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Abstract: In this paper, an explicit time marching procedure for solving the non-hydrostatic shallow
water equation (SWE) problems is developed. The procedure includes a process of prediction and
several iterations of correction. In these processes, it is essential to accurately calculate the spatial
derives of the physical quantities such as the temporal water depth, the average velocities in the
horizontal and vertical directions, and the dynamic pressure at the bottom. The weighted-least-
squares (WLS) meshless method is employed to calculate these spatial derivatives. Though the non-
hydrostatic shallow water equations are two dimensional, on the focus of presenting this new time
marching approach, we just use one dimensional benchmark problems to validate and demonstrate
the stability and accuracy of the present model. Good agreements are found in the comparing the
present numerical results with analytic solutions, experiment data, or other numerical results.

Keywords: non-hydrostatic; shallow water equations; meshless method; weighted-least-squares

1. Introduction

In many practical problems of physical oceanography, marine hydrodynamics, and
ocean and coastal engineering, the hydrostatic shallow-water-equation (SWE) models are
quite satisfactory to predict the water flows in rivers, lakes, estuaries, and seas. However,
when it is applied to water wave problems, the hydrostatic assumption in the models is
questionable and often the source of errors. A typical case is the simulation of solitary
wave propagation in a frictionless channel with a constant water depth. The shape of
the free surface profile should always be symmetric, no matter how long the solitary
wave propagates. Nevertheless, simulating the case with a hydrostatic SWE model does
not produce the correct result [1–3]. As concluded in [4], such kind of error is due to
the exclusion of the dispersion term in the hydrostatic shallow water equations. The
significance of the non-hydrostatic pressure in water wave simulations is also illustrated
in [5–10].

In [11], the water pressure was divided into two parts, the non-hydrostatic pressure,
or so called the hydrodynamic pressure, and the hydrostatic pressure. Applying the
Keller-box scheme [12] to approximate the vertical distribution of the non-hydrostatic
pressure, several wave phenomena in shallow water flows were simulated by solving the
non-hydrostatic shallow water equations. It was shown in [13] that in dealing with the
dispersion effects of water waves, the non-hydrostatic shallow water equations outperform
the Boussinesq equations [14]. In the recent couple decades, many non-hydrostatic SWE
models were developed for weakly nonlinear water wave problems by using the grid/mesh-
based methods [1–3,11,13,15–19] such as the finite difference method (FDM) and the finite
element method (FEM).
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Apart from the grid/mesh-based numerical methods, the meshless methods are
recently employed in shallow water flow simulations [20–30]. The application of the
meshless methods in solving the non-hydrostatic shallow water equations is innovative,
because all these meshless works just listed are hydrostatic SWE models, either implicit
or explicit.

In this paper, a weighted-least-squares meshless method is developed to solve the
non-hydrostatic shallow water equations and to simulate several weakly nonlinear water
wave phenomena. A truly explicit predictor-corrector procedure is proposed for the time
marching. Unlike those published non-hydrostatic models, the hydrodynamic pressure is
obtained straightforwardly rather than from the solution of a time independent Poisson
equation which forms a huge global matrix system. Though the non-hydrostatic shallow
water equations are two dimensional, due to the focus of this study is on the explicit
time marching procedure of the model, only one dimensional cases are considered and
illustrated. Four benchmark cases with available analytical solutions, experimental data as
well as other numerical results are used to validate the present model.

2. The Governing Equations and the Simplification

When focusing just on a local region, water flows on the planet earth’s surface can be
considered as a phenomenon governed by the Navier-Stokes Equations.
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in which u, v, w are components of the flow velocity vector in the x, y and z directions, t is
the time, ρ is the density of water, p is the gauge pressure in the water, g is the gravitational
acceleration, and µ is the coefficient of viscosity of the water. The x and y coordinates
denote the horizontal directions while the z coordinate denotes the vertical direction. The
water flows are confined in the range of zb ≤ z ≤ ζ in which zb(x, y) is the bathymetry
while ζ(x, y, t) is the water surface elevation. The water depth H is therefore defined as
ζ − zb. Usually, the mean sea level is set at z = 0, so zb is negative in many cases, therefore,
h = −zb is defined as the static water depth. Noted that is sometimes the static water
depth just called the water depth and one should pay attention on the difference between
H and h.

The water pressure p can be divided into two parts, the hydrostatic pressure and the
non-hydrostatic pressure.

p = ρg(ζ − z) + q (5)

in which q is the non-hydrostatic pressure, also called the hydrodynamic pressure. The
value of q depends on the vertical position. On the free surface, it is zero. Following [15],
the non-hydrostatic pressure at the bottom is symbolized as Q, and the gauge pressure at
the bottom is expressed as

p = ρgH + Q, at z = zb (6)

The kinematic boundary condition on the free surface is expressed by the definition of
the flow velocity.

w =
Dζ
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=

∂ζ

∂t
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+ v

∂ζ

∂y
, at z = ζ (7)
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At the bottom, though in reality the condition should be no-slip because of water
viscosity, water there is regarded as capable to slide along the bottom surface in shallow
water simulations. That is because in most practical applications the boundary layer near
the bottom is relatively thin compared to the water depth. Consequently, the kinematic
bottom boundary condition can be formulated as

w =
Dzb
Dt

= u
∂zb
∂x

+ v
∂zb
∂y

, at z = zb (8)

The effect of bottom friction will be added in the model by employing the Manning’s
coefficient. The Keller-box scheme [12] was employed [15] to obtain the non-hydrostatic
shallow water equations.
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in which U, V and W are the average values of u, v and w by the integration in the z
direction while nm is the Manning’s coefficient. For finding the values of Q at discretized
nodes, or in the elements, solving a time independent Poisson equation is usually employed
in most of the already published non-hydrostatic models [2,3,11,15,17,19]. This will form
a huge global matrix system when the computational domain is discretized with a great
number of nodes. Unlike those published non-hydrostatic models, the hydrodynamic
pressure is obtained straightforwardly rather than from the solution of a time independent
Poisson equation.

Following the assumption in [13,18] in which W was treated as a linear distributed
function in the z direction, the value of W can be formulated as
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1
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Applying Equations (9)–(13), we can obtain
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And Equation (12) can be written as

Q = ρH
∂W
∂t

(15)

So far we have a set of non-hydrostatic shallow water equations including
Equations (9)–(11), (14) and (15) which are straight forwardly employed in the ex-
plicit time marching processes.

3. The Time Marching Processes

In this study, an explicit method is proposed. The method includes the prediction
and the correction processes. Though the non-hydrostatic shallow water equations are
two dimensional, due to the focus of this study is on the explicit time marching procedure
used in water wave simulations, only one dimensional formulation is demonstrated to
elucidate the time marching processes. All terms relevant to the y direction are omitted.
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The time domain is discretized with a small time increment ∆t whose size is determined by
the consideration of numerical stability. At each time step, a prediction as well as several
iterations of correction are processed.

3.1. Prediction

At the stage of prediction, terms relevant to Q are provisionally omitted because the
values of Q and its partial derivatives at the next time step are unknown yet. The formulae
for the prediction are obtained by the concept of the forward difference.

ζ(∗) = ζ(n) + ∆t S(n)
c (16)

U(∗) = U(n) + ∆t(Sx1 + Sx2 + Sx3)
(n) (17)

in which symbols with superscript (n) are the physical quantities at the n-th time step and
those with superscript (∗) are the provisional values of the relevant physical quantities at
the (n + 1)-th time step. A subscript c or x bestowed on each symbol S indicates that it is
formulated as a source term relating to the mass conservation equation or the x directional
momentum equation. They are listed as follows.

Sc = −
∂(UH)

∂x
(18)

Sx1 = −U
∂U
∂x

(19)

Sx2 = −g
∂ζ

∂x
(20)

Sx3 = −n2
m

g

H
1
3

U|U|
ρH

(21)

The provisional values of ζ and U can be obtained by using Equations (16) and (17).
Then, one can calculate the provisional value of W

W(∗) =
1
2

(
U
(

∂ζ

∂x
+

∂zb
∂x

)
− ∂(UH)

∂x

)(∗)
(22)

as well as the representative mean value of Q in the time interval.

Q = ρ
H(n) + H(∗)

2
W(∗) −W(n)

∆t
(23)

in which the over bar denotes the average value. So far we have the provisional values of
ζ, U and W. They are regarded as true values at the (n + 1)-th time step.

3.2. Correction

The formulae for the correction are obtained by the concept of the Crank-Nicolson scheme.

ζ(∗∗) = ζ(n) + ∆t Sc (24)

U(∗∗) = U(n) + ∆t
(
Sx1 + Sx2 + Sx3 + r

(
Sx4 + Sx5

))
(25)

in which the superscript (∗∗) denotes the correction, the over bar is defined as afore
mentioned. It should be noted that for avoiding numerical blowup, a ramping treatment is
introduced in which r is the ramping factor. In this study, we use 5 iterations of correction.
Value of r is based on Equation (26). Its value is 1 for the last two iterations of correction
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so the formulation consists with the Crank-Nicolson scheme when the entire prediction-
corrector procedure is completed.

r = 1− cos2
(π

2
min{1, i∗/4}

)
(26)

which indicates the factor of ramping treatment that the i∗-th iteration of correction is being
processed. Here we have new source terms in the formulation due to the presence of Q.
They are

Sx4 = − Q
2ρH

(
∂ζ

∂x
+

∂zb
∂x

)
(27)

Sx5 = − 1
2ρ

∂Q
∂x

(28)

The way of calculating the mean value in the time interval is the average of the
previous time step and the provisional value of the processed time step. For example,

Sc =
S(∗)

c + S(n)
c

2
, or Sx5 = − 1

2ρ

∂Q
∂x

(29)

It should be noted that after each iteration of correction, all the provisional values of ζ,
U and W should be updated with those obtained by the correction. After 5 iterations of
correction, the resulted values of ζ, U and W are regarded as the converged values of ζ, U
and W at the (n + 1)-th time step.

4. Approach for Calculating the Spatial Derivatives

The weighted-least-squares local polynomial approximation is employed for calcu-
lating the spatial derivatives of the physical quantities. The formulation in this study is
one dimensional, but one should keep in mind that its application can be easily extended
to two dimensional problems. The computational domain is discretized with N nodes.
The numbering is free from the positions of the nodes. Arranging the nodes in an equal
spacing is not necessary. These are merits of the meshless methods. Taking ζ as an exam-
ple, at an specific node locating at xj, the free surface elevation around that node can be
approximated by using the second degree local polynomial

ζx≈xj ≈ ζ̂ j(x) =
3

∑
i=1

αji pji (30)

in which pj1 = 1, pj2 = x− xj, and pj3 = (x− xj)
2/2. One may use higher degree local

polynomial for accuracy. Once the coefficients of this local approximation are determined,
the first and the second order derivatives at x = xj can be approximated as αj2 and αj3. For
determining these coefficients, values of ζ at neighbor nodes of xj are needed. If just two
neighbor nodes are used, it is the finite difference method. In this study, more than two
neighbor nodes are included because the method used here is a meshless one. Applying
values of x at all the nodes to Equation (30) and introducing the weighting factors, the error
residual of this local approximation is defined as

Ej =
N

∑
l=1

Wjl
(
ζ(xl)− ζ̂ j(xl)

)2
(31)

in which Wjl is the weighting factor whose value is between 0 and 1, and is dependent on
the distance from xj to xl (i.e., rjl =

∣∣xl − xj
∣∣). In this study, the monotonously decaying

function is used for determine the value of Wjl .

Wjl =

{
(1− rjl/ρj)

ε , rjl < ρj
0 , rjl ≥ ρj

(32)
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where ε is the shape parameter and ρj denotes the size of the supporting range around the
j-th node. One may choose other functions for this purpose. Although Wjl is determined
by a radial basis function, it is treated as a “factor” in the process of seeking the partial
derivatives of ζ. By skipping the zero-valued terms and using k as the local index of the
node at xl , Equation (31) can be rewritten as

Ej =
nloc

∑
k=1

Wjk
(
ζ(xk)− ζ̂ j(xk)

)2
(33)

in which k represents the local index of the l-th node if it is inside the j-th supporting range.
The underline is to emphasize it is a local index. The symbol nloc denotes the number of
nodes enclosed in the range of

∣∣x− xj
∣∣ < ρj. A algebraic system of linear equations is

formed by the values of ζ at all the nodes inside the supporting range.

Aαj = β (34)

in which

A =


a11 a12 a13

a21
...

...
...

...
...

anloc1 anloc2 anloc3

 (35)

αj =
[

αj1 αj2 αj3
]T (36)

β =
[

β1 · · · βk · · · βnloc

]T

=
[

w1ζ1 · · · wkζk · · · wnloc ζnloc

]T (37)

where wk =
√

Wjk, ζk = ζ(xk), and aki = wk pji(xk). The underlines in Equation (37)

remind the relation between the local sequential number and the global sequential number.
We keep the subscript in αj to remind this local approximation is only valid in the vicinity
of xj. Once we move our focus to another node, there will be a new set of αji, nloc, and a
new matrix A. Values of αj1, αj2 and αj3 are obtained by the least-squares approach. We
use the same way to calculating the spatial derivatives of other physical quantities such
as U, W and Q. Because the weighting factors are introduced in Equation (34), it is so
called the weighted-least-squares (WLS) approach. The purpose of the weighting factor
is to reduce the error at the focused point and to diminish the differences between the
approximated and the exact values. The faster the weighting factor decays by the distance
from the focused point, the closer approximation to the exact value at the focused point
will be. This means larger ε in Equation (32) results in closer approximation, but this could
increase numerical instability, especially when the time marching scheme employed is
an explicit one. In this study, a smoothing process is suggested in addition to carefully
choosing the value of ε. The suitable value of shape parameter ε is tested and found related
to the water depth, nodal resolution, and the time increment. It will be furtherly discussed
in the first example case. In all the numerical simulations of this study, we set nloc as 15, so
each local approximation needs at least 14 neighbor nodes. The value of ρj is determined
as multiplying the distance to the 14th nearest neighbor node by 1.01.

The weighted-least-squares approach is much similar to the moving-least-squares
(MLS) approach. The difference is, in the WLS, the weightings are just factors, but in the
MLS, the spatial derivatives of these weightings take important places in calculating the
besought approximations. The weightings are also used as the smoothing kernel function
in some relevant numerical methods such as the Smooth Particle Hydrodynamics [31–33].
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5. The Smoothing Process

As mentioned previously, an additional smoothing process is suggested to enhance
the numerical stability. It is employed on smoothing the values of Q in which the overbar
indicates the average in the time interval. Equation (38) is used in the smoothing process

Q(s)
j =

nloc

∑
k=1

WjkQk/
nloc

∑
k=1

Wjk (38)

in which the superscript (s) is used to indicate a smoothed value, Wjk is the weighting
factor afore mentioned, subscript j denotes the sequential number of a specific node while
subscript k denotes the local index of a node in this supporting range and the underline
emphasizes the relation between the local sequential number and global sequential number.
After all the smoothed values are calculated, we use them to replace the original values of
Q calculated by Equation (23).

6. Examples

Four example cases are tested in the present study, including the propagation of a
solitary wave in a constant depth, a solitary wave reflection after running up a slope,
nonlinear waves generated by the periodic motion of a piston-type wave maker, and the
nonlinear modulation of periodic waves passing over a submerged obstacle.

6.1. Propagation of a Solitary Wave in a Constant Depth

Solitary wave propagation in a one-dimensional frictionless channel with a constant
depth is used as the benchmark for the model verification. It is also used to test the shape
parameter of the function for determining the weighting factor. The solitary wave for the
shallow water equations is

ζ(x, t) = Asech2

(√
3A
4h3 (x− x0 − ct)

)
(39)

in which A is the amplitude, x0 is the initial position of the wave crest, and c =
√

g(A + h)
is the propagation speed of the wave, and

U(x, t) =
cζ

ζ + h
(40)

W(x, t) = −H
2

∂U
∂x

(41)

It should be noted that Equation (41) is based on the assumption that w is linear
distributed in the vertical direction. The water depth h chosen is 10 m, while the amplitude
A is 2 m. The length of the numerical channel is 1000 m. The initial position of the wave
crest is at x = 200 m. The domain is discretized with constant nodal spacing ∆x from
0.5 m to 3 m in various tests. It is presumed that the suitable value of shape parameter ε in
Equation (32) is related to Cr and ∆x/h, in which Cr =

√
gh/(∆x/∆t) is the computational

Courant number. Totally 89 runs with various time increment ∆t from 0.0008 s to 0.04 s are
conducted. The range of Courant number Cr is from 0.0026 to 0.132. In each run, the value
of ε is tuned until the root mean square error of ζ at t = 50 s is minimized. The root mean
square error is defined as

Erms =

√√√√ N

∑
j=1

(
ζ j − ζ

(e)
j

)2
/N (42)

in which ζ j is the value of ζ at the j-th node and the superscript (e) indicates the “exact
solution”. After all the runs are performed, a function ε = ε(Cr, ∆x/h) is obtained by
the multiple value regression. In this study, the third degree polynomial is chosen as
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the regressive function. In all the further example cases, the value of ε is determined by
this regressive function. Figure 1 shows the results of (∆x, ∆t) = (0.5 m, 0 .001 s) and
(∆x, ∆t) = (2.5 m, 0 .02 s). The root mean square errors are 0.0155 m and 0.0345 m, respec-
tively. The exact solution and the numerical result of [3] are also plotted for comparison.
The comparison shown in Figure 1 indicates that accuracy is improved using smaller nodal
resolution and time increment. The solitary wave in the numerical model of [3] seems
propagating faster slightly. As we look at the position of the wave crest, the result of the
present model is closer to the exact solution.
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6.2. Solitary Wave Reflection after Running Up a Slope

This test case was reported in [34,35] which said the experiment data are available
in [36]. The bathymetry of this test case is shown in Figure 2.
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The domain is 75 m in length which includes a constant depth region and a 1:50 slope.
At the end of the flume a vertical wall that can reflect waves is placed. The water depth is
0.7 m in the plain region and is 0.3 m at the end wall. A solitary wave which is initially
centered at x = −30 m is used as the incidence. The amplitude of the solitary wave is
0.07 m. Nodes in the domain are arranged with various nodal resolution according to the
water depth. The nodal spacing is 0.125 m in−55 m ≤ x ≤ 13 m, 0.1 m in 13 m ≤ x ≤ 16 m,
and 0.08333 m in 16 m ≤ x ≤ 20 m, respectively. The time increment ∆t is chosen as 0.005 s,
which represents the maximal Courant number Cr of 0.116. The processes from forward
propagation, shoaling, reflection, and backward propagation within 0 s ≤ t ≤ 30 s is
simulated. Snapshots of the free surface profiles at t = 14 s, 15 s, . . . , 25 s are shown in
Figure 3. In t = 14–17 s one can see the wave becomes more and more inclined towards the
shallower water region which represents the shoaling process. At t = 18 s one can see the
water level gets higher than the static water level which means the reflection has begun.
The water level at the vertical wall reaches the highest point at about t = 19 s. After that,
the reflecting waves begin the backward propagation. Noted that there is only one incident
wave and at least two reflecting wave are generated.
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Numerical results are compared with the observed time series of the free surface
elevation at x = 0 m, x = 16.25 m, and x = 17.75 m, respectively, shown in Figure 4. The
numerical results of [35] are also potted in this figure for comparison. On each panel the
first peak corresponds to the incident wave while the second and subsequent peaks are
referred to the reflected waves. The comparison shows that the prediction of the present
model is quite close to the numerical result of [35] which was computed with a finite
element model.
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6.3. Nonlinear Waves Generated by a Large Stroke Harmonic Motion of a Piston Type Wave Maker

According to the wave maker theory [37], harmonic motion of a piston type wave
maker generates sinusoidal waves on the water surface. However, when the stroke of the
wave paddle is large enough, nonlinear effect shows up and the generated waves will be
more or less irregular. This was reported in [38] and validated experimentally. The water
depth in this case is 0.38 m and wave period is 2.75 s. The stroke of the wave paddle is
12.2 cm. Consequently, the boundary condition at x = 0 is given by

U0(t) = 0.13937 sin(2.2848t) (43)
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The unit of U0 is m/s. The domain of computation is 50 m in length. Simulation
of 0 s ≤ t ≤ 22 s is performed. Numerical results are compared with the observed time
series of the free surface elevation at x = 4.9 m and x = 8.7 m, as well as with the analytic
solution [38] and other numerical data [39]. Figure 5 shows the comparisons. In [38,39],
only the peak-to-peak data within one wave period were shown. We match our results with
the experiment data at the peaks and check the phase difference between the two wave
gauges. At x = 4.9 m, the comparison starts at t = 14.22 s. According to the dispersive
relation, the wavelength of the prime constituent is 5.13 m. The distance between the two
wave gauges is 3.8 m. Therefore, the shift of the peaks between the two wave gauges
is 0.74 s. This is validated in Figure 5. The comparison shows that the numerical result
is quite close to the experiment data and the analytical result [38]. Figure 6 shows the
comparison of the free surface profile at t = 21.8 s with the result of [39]. Good agreement
between the two numerical results through the entire domain is found.
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6.4. The Nonlinear Modulation of Periodic Waves Passing over a Submerged Obstacle

Several non-breaking wave tests in a physical water flume were carried out by [40] to
study the modulation of the monochromatic waves traveling over a submerged structure
and were used to verify their numerical boundary element method (BEM) model. The
layout of the experiment is depicted in Figure 7. The toe of the submerged dike is at
x = 6 m. The water depth is 0.4 m in front of the obstacle and 0.1 m above the dike. The
slopes of the front part and the rear part of the dike are 1:20 and 1:10, respectively. The
width of the top is 2 m. In the experiment, a 1:25 slope starting at x = 18.95 m was placed
in the rear part of the flume to dissipate the wave energy from reflection by wave breaking.
We use a shallow water region with a very rough bottom as a replacement for wave energy
dissipater. The length and the depth of this shallow water region are 2.5 m and 0.06 m,
respectively. The bottom of the channel is frictionless in the range of 0 m ≤ x ≤ 18.95 m
and very rough in the range of x > 18.95 m. The Manning’s coefficient in the rough bottom
region is 0.02.
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Time series of the free surface elevation observed at 7 wave gauges are used for
comparison. The positions of these wave gauges are x = 5.7 m, x = 10.5 m, x = 12.5 m,
x = 13.5 m, x = 14.5 m, x = 15.7 m, and x = 17.3 m, respectively. The case of incident
wave height 0.02 m and the wave period 2 s is chosen for verification. According to the
wave maker theory [37], the stroke of the wave paddle in the wave maker is 2.953 cm.
Therefore, the boundary flow velocity given at x = 0 is

U0(t) = 0.046389 sin(3.1416t) (44)

The unit of U0 is m/s.
Nodes in the computational domain are irregularly distributed, with various nodal

spacing in accordance with the water depth. Totally, there are 430 nodes. The nodal spacing
is controlled by the condition that h/∆x is greater than 1.5. The range of nodal spacing is
0.04–0.125 m, as shown in Figure 8.
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Figure 8. The nodal spacing for the simulation of the nonlinear modulation of periodic waves passing over a sub-
merged obstacle.

The time increment is used as 0.005 s. Simulation of the flow in 0 s ≤ t ≤ 30 s is
performed. Snapshots of the water surface profiles at t = 28 s and t = 30 s are plotted
in Figure 9. The two profiles are almost identical to each other, note the wave period is
2 s. This means the rough bottom in x > 18.95 m effectively dissipates the wave energy
from reflection. One can also see in this figure that in front of the submerged dike, the
free surface waves are quite regular in a sinusoidal shape. As the waves propagate in
the sloping region, they incline forwardly due to the shoaling effect. When they move
through the top of the submerged dike and continue going into the region behind the
submerged dike, higher harmonic components are generated and the waves become more
or less irregular.
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periodic waves passing over a submerged obstacle.

Time series of the free surface elevation at the 7 wave gauges are shown in Figure 10.
The comparison shows that the performance of present non-hydrostatic SWE model works
as well as that of the BEM model of [40]. The results are close to the experiment data except
at the seventh wave gauge. However, the result there is still acceptable. It seems that
higher order nonlinear components are more pronounced behind the submerged obstacle.
Treating the velocity component w as a linear distributed function in the z direction in the
present model could be the reason of this discrepancy.
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7. Conclusions

An explicit time marching procedure for the non-hydrostatic shallow water equations
with meshless approach is developed in this study. The meshless method with the local
polynomial approximation and the weighted-least-squares (WLS) approach is employed to
calculate the spatial derivatives of the physical quantities such as the temporal water depth,
the average velocities in the horizontal and vertical directions, and the dynamic pressure
at the bottom. Four benchmark problems are used to demonstrate the performance of
the model.

In the first test case, we compare our results with the exact solution of the solitary
wave propagation in a constant depth. The comparison shows that the numerical result is
closer to the exact solution when smaller nodal spacing and time increment is used. This
case is also used to tune the numerical parameters so the model can work properly. These
numerical parameters are then used in further test cases to show that the present numerical
model is stable and consistent.

The second case is the simulation of a solitary wave reflection after running up a slope.
The processes from forward propagation, shoaling, reflection, and backward propagation
are demonstrated. The results are compared with experiment data and other numerical
results. Good agreement is found.

In the third case, nonlinear waves generated by a large-stroke harmonic motion of a
piston type wave maker is simulated. Theoretically, harmonic motion of a piston type wave
maker generates sinusoidal waves on the water surface. However, when the stroke of the
wave maker is large, the generated waves can generate higher harmonic constituents, which
are due to the nonlinear effects. The numerical results are validated by the comparison with
the analytical solution, experiment data and other numerical results. Good agreements
are found.

Finally, we simulate the nonlinear modulation of periodic waves passing over a
submerged obstacle. In this case, regular waves are generated by a wave maker. These
waves propagate forwardly and modulate when passing over a submerged obstacle. The
results are compared with data collected at seven wave gauges. The time series of the
water surface elevation at the first six wave gauges are almost identical to the experiment
data. Though some slight discrepancy is found at the seventh wave gauge, the result is still
quite acceptable. The reason of this slight discrepancy could be that we regard the velocity
component w linear distributed in the z direction.
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Abbreviations
The following abbreviations are used in this manuscript:
WLS Weighted-least-squares
MLS Moving-least-squares
SWE Shallow water equations
FDM Finite difference method
FEM Finite element method
BEM Boundary element method
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