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Abstract: South Africa is the most technologically advanced nation in Africa. However, the country is
plagued with constant load shedding. The country receives about 2500 sunshine hours annually, with
daily average irradiation levels of 4.5–6.5 kWh/m2. Despite these potentials, the use of electricity
for domestic water heating is still prevalent in the country. The mass rollout of solar water heating
(SWH) technologies in the low-cost housing sector across the country were met with massive failures.
This study aims to assess the energy yield of a passive flat plate and an evacuated tube solar water
heating system by evaluating the performance of these systems to address the energy crisis in South
Africa. The flat plate (FP) and evacuated tube (ET) solar water heating systems were monitored for
four days, characterised by varying sky conditions through instantaneous data measurement at 5 s.
The parameters measured were water temperature, ambient temperature, irradiance at the plane
of array, relative humidity, wind speed and direction. The results obtained show that a maximum
irradiance of 1050 W/m2 was obtained on a clear day and corresponded to a hot water temperature
of about 58 ◦C and 65 ◦C for the FP and ET, respectively. However, a cloudy day with a maximum
irradiance of 400 W/m2 produced about 22 ◦C and 29 ◦C of hot water for the FP and ET, respectively.
The results obtained in this study will guide stakeholders in the renewable energy sector towards
employing SWH systems to replace or augment the electric geyser. Solar water heaters (SWH) can
be used in the low-cost housing sector to provide hot water. Hence, the assessments in this study
offer essential information for the deployment of these systems to reduce demand on the ailing South
African electricity utility, Eskom, and mitigate climate change.

Keywords: performance monitoring; solar water heater; evacuated tube collector; flat plate collector;
solar radiation; South Africa

1. Introduction

The International Energy Agency (IEA), from a global point of view, described solar
heating and cooling technologies as “the sleeping giant of renewable energy potential” [1].
The IEA’s roadmap projects that by 2050, the installed solar water heaters’ (SWH) capacity
could reach about 3200 GWth with 7.2 EJ produced annually [2]. Solar energy is utilised to
generate electricity, hot water and space heating. A brief policy report for South Africa on
solar water heating technologies affirms three ways of converting harvested solar energy:
electricity, hot water and space heating [3]. Furthermore, the report shows that solar water
heaters and solar air collectors convert incident irradiance hot water and space heating,
respectively, while photovoltaic modules convert solar irradiance to electricity.

The development of a technology for hot water generation ensures the sun’s irradiance
is adequately utilised [4]. Hirbodi et al. [5] simulated and analysed the techno-economic
performance of two solar heating technologies. In their work, two concentrating solar
power collectors’ (CSP) efficiency reduced significantly under low irradiance. The authors
also showed that utilising solar technologies reduces greenhouse gas emissions consider-
ably while saving about 193 × 106 m3 of natural gas in south-central Iran. Lim et al. [6]
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evaluated the performance of passive concentrator and reflective systems in Malaysia.
Their work showed that partial shading impacts the performance of the systems as ex-
tremely cloudy conditions characterise the study area. Hence, solar thermal equipment
performs better in summer than in winter and is attributed to solar irradiation [7].

A study in Ethiopia by Endale [8] showed that implementing SWH could reduce
wide-scale deforestation for heating water. Furthermore, the study revealed that about
1480 GWh of electric energy could be saved by using SWH. Roberts and Forbes [9] reported
that the majority of the solar heating industries are for water heating for domestic use.
Their work showed that the prevalent type of collector used is the flat plate. However,
environmental conditions and seasons limit the hot water production of flat plate and
evacuated tube collectors, as water may freeze on frigid days for passive systems [10].
Furthermore, the collector’s pipe diameter, absorber, orientation, size and storage tank’s
capacity influences the performance of solar water heating systems [11].

A review of the performance of various absorber designs for a fluid-based solar
collector was conducted by Abdullah et al. [12]. Their study showed that the spiral flow
absorber performed best. The overall energy produced by the system increased by 3.5%.
Investigations by Duffie et al. [13] revealed that the ideal pipe diameter to minimise heat
losses is 19–25 mm. Their findings show that the pipe diameters used in their study did not
impact the hot water generated. However, the flow condition was faster for the 25 mm pipe
and slower for the 19 mm pipe. Smaller tube diameters (4–25 mm) offer several advantages,
as seen in Tanase et al. [14]. However, the collector’s performance may be significantly
reduced if the pipes corrode [10].

Salgado-Conrado and Lopez-Montelongo [15] reported that 65% of the electricity
used in the domestic sector is for water heating. As illustrated in Figure 1, the domestic
sector in South Africa accounts for 27% of electricity demand, with 40–60% of the electricity
consumed in the domestic sector attributed to water heating [16]. The agricultural sector
has the least energy demand of 2% while the industrial sector is the highest with 36%.
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Part of the efforts made by the South African government in encouraging the use
of solar water heating systems is the massive rollout of SHW in the low-cost housing
sector in 2008. The programme was halted due to the enormous failure of the installed
SWH systems [17]. Thobejane et al. [17] noted that the collapse of the installed SWH is
majorly a social problem as most installers had inadequate training and expertise. The
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authors recommended that the government provide quality training and ensures that
only accredited installers handle solar water heater installation. Netshiozwi [18] revealed
that the failures resulted from inadequate community sensitisation, faulty installation and
poor craftsmanship. Hence, it has impacted the ability of the national power utility to
reach its load reduction target. The author recommended that responsible agencies should
intensify the efforts towards bridging the educational divide in the country as the failure of
SWH is a social problem. About thirteen years later, the programme, with an estimated
50–70% savings on energy consumption, remains in the shadows, unlike other renewable
energy technologies.

In recent years, consumer energy demand in South Africa has put an enormous
burden on the already struggling coal-fired national utility. Hence, there is a need to
provide alternative means of providing hot water on demand. South Africa, at the moment,
has the most significant carbon footprint in Africa [19]. The South African government
has made much effort to encourage renewable and sustainable energy technologies to
combat climate change and reduce its carbon emission as a party of the Kyoto Protocol [20].
The report by the International Energy Agency [21] shows the commitment of the South
African government in the renewable sector with an investment of USD 140 million (ZAR
2 billion) in credit facilities. Jain and Jain [22] showed that South Africa has enormous
potential for using renewable energy technologies. It boasts of receiving annually about
2500 sunshine hours, with daily average irradiation levels in the range of 4.5–6.5 kWh/m2.
Despite these potentials, the use of electricity for domestic water heating is still prevalent in
the country [23]. The situation is further compounded by the inability of the national utility,
Eskom, to service its existing customers. Hence, South Africa is plagued with incessant
load shedding, as reported by Apeh et al. [24].

Solar water heaters’ performance is usually monitored through parameters such as
irradiance, inlet and outlet water temperatures, ambient temperature, wind speed and
direction. An experiment carried out by Lizama-Tzec et al. [25] on the electrodeposition of
selected coatings on three flat plate collectors revealed that the system’s thermal efficiency
was determined by measuring the incident irradiance and the water temperature of the col-
lector. In agreement with the parameters measured by the authors Lizama-Tzec et al. [25],
Budea and Bǎdescu [26] worked on improving the performance of solar collectors for pro-
ducing hot water. This was done through the measurement of global irradiance and water
temperature. Furthermore, Roberts [27] showed that irradiance, inlet water temperature
and ambient temperature are vital parameters for determining the merit for absorbers used
in solar water heating systems.

The massive failures of solar water heating systems installed in the low-cost housing
sector in South Africa have left many wondering about the efficacy of these systems as
a result of these failures and the unavailability of a detailed report about the causes of
these failures. The foregoing pose a significant barrier to the utilisation of SWH in South
Africa. Hence, the study seeks to unravel the durability of solar water heating systems
through a comprehensive analysis of the performance of flat plate and evacuated tube
solar heating systems and their usage profiles. The installed systems will provide hot
water in the low-cost housing sector in South Africa, thereby reducing the country’s carbon
footprint and reducing demand on the ailing national power plant.

2. Material and Methods
2.1. The Study Area

The study site (SolarWatt Park) is located at the University of Fort Hare, Alice, Eastern
Cape Province of South Africa, at latitude 32.8◦ south and longitude 26.8◦ east at an altitude
of 540 m [28].

Figure 2 presents the long-term daily and yearly global horizontal irradiation (GHI)
for South Africa. The GHI is utilised by solar energy technologies and is the summation
of the direct normal irradiance (DNI), diffuse horizontal irradiance (DHI) and ground
reflected radiation. As shown in Figure 2, South Africa experiences an annual average GHI
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of 2264 kWh/m2, comparable to China with 2118 kWh/m2 and Europe with 2100 kWh/m2,
where SWH systems are predominantly used [29]. It is also evident that GHI availability
decreases toward the coastal area. Upington in the Northern Cape, inland, has the highest
annual average GHI between 2118–2264 kWh/m2, while Durban, a typical coastal city, ex-
periences 1534–1680 kWh/m2. However, Alice, located at the peripheries of inland regions,
has a daily and yearly average GHI between 4.6–5.0 kWh/m2 and 1620–1826 kWh/m2,
respectively [30]. According to Kelvin et al. [31], Alice falls under the temperate interior
zone, characterised by a hot summer and mild winter. The average dry-bulb temperature
for the summer study area is 29 ◦C and 15 ◦C in winter [32].
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2.2. Solar Water Heater Outdoor Test Rig

Two commercially available solar water heater (SWH) systems, a high-pressure flat
plate (FP) and a low-pressure evacuated tube (ET), were used. The FP and ET systems were
installed outdoors on a test rig inclined at 34◦ facing north, as seen in Figure 3.

The flat plate system’s capacity is 200 litres, while the evacuated tube system is
150 litres. The temperatures of both solar water heater systems were monitored using type
K thermocouples. The thermocouples were retrofitted at strategic points within the system
to measure water temperature. The vital points mentioned earlier are the inlet mains, inlet
and outlet of both collectors, the storage tanks for both systems and the water tank where
hot water is discharged. “The South African standard (SANS 6211-2:2003) recommend
one-day outdoor thermal performance tests for SWHs” [17]. Naghavi et al. [33] reveal
that one-day outdoor performance test characterised by high and low solar intensities is
sufficient to determine the performance of a solar water heater. The specifications of the
solar water technologies used in this study obtained from the manufacturer’s datasheet [34]
are presented in Table 1.
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Table 1. Specifications of the flat plate and evacuated tube solar water heaters used in the study [34].

Technology Capacity (L) Number of
Plates/Tubes Area (m2)

Heat Transfer
Medium

Heat Loss at
Night (%)

Flat plate collector 200 1 2.5 Water 12.44
Evacuated tube 150 12 2.2 Water 16.05

The meteorological data were measured using an HMP60 relative humidity/tempera-
ture probe and Young’s wind vane. Furthermore, the incident solar irradiance on the two
systems listed in Table 1 was measured with a CMP10 pyranometer inclined at 34◦. All
of the sensors mentioned were connected to a custom data acquisition and control (DAC)
system with all of the parameters measured at 5 s. The specifications of the devices used
to measure the meteorological data and the water temperature of the solar water heating
systems is presented in Table 2. All of the sensors listed in Table 2 are connected to a custom
data acquisition and control system shown in Figure 4.

Table 2. Specification of the sensors used for measuring meteorological data and water temperature of the solar water heater.

Device Name Range Sensor Type Accuracy/Sensitivity

41382VC RH/T Probe 0–100% RH/−50–50 ◦C Rotronic Hygromer/100 Ohm
Platinum RTD ±2%/± 0.3 ◦C

KM07 type-K thermocouple −50–250 ◦C Helicoid Propeller ±1.5 ◦C ±0.25%
CMP10 Kipp & Zonen Pyranometer 285–2800 nm Thermopile 7–14 µV/W/m2
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Figure 4. Data acquisition and control system for the high- and low-pressure solar water heater
systems.

The custom DAC system designed and coupled at the SolarWatt Park, Alice, South
Africa shown in Figure 4 was designed to measure irradiance, water temperature, rela-
tive humidity/temperature, wind speed and direction. Additionally, the DAC system is
automated to drain hot water and refill the geyser with cold water at any point in time.
The essence of draining hot water and filling it with cold water is to mimic hot water
usage in a typical residential setup. Two solenoid valves were retrofitted on the FP and
ET storage tank outlets, and this allows the programmable logic control unit in Figure 4 to
initiate the draining of both geysers. All of the sensors used were connected to a CR1000
datalogger and an AM16/32b relay multiplexer. The multiplexer was used to support
other sensors since all of the physical ports on the CR1000 were exhausted. The wireless
router in Figure 4 allows for remote monitoring, control and data retrieval from the DAC
system via a supervisory control and data acquisition (SCADA) interface.

3. Results and Discussion
3.1. Overall System Behaviour over Four Days

The high- and low-pressure systems were observed over five days, characterised by
clear and cloudy days. The irradiance and water temperature measurements obtained for
the days under review are presented in Figure 5.

The results also revealed that the optimum hot water produced is after midday
(13:00–17:00) and is similar to the results obtained by Wei et al. [10]. This trend is no
different from most renewable energy technologies, whose performance is dependent on
the available solar irradiation seen in Figure 5. To simulate a daily usage profile based on
rural electricity usage in a typical domestic setting, the water from the FP and ET solar
water heater’s storage tank was drained simultaneously into a 500 L storage tank. The
results revealed that a maximum of 24.84 ◦C and 28.32 ◦C was obtained for the FP and ET
systems on a cloudy day. A maximum of 62.77 ◦C and 69.63 ◦C was recorded for the FP and
ET systems on a clear day. The global solar radiation obtained for the clear and cloudy days
was 5.07 and 2.00 kWh/m2, respectively. The results are comparable with those obtained
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by Apeh et al. [24]. Their work shows that on a clear and cloudy day, the global solar
radiation was 5.91 and 3.38 kWh/m2, respectively. The difference in temperature between
cold water from the mains and the hot water produced by the collectors is presented in
Figure 6.
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Hohne et al. [35] suggest that the temperature difference between the water flowing
into and out of the collector can be analysed using Equation (1).

Tgeyser_out − Tmain_cold =

[
Ag(FR(τα)Gth)

mcc + AcFRUL

]
(1)

where Tgeyser_out is water temperature out of the collector into the storage tank (◦C),
Tmain_cold is the water from the mains into the collector (◦C), Ag is the area of the geyser
(m2), FR is the heat removal factor of the collector, τα is the absorbance transmittance
product, G is the irradiance absorbed by the collector (W/m2), th is the time (s), mc is
the flow rate of water inside the collector (kg/h), c is the specific heat capacity of water
(J/kg/◦C) and UL is the total heat transfer coefficient of the collector (W/m2. ◦C).

The FP and ET solar water heater systems were drained at 20:00 daily (highlighted in
green) to allow the cold water from the mains into the system, as shown in Figure 6. The
daily electricity usage profile informs the decision to drain both systems at 20:00. The inset
(highlighted area) presented in Figure 6 shows a decline in the water temperature for both
systems. This is due to the difference in density between the cold and hot water in the
geyser and the location of the outlet. Therefore, the hottest water is drained first, then the
cold water. The heat gained by the systems for the period under study seen in Figure 7 was
determined using Equation (2).

Qcoll = mc∆T (2)

where Qcoll is the heat gain (J), m is the mass of water (kg), cp is the specific heat capacity
of water, ∆T (Tout − Tin) is the change in water temperature (◦C).
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Figure 7 shows the heat gained by the high- and low-pressure systems for four days
and comprises varying sky conditions. We assume that the conductive, convective and
radiative losses are negligible. The heat gained by FP and ET systems on a cloudy day
is 9 MJ and 8 MJ, respectively. While on a clear day, the FP and ET systems gained
26 MJ and 21 MJ, respectively. These values compare with the research carried out by
Morrison et al. [36]. In their work, under varying solar irradiation with the solar water
heater systems mounted on a plane inclined at 45◦, they obtained a maximum of 26 MJ/day.
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3.2. System Behaviour on a Clear and Cloudy Day

The best- and worst-case scenarios were selected according to the maximum and
minimum solar irradiance obtained and are presented in Figure 8. A day characterised
with no clouds obstructing the sun’s path, with a maximum solar irradiance of about
1050 W/m2, was selected as a clear day. Moreover, a day with about 400 W/m2 solar
irradiance peak was chosen as a cloudy day.
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The temperature sensors’ response at various points of the FP and ET systems to
irradiance is presented in Figure 8. The results show that irradiance plays a vital role in the
performance of both systems. Due to the nature of the evacuated tube SWH, thermocouples
could only be fitted at the storage tank’s top and outlet to have a clearer view of the system’s
response to varying irradiance and ambient temperature over 24 h. Figure 9 presents the
hot water produced by both systems on a clear and cloudy day.

Figure 9A shows that a maximum irradiance of 1050 W/m2 was obtained on a clear
day and corresponds to a hot water temperature of 58 ◦C and 65 ◦C for the FP and ET,
respectively. However, on a cloudy day (Figure 9B) with 400 W/m2, the highest water
temperature obtained corresponds to 22 ◦C and 29 ◦C for the FP and ET, respectively. The
results clearly show that both systems can provide hot water without an auxiliary heat
source from 09:00–00:00. However, both of the systems’ hot water generation depends on
the intensity of the available incident irradiation.

3.3. Effect of Ambient Temperature on Solar Water Heater Systems

The FP and ET solar water heater systems’ performance in response to ambient
temperature is presented in Figure 10.

The experimental investigation by Zhao et al. and Chaabane et al. [37,38] shows that
ambient temperature plays a vital role in determining the thermal efficiency of a solar
water heating system. In Figure 10, it can be seen that the ambient temperature affects
all the parts of the SWH systems. The external pipings used for both systems were not
lagged. Hence, the difference in the inlet temperature at midday. The highest and lowest
ambient temperatures recorded were 22 ◦C and 11 ◦C, respectively, and corresponded with
a hot water temperature of 70 ◦C and 15 ◦C for the FP solar water heater. The hot water
produced under the same ambient temperature for the ET system is 63 ◦C and 20.5 ◦C,
respectively. The effect of ambient temperature on a clear and cloudy day is presented in
Figure 11.
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Figure 11. The response of the FP and ET to ambient temperature.

Figure 11 shows the effect of ambient temperature at the top of the storage tanks for
FP and ET solar water heater systems. The difference between the inlet and outlet was
calculated to obtain the actual hot water produced by both systems. This was done by
subtracting the measured water into the collector and the geyser topwater temperature of
the FP and ET systems. To compare the performance of the FP and ET systems on a cloudy
and clear day, Figure 11 was normalised and is presented in Figure 12.
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The results obtained by Atia et al. [39] show that solar water heater systems’ per-
formance is affected by irradiance and ambient temperature. Their findings correspond
with Figure 12, where ambient temperature and irradiance influence both of the systems’
behaviours. Interestingly, the high-pressure and low-pressure collectors’ water temperature
follows a similar pattern to the ambient temperature in Figure 12. Based on the hot water
produced by both systems, the percentage difference between the FP and ET systems is
14%. Martínez-Rodríguez et al. [40], in their work, show that the evacuated tube system
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(ET) is more thermally efficient than the flat plate solar water heating system. However,
unlike the FP system, the ET systems are easily susceptible to damage from hailstones or
manhandling during installation. The high cost of the ET system is another limiting factor
to its widespread use despite its advantages over the FP system.

Equation (3) was used to calculate the efficiencies of the FP and ET systems on a clear
and cloudy day.

η =
Qcoll
AcG

(3)

where η is the systems’ efficiency (%), Qcoll is the collector’s heat gain (J) and is expressed
in Equation (3), Ac is the area of the collector (m2) and Gt is the incident irradiance on the
collector (W/m2).

The results from the calculation show that FP’s efficiency is 73% on a cloudy day while
the ET’s is 84%. Conversely, the FP and ET’s efficiencies were 66% and 75% on a cloudy day,
respectively. These results, compared with those obtained by Hills-Solar [41], investigated
the efficiencies of a flat plate and evacuated tube solar water heating systems in four major
Australian cities. In their work, the efficiency of the flat plate was 68%, while the evacuated
tube had an efficiency of 89%.

3.4. Sensitivity Analysis of Hot Water Production

As mentioned earlier, all of the parameters were measured at five-second intervals.
The sensitivity analysis presented in Figure 13A for FP and Figure 13B for ET was averaged
at 30 min intervals. Figure 13A,B shows how uncertainties in the measured parameters
influence the total uncertainty in hot water produced by the FP and ET solar water heaters.

The sensitivities presented in Figure 13A show that flat plate SWH is very sensitive to
change in irradiance while the evacuated tube is mainly sensitive to ambient temperature.
The test clearly shows that the evacuated tube SWH outperforms flat plate SWH in low
irradiance conditions, as affirmed by the results in Figure 10. Hence, the ET solar water
heating system is recommended over the FP system in areas with mean low annual
temperatures.

3.5. Cost and Payback Period

The current average cost of a flat plate and evacuated tube solar water heating system
is USD 1118.73 (ZAR 16230.00) and USD 1051.18 (ZAR 15249.99), respectively. The payback
period is determined assuming there is no inflation and electricity tariff remains constant
(USD 0.144). This payback period, usually in years, is the time taken to recover the capital.
Hence, the cost analysis will compare the cost-saving of using FP and ET solar water
heaters over electric geysers. The current average daily electricity use by households is
about 30 kWh. Refer to Table 1 for the specifications of the SWH systems. The payback
period is determined using Equation (4), and the results are presented in Table 3.

Payback Period =
Capita Investment

Annual Saving
(4)

where
Annual Saving =365 (CE×Qload) (5)

Qload = WqCp(∆T) (6)

∆T = Tout − Tin (7)

where Qload is the electricity used (kWh/day), Wq daily water usage (L), CE electricity cost
per (kWh).
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Table 3. Payback period for a flat plate and evacuated tube solar water heater used in the domestic sector.

System ∆T (◦C) CE ($) Qload (kWh/day) Annual Saving ($) Payback Period (Years)

Flat Plate 39.69 0.144 6.97 366.34 3

Evacuated Tube 45.68 0.144 5.23 274.89 3.8

The payback period for the flat plate and evacuated tube systems did not consider
the cost of installation. However, the payback period for flat plate SWH is 8 months
less than the evacuated tube because it is cheaper than the FP system. The capacity
and area of both SWH systems (see Table 1) also played a significant role as both of the
systems did not deliver an equal quantity of water. Hence, the FP had a higher annual
saving when compared to the ET system. These results compare with those obtained by
Nshimyumuremyi and Junqi [42]. The authors used a flat plate solar water system with
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dual collectors, hence a payback period of 2 years. The authors also revealed that the design
considerations for the collector are an essential factor that influences the payback period.

4. Conclusions

This study presented the relevance of evaluating the performance of flat plate and
evacuated tube solar water heating systems and their usage profiles. The results over
five days, characterised by varying sky conditions, reveal that the available insolation
greatly influenced FP and ET systems’ performance. A typical clear day with a maximum
irradiance of 1050 W/m2 produced 62.77 ◦C and 69.63 ◦C hot water for the FP and ET
systems, respectively. However, a cloudy day with a maximum of 400 W/m2 irradiance
corresponds to 24.84 ◦C and 28.32 ◦C of hot water produced for the FP and ET, respectively.
Further results reveal that the FP and ET systems’ efficiencies on a clear day were 73% and
84%, respectively. However, FP had an efficiency of 66% on a cloudy day, while the ET’s
efficiency was 75%. Furthermore, the hot water usage profile conducted on both systems
shows that their performance on a clear and cloudy day can adequately provide hot water
for the domestic sector.

Sensitivity analyses on the hot water production by both of the systems show that the
FP is more sensitive to irradiance while the ET is more sensitive to ambient temperature.
Additionally, a cost and payback period carried out revealed that the payback periods for
the FP and ET are 3 and 3.8 years, respectively. The research demonstrates that solar water
heating systems are viable and that the failures encountered in the mass installation were
due to inexperienced installers. Hence, the widespread adoption of these technologies in
South Africa will ensure a greener future as well as reduce the demand on the strained
national utility.
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Abbreviation
Nomenclature
Abbreviation
SWH Solar water heaters
GHI Global horizontal irradiation
HP High-pressure
LP Low-pressure
DAC Data acquisition and control
SCADA Supervisory control and data acquisition
FP Flat Plate
ET Evacuated Tube
Symbols
Qcoll Heat gained by the collector (J)
Ac Area of the collector (m2)
G Incident irradiance on the collector (W/m2)
Tgeyser_out Water temperature out of the collector into the storage tank (◦C)
Tmain_cold Water from the mains into the collector (◦C)
Ag Area of the geyser (m2)
FR Heat removal factor of the collector
τα Absorbance transmittance product
t(h) Time (s)
mc Flow rate of water inside the collector (kg/h)
c Specific heat capacity of water (J/kg/◦C)
UL Total heat transfer coefficient of the collector (W/m2.◦C)
η Systems efficiency (%)
Qload Average electricity use per household (kWh/day)
Wq Daily water usage (L)
CE Electricity cost (kWh)
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