. For a time series 𝑢𝑢(𝑖𝑖), 𝑖𝑖 = 1, . . ,𝑁𝑁 of length 𝑁𝑁, one first forms m—dimensional tem-

plate vectors 𝑥𝑥𝑚𝑚(𝑖𝑖) = {𝑢𝑢(𝑖𝑖 + 𝑘𝑘): 𝑘𝑘 = 0, … ,𝑆𝑆 − 1}, 𝑖𝑖 = 1, … ,𝑁𝑁 −𝑆𝑆 + 1; 
ii. The distance between two vectors 𝑥𝑥𝑚𝑚(𝑖𝑖) and 𝑥𝑥𝑚𝑚(𝑗𝑗) is defined as the maximum dif-

ference of their corresponding scalar components 
iii. 𝑑𝑑[𝑥𝑥𝑚𝑚(𝑖𝑖), 𝑥𝑥𝑚𝑚(𝑗𝑗)] = max {|𝑢𝑢(𝑖𝑖 + 𝑘𝑘) − 𝑢𝑢(𝑗𝑗 + 𝑘𝑘)|: 𝑘𝑘 = 0, … ,𝑆𝑆 − 1}; 
iv. One then counts the number 𝐵𝐵𝑖𝑖  of vectors 𝑥𝑥𝑚𝑚(𝑗𝑗) which are similar to 𝑥𝑥𝑚𝑚(𝑖𝑖) within 

the tolerance level 𝑟𝑟: 𝑑𝑑[𝑥𝑥𝑚𝑚(𝑖𝑖), 𝑥𝑥𝑚𝑚(𝑗𝑗) ≤ 𝑟𝑟, 𝑟𝑟 = 𝑟𝑟𝜎𝜎 (𝜎𝜎—standard deviation of 𝑢𝑢(𝑖𝑖), 𝑖𝑖 =
1, . . ,𝑁𝑁) and 𝑗𝑗 ≠ 𝑖𝑖 to exclude self-matches; 

v. Defining 𝐵𝐵𝑖𝑖𝑚𝑚(𝑟𝑟) = 𝐵𝐵𝑖𝑖
𝑁𝑁−𝑚𝑚+1

, the probability that two vectors will match for n points is 

given by 𝐵𝐵𝑚𝑚(𝑟𝑟) = ∑ 𝐵𝐵𝑖𝑖
𝑚𝑚(𝑟𝑟)𝑁𝑁−𝑚𝑚

𝑖𝑖=1
𝑁𝑁−𝑚𝑚

; 
vi. The steps i-iv are then repeated for vectors of length 𝑆𝑆 + 1, defining 𝐴𝐴𝑖𝑖𝑚𝑚(𝑟𝑟) = 𝐴𝐴𝑖𝑖

𝑁𝑁−𝑚𝑚+1
 

and 𝐴𝐴𝑚𝑚(𝑟𝑟) = ∑ 𝐴𝐴𝑖𝑖
𝑚𝑚(𝑟𝑟)𝑁𝑁−𝑚𝑚

𝑖𝑖=1
𝑁𝑁−𝑚𝑚

, where 𝐴𝐴𝑖𝑖 is a number of vectors 𝑥𝑥𝑚𝑚+1(𝑗𝑗) which are similar 
(at tolerance level 𝑟𝑟) to 𝑥𝑥𝑚𝑚+1(𝑖𝑖), and 𝐴𝐴𝑚𝑚(𝑟𝑟) is the probability that two vectors will 
match for 𝑆𝑆 + 1 points; 

vii. Finally, sample entropy (SampEn) is defined as 

𝑆𝑆𝐸𝐸(𝑆𝑆, 𝑟𝑟) = lim
𝑁𝑁→∞

�−𝑙𝑙𝑆𝑆
𝐴𝐴𝑚𝑚(𝑟𝑟)
𝐵𝐵𝑚𝑚(𝑟𝑟)� 

and can be estimated by the statistics 

𝑆𝑆𝐸𝐸(𝑆𝑆, 𝑟𝑟) = −𝑙𝑙𝑆𝑆
𝐴𝐴𝑚𝑚(𝑟𝑟)
𝐵𝐵𝑚𝑚(𝑟𝑟) 

SampEn can be expressed as −𝑙𝑙𝑆𝑆(𝐴𝐴/𝐵𝐵) where 𝐴𝐴 and 𝐵𝐵 are the total number of for-
ward template matches of length 𝑆𝑆 + 1 ad 𝑆𝑆, respectively [40]. 

Sample entropy can also be calculated with template vectors that are defined with 
time delay 𝛿𝛿 : 𝑥𝑥𝑚𝑚𝛿𝛿 (𝑖𝑖) = {𝑢𝑢(𝑖𝑖) 𝑢𝑢(𝑖𝑖 + 𝛿𝛿) …  𝑢𝑢(𝑖𝑖 + (𝑆𝑆 − 1)𝛿𝛿)} , 𝑖𝑖 = 1, … ,𝑁𝑁 − (𝑆𝑆 − 1)𝛿𝛿  [56]. 
The SampEn parameters chosen in this study are 𝑆𝑆 = 2, 𝑟𝑟 = 0.2 [40], and different val-
ues of 𝛿𝛿 for different time scales [45]. 

2.4. Multiscale Entropy (MSE) 
Costa et al. [39] introduced the concept of multiscale sample entropy (MSE) by calcu-

lating sample entropy for consecutive coarse-grained time series 𝑥𝑥𝜏𝜏(𝑗𝑗) = 1
𝜏𝜏
∑ 𝑢𝑢(𝑖𝑖)𝑗𝑗𝜏𝜏
𝑖𝑖=(𝑗𝑗−1)𝜏𝜏+1  

where 𝑗𝑗 = 1, … ,𝑁𝑁/𝜏𝜏, 𝑢𝑢(𝑖𝑖), 𝑖𝑖 = 1, … ,𝑁𝑁 denotes the initial time series and τ is a scale factor. 
MSE is obtained by plotting SampEn values for each scale factor 𝜏𝜏, and is more suitable 
for quantifying complexity in short and noisy time series than traditional entropy meth-
ods that are based on pattern repetition on a single temporal scale [39]. MSE method was 
successfully used in analyzing physiological signals [57,58], geophysical records [59], hy-
drological processes [41–43], and financial time series [60,61]. 

2.5. Modified Multiscale Entropy (MMSE) 
MSE estimation is imprecise for short time series because the coarse-graining proce-

dure reduces the length of the original time series by a scale factor τ. Several alternative 
coarse graining procedures have been proposed to improve the reliability of MSE [62]. In 
this work we use the modified multiscale entropy (MMSE) [45], in which the moving av-
erage procedure is used for coarse graining (𝑥𝑥𝜏𝜏(𝑗𝑗) = 1

𝜏𝜏
∑ 𝑢𝑢(𝑖𝑖)𝑗𝑗+𝜏𝜏
𝑖𝑖=𝑗𝑗 , 𝑗𝑗 = 1, … ,𝑁𝑁 − 𝜏𝜏 + 1) and 

for each time scale 𝜏𝜏 sample entropy is calculated with a time delay 𝛿𝛿 = 𝜏𝜏, i.e., using tem-
plate vectors 𝑥𝑥𝑚𝑚𝜏𝜏 (𝑖𝑖) = {𝑥𝑥(𝑖𝑖) 𝑥𝑥(𝑖𝑖 + 𝜏𝜏) …  𝑥𝑥(𝑖𝑖 + (𝑆𝑆 − 1)𝜏𝜏)}. 
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3. Results and Discussion 
The results for the MMSE values for 𝜏𝜏 = 1, 2,…, 12, for the original series and anom-

alies for three representative stations are shown in Figure 4, where several patterns can be 
observed. For the low and intermediate scales (due to intra annual variability), the original 
series show lower entropy values, indicating more regularity and more predictability than 
the anomaly series. This difference diminishes on higher temporal scales, except for 𝜏𝜏 = 
12 for Sertão and Zona de Mata, which reflects annual seasonality. 

 
Figure 4. MMSE for monthly rainfall and monthly anomalies for three representative stations. 

For both the smallest (𝜏𝜏 = 1) and the largest (𝜏𝜏 = 12) temporal scales, the lowest en-
tropy values for the original series are found for the Sertão region due to the most pro-
nounced separation of the dry and rainy seasons. More precisely, the dry season in Sertão 
lasts 9 months, resulting in high monthly regularity and low entropy for 𝜏𝜏 = 1, while the 
strong annual seasonality results in low entropy for 𝜏𝜏 = 12. For all regions, the original 
series display lower entropy for 𝜏𝜏 = 1 than for 𝜏𝜏 = 12 indicating that intra-annual regu-
larity is more pronounced than interannual seasonality, and this difference is larger for 
Sertão. Besides these two scales, in all cases, lower entropy is also observed at 𝜏𝜏 = 6, indi-
cating that all three regions show a certain type of synchronization in the rainfall regime 
when the average monthly rainfall amount calculated over a 6-month period is observed. 

The spatial distribution of the MMSE values for the original and the anomaly series 
across the state of Pernambuco, obtained for all 133 stations, are shown in Figures 5 and 
6, respectively. Besides confirming the results for the representative stations shown in Fig-
ure 4 (higher entropy for the anomaly series, as well as lower entropy for the original 
series for the temporal scales 𝜏𝜏 = 1, 𝜏𝜏 = 6, and 𝜏𝜏 = 12), we can observe more detailed spa-
tial patterns for each temporal scale. 

For the original series (Figure 5), for 𝜏𝜏 = 1 the entropy increases in the west–east di-
rection, indicating the highest regularity and predictability of rainfall dynamics in the 
deep inland Sertão region, and the lowest regularity and predictability in the coastal re-
gion. For higher temporal scales (𝜏𝜏 = 2, …, 12), the entropy values increase from Sertão 
towards Agreste, and then decrease towards the coast, indicating that the rainfall regime 
is the most irregular and the least predictable in the Agreste region, which is a climate 
transition zone. 
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Figure 5. Spatial distribution of MMSE (τ = 1, 2, …, 12 months) over the state of Pernambuco for rainfall original series. 

For rainfall anomalies (Figure 6), the difference between the MMSE values for three 
regions is less pronounced, as yearly seasonality is removed. Still, the lowest entropy val-
ues are observed for the smallest (𝜏𝜏 = 1) and the highest (𝜏𝜏 = 12) temporal scales. Consid-
ering the whole Pernambuco region, we observe the increase of entropy values until the 
scale of 4 months (𝜏𝜏 = 4), and then the entropy decreases with scale, reaching the lowest 
values for 𝜏𝜏 = 12. For the original series (Figure 5), we observe several ranges of scale with 
an alternating tendency in entropy values: increasing until 𝜏𝜏 = 4, then decreasing until 𝜏𝜏 
= 6, increasing until 𝜏𝜏 = 9, and decreasing until reaches the lowest values for 𝜏𝜏 = 12. 

These temporal scales are related to the intra-annual variability of rainfall in Pernam-
buco: in Zona de Mata, the rainy season is concentrated in three months between May and 
July, and the intense dry season in four months between September and December; in the 
Sertão region, the rainy season is concentrated in three months from February to April, 
and a dry period that lasts nine months [48]; in Agreste, the dry season is concentrated in 
five months between August and December [63]. The scale 𝜏𝜏 = 12 reflects annual season-
ality. 
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Figure 6. Spatial distribution of MMSE (τ = 1, 2, …, 12 months) over the state of Pernambuco for rainfall anomalies series. 

Figure 7 shows the average MMSE curve together with standard deviation calculated 
for the rainfall original series and rainfall anomalies for Zona de Mata, Agreste, and Sertão 
stations. It is seen that these curves are much smoother than those for the individual sta-
tions shown in Figure 4, but the general observation for the original series still holds: the 
lowest entropies for the 1-month and 12-month scale and “local minimum” for the 6-
month scale. 

 
Figure 7. Average MMSE (together with standard deviation) for (a) monthly rainfall and (b) monthly anomalies for Zona 
de Mata, Agreste and Sertão. 
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For the anomalies series, the averaging over all the stations within the regions also 
produced a clear MMSE pattern: the increase in entropy until the scale of 4 months and 
then a decrease until the highest scale of 12 months, as seen in Figure 6. The values of the 
average MMSE and standard deviation for each region and each temporal scale, used to 
produce Figures 5 and 6, are presented in Tables 1 and 2, respectively. 

Table 1. Average MMSE values (together with standard deviation) for rainfall temporal series. 

  Region 

𝝉𝝉 Agreste  Sertão  Zona da Mata 
𝒙𝒙�  𝑠𝑠𝑑𝑑  𝒙𝒙�  𝑠𝑠𝑑𝑑  𝒙𝒙�  𝒔𝒔𝒔𝒔 

1 1.074  0.160  0.713  0.166  1.101  0.180 
2 1.605  0.157  1.333  0.142  1.519  0.167 
3 1.828  0.129  1.692  0.104  1.729  0.175 
4 1.884  0.128  1.775  0.106  1.750  0.223 
5 1.821  0.134  1.631  0.121  1.659  0.246 
6 1.706  0.154  1.472  0.142  1.506  0.243 
7 1.828  0.136  1.740  0.122  1.680  0.286 
8 1.833  0.118  1.825  0.121  1.711  0.294 
9 1.825  0.138  1.846  0.117  1.696  0.281 

10 1.728  0.154  1.758  0.139  1.630  0.290 
11 1.507  0.155  1.411  0.126  1.400  0.256 
12 1.317  0.163  1.166  0.131  1.207  0.212 

Table 2. Average MMSE values (together with standard deviation) for rainfall anomalies series. 

  Region 

𝝉𝝉 Agreste  Sertão  Zona da Mata 
𝒙𝒙�  𝑠𝑠𝑑𝑑  𝒙𝒙�  𝑠𝑠𝑑𝑑  𝒙𝒙�  𝒔𝒔𝒔𝒔 

1 1.583  0.192  1.331  0.268  1.654  0.254 
2 1.880  0.138  1.730  0.156  1.874  0.187 
3 1.965  0.114  1.842  0.147  1.948  0.134 
4 1.977  0.110  1.852  0.160  1.944  0.142 
5 1.924  0.109  1.828  0.157  1.870  0.133 
6 1.858  0.127  1.778  0.156  1.789  0.217 
7 1.846  0.115  1.775  0.158  1.788  0.200 
8 1.804  0.129  1.726  0.151  1.733  0.186 
9 1.761  0.133  1.691  0.147  1.688  0.201 

10 1.691  0.130  1.645  0.162  1.641  0.199 
11 1.606  0.156  1.550  0.164  1.558  0.232 
12 1.516  0.173  1.479  0.173  1.482  0.242 

In order to assess the difference in the MMSE values between the three regions, we 
apply the Wilcoxon-Mann-Whitney test (at the 5% significance level) to each temporal 
scale τ = 1, 2, …, 12. The results for the original and anomaly series are shown in Figures 
8 and 9, respectively. 

It is seen from Figure 8 that, for the original series, a significant difference between 
Sertão and Zona de Mata is found for τ = 1, 2, 9, 10; between Sertão and Agreste for τ = 1, 
2, 3, 4, 5, 6, 7, 11, 12, and between Agreste and Zona de Mata for τ = 2, 3, 4, 5, 6, 12. For the 
anomalies series (Figure 9), the significant difference between Sertão and Zona de Mata is 
found for τ = 1, 2, 3, 4; between Sertão and Agreste for τ = 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, while 
between Agreste and Zona de Mata the MMSE values do not show a significant difference. 
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Figure 8. Boxplots for MMSE values (original series) for the regions of Zona de Mata, Agreste, and Sertão for τ = 1, 2, …, 
12. “*”, “**”, “***”, “****” indicate that there is a significant difference between the regions at the 5%, 1%, 0.1%, 0.01% 
significance level, respectively; “ns” means not significant. 

 
Figure 9. Boxplots for MMSE values (anomalies series) for the regions of Zona de Mata, Agreste, and Sertão for τ = 1, 2, 
…, 12. “*”, “**”, “***”, “****” indicate that there is a significant difference between the regions at the 5%, 1%, 0.1%, 0.01% 
significance level, respectively; “ns” means not significant. 
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It is expected that the anomaly series are less sensitive to SampEn analysis, besides 
showing higher entropy values due to the removed seasonality component, and for 
Agreste/Zona de Mata they show a similar level of regularity. However, for Sertão/Zona 
de Mata, a significant difference is found for the same number of scales as for the original 
series (4), and almost the same for Sertão/Agreste (9 scales for the original series and 10 
scales for the anomalies series). 

This result may seem surprising, as it is known that among the three regions the 
amount and distribution of rain during the year is most different between Sertão and Zona 
de Mata, and the MMSE analysis shows more difference for Sertão/Agreste and 
Agreste/Zona de Mata for the original series, and for Sertão/Agreste for anomalies series. 
This finding can be attributed to the fact that SampEn evaluates the regularity of temporal 
series independently if that regularity is the result of long periods of dry or wet months, 
and the two rainfall temporal series that have a similar level of “uniformity” may produce 
similar SampEn values independently of the underlying values of the rainfall amount. 

4. Conclusions 
In this work, we analyzed the complexity of monthly rainfall series from 133 pluvio-

metric stations from the state of Pernambuco, Brazil, in order to compare the rainfall re-
gimes in three regions: Zona da Mata, Agreste, and Sertão. We applied the method of 
modified multiscale entropy (MMSE), which evaluates the regularity of temporal series 
on different temporal scales and is suitable for short time series. 

For each rainfall series, we calculated the MMSE values for 12 temporal scales (1–12 
months) for the original series and anomalies. For the original series for temporal scale τ 
= 1, the entropy increased in the west–east direction, indicating the highest regularity and 
the highest predictability of rainfall dynamics in the deep inland Sertão region, and the 
lowest regularity and the lowest predictability in the coastal region. For other temporal 
scales (τ = 2, …, 12), the entropy values increased from Sertão towards Agreste and then 
decreased toward the coast, indicating that the rainfall regime is most irregular and the 
least predictable in the transition zone of Agreste. 

For all regions, lower entropy values were found for τ = 1 and τ = 12, reflecting intra-
annual rainfall variability (well-defined dry and wet seasons) and interannual seasonality, 
respectively. This effect was less pronounced for rainfall anomalies where seasonality is 
removed. For intra-annual temporal scales for Sertão, the entropy values of the anomaly 
series were lower for τ = 3 and τ = 9, which can be attributed to the duration of the wet (3 
months) and dry (9 months) seasons. 

We also performed a statistical significance test to compare the MMSE values in three 
regions, and found that, for the original series for most temporal scales, there was a sig-
nificant difference in the MMSE values (rainfall regularity) between Sertão and Agreste, 
and Agreste and Zona de Mata. For the anomalies series, a significant difference was 
found between Sertão and Agreste, but not between Agreste and Zona de Mata. The sig-
nificant difference between the MMSE values for Sertão and Zona da Mata was found on 
a limited number of temporal scales. 

Although the climate and the amount of annual rainfall are different in these two 
distant regions, the rainfall regularity is similar due to strong intra-annual seasonality (3 
months of wet season). The applications of multiscale entropy in hydrology have been 
limited to the analysis of streamflow data, and have been shown to be useful for detecting 
hydrological changes caused by human activities such as dam and reservoir construction 
[42,43] 

Rainfall data were studied with the sample entropy method that evaluates regularity 
on a temporal scale τ = 1 [30,34,35], while the comprehensive studies on rainfall multiscale 
dynamics are still ongoing. By using the MMSE method, we obtained entropy values over 
a wide range of temporal scales, from 1 month to 1 year, which provided a more complete 
description of rainfall complexity than when analyzed on a single temporal scale. 
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Our results indicate that a multiscale approach to the analysis of rainfall data can be 
used to compare the rainfall regimes at different temporal scales and contributes to a bet-
ter understanding of the mechanisms governing climate dynamics. 
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