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Abstract: Flood routing can be subclassified into hydraulic and hydrologic flood routing; the former 

yields accurate values but requires a large amount of data and complex calculations. The latter, in 

contrast, requires only inflow and outflow data, and has a simpler calculation process than the 

hydraulic one. The Muskingum model is a representative hydrologic flood routing model, and 

various versions of Muskingum flood routing models have been studied. The new Muskingum 

flood routing model considers inflows at previous and next time during the calculation of the inflow 

and storage. The self-adaptive vision correction algorithm is used to calculate the parameters of the 

proposed model. The new model leads to a smaller error compared to the existing Muskingum flood 

routing models in various flood data. The sum of squares obtained by applying the new model to 

Wilson’s flood data, Wang’s flood data, the flood data of River Wye from December 1960, Sutculer 

flood data, and the flood data of River Wyre from October 1982 were 4.11, 759.79, 18,816.99, 217.73, 

38.81 (m3/s)2, respectively. The magnitude of error for different types of flood data may be different, 

but the error may be large if the flow rate of the flood data is large. 

Keywords: hydrologic flood routing; Muskingum flood routing model; meta-heuristic  

optimization; self-adaptive vision correction algorithm 

 

1. Introduction 

Water resources from rivers are sources of hydroelectric power generation, 

agricultural water, and industrial water; however, owing to the large volumes of water, 

such rivers are prone to floods that have adverse impacts on life and property [1]. To 

reduce or prevent such damage, engineering measures, such as the construction of flood 

control dams or flood walls (levees), are necessary. Therefore, the evaluation of 

engineering measures for flood control is critical, and these measures are generally 

directly related to flood routing. Flood routing can be defined as a procedure for 

determining the flood hydrograph at a point downstream from the base flood hydrograph 

at an upstream point. In other words, flood routing is the process of determining the 

amount by which a flood wave is reduced and how long it takes for a flood wave to pass 

through an arbitrary section of a river based on the amount of storage in that section. 

There are two types of flood routing methodologies: hydraulic and hydrologic [2]. 

Hydraulic flood routing is a method for solving the partial differential continuity and 

momentum equations, the governing equations of an unsteady nonuniform flow, which 

hydraulically represent the flow of the flood wave according to the initial and boundary 

conditions [3]. In contrast, the hydrologic flood routing method yields an approximate 

solution using the storage equation based on the continuity equation of the flood wave 

[2]. The hydrologic flood routing method can be divided into three categories: reservoir 

routing, channel routing, and watershed routing. Channel routing allows the 

measurement of the storage effect of natural rivers on flood waves by calculating how the 

discharge of a flood changes as it progresses downstream and provides a standard 
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hydrologic quantity for river planning. The Muskingum flood routing model is a 

representative channel-routing model [2]. 

The first Muskingum flood routing model proposed was the linear Muskingum flood 

routing model (LMM) with two parameters [4]. However, the LMM did not include lateral 

inflow, and a new Muskingum flood routing model with three variables (LMM-L) was 

thus proposed [5]. Additionally, a study using the nonlinear Muskingum flood routing 

model (NLMM) considered the nonlinear relationship between storage and outflow as 

means of improving upon the LMM [6]. Two types of NLMMs determined by the location 

of nonlinear factor have been proposed to calculate the storage [7]. The Broyden–Fletcher–

Goldfarb–Shanno technique based on a mathematical gradient was applied to the NLMM 

[8]. NLMM incorporating lateral flow (NLMM-L) was developed to complement the 

existing NLMM [9]. In 2018, a Muskingum flood routing model called the advanced 

NLMM (ANLMM-L) was used for calculating a continuous inflow [2]. ANLMM-L is a 

type of nonlinear Muskingum flood routing model that considers lateral inflow and 

continuous flow with time. Generalized storage equations for the NLMM have also been 

suggested to apply more degrees of freedom in the suggested model [10]. 

In addition to the aforementioned studies, various other investigations have focused 

on recalculating the error between the outflow from flood data and the calculated outflow. 

Various studies on Muskingum flood routing models were conducted before the 2000s. 

The two parameters of the LMM including nonlinear relation between the storage and 

weighted flow were determined using the least-squares method [11]. The least-squares 

method was used to adjust the two parameters of LMM, K and X. The Muskingum 

parameter estimation/flood routing system was developed for linear LMMs and NLMMs 

and their results have been compared [12]. The results of the two different Muskingum 

flood routing models were compared. The genetic algorithm was used to estimate the 

parameters of the NLMMs [13]. In order to overcome the limitations of traditional 

methods used for Muskingum flood routing models, the genetic algorithm, a well-known 

meta-heuristic optimization algorithm, was applied. 

Since the 2000s, studies applying various meta-heuristic optimization algorithms to 

the Muskingum flood routing models have continued. An immune clonal selection 

algorithm was suggested to improve the convergence speed and it was applied to estimate 

parameters of the NLMM [14]. The Nelder–Mead simplex algorithm was introduced to 

improve the usability, and it was used to estimate parameters of the NLMM [15]. 

Furthermore, the simulated annealing and shuffled frog leaping algorithms were used to 

estimate the parameters of the Muskingum flood routing model in two benchmark/real 

case studies, and they were compared with the results of Tung’s method [16]. The 

honeybee mating optimization algorithm with past convergence speed has also been 

applied for the parameter estimation of the NLMM [17]. The elitist-mutated particle 

swarm optimization and improved gravitational search algorithm were applied to 

estimate the parameters of LMMs and NLMMs [18]. Particle swarm optimization was 

applied to the parameter estimation of the NLMM with four parameters to fit the multiple-

peak hydrographs [19], and various NLMMs with different storage calculations such as 

parameterized initial storage have been proposed using a weed optimization algorithm 

[20]. Various meta-heuristic optimization algorithms, such as the genetic algorithm, 

evolution, particle swarm, and a harmony search have been used for parameter 

estimations of the nonlinear Muskingum model and the variable parameter McCarthy–

Muskingum model [21]. The adaptive genetic algorithm was used to estimate the various 

exponent parameters of the NLMM and it was applied to Wilson’s flood data [22]. In 

addition, genetic expression programming with faster convergence speed than existing 

genetic programming was developed for parameter estimation in the Muskingum flood 

routing model [23]. The water cycle algorithm was applied to estimate the parameters of 

the NLMM and compared with the genetic algorithm, particle swarm optimization, 

harmony search, and imperialist competitive algorithm [24]. Although various meta-

heuristic optimization algorithms have been tested, studies focusing on comparing the 
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results of each algorithm have indicated limited improvements for the Muskingum flood 

routing model. 

Studies have also been conducted on the application of hybrid meta-heuristic 

optimization algorithms, combining a charged system search and particle swarm 

optimization, for parameter estimation of the Muskingum flood routing models [25]. For 

example, a hybrid meta-heuristic optimization algorithm combining particle swarm 

optimization and the Nelder–Mead simplex method was used to estimate the parameters 

of the Muskingum flood routing model [26]. Parameter estimation was conducted using 

a hybrid meta-heuristic optimization algorithm combining the shuffled frog leaping 

algorithm and the Nelder–Mead simplex method [27]. The improved real-coded adaptive 

genetic algorithm and the Nelder–Mead simplex algorithm were combined for the 

parameter estimation of two improved NLMMs [28]. The hybrid meta-heuristic 

optimization algorithm applied in particle swarm optimization and the bat algorithm 

were used to reduce the computational time of the Muskingum flood routing model [29]. 

Although good results were obtained in some studies, it is difficult to accurately compare 

them with the results of other existing Muskingum flood routing models because they 

were calculated using additional variables. 

General improvements of the Muskingum flood routing model have also been 

considered. For example, a modified Muskingum flood routing approach, in conjunction 

with the HEC-RAS model, was implemented to determine floodplain flows [30]. A new 

NLMM with four parameters has been suggested [31]. A parameter estimation method of 

the Muskingum flood routing model in ungagged channel reaches has also been 

suggested [32]. 

Studies have been conducted to apply the hybrid method to Muskingum flood 

routing models. A hybrid harmony search combined with local search algorithm such as 

Broyden–Fletcher–Goldfarb–Shanno technique was developed and was applied to 

estimate parameters in NLMM [33]. The new hybrid optimization technique was 

suggested by combining the modified honeybee mating optimization and generalized 

reduced gradient algorithm for the application of the new Muskingum model with six 

parameters [34]. The particle swarm optimization hybridized with Nelder–Mead simplex 

method was proposed to improve precision and convergence speed in Muskingum model 

[26]. The hybrid algorithm combining the shuffled frog leaping algorithm and Nelder–

Mead simplex was applied to NLMM with four parameters and NLMM with five 

parameters, and it was compared with the genetic algorithm-generalized reduced 

gradient [27]. The improved NLMM was suggested for flood prediction using the hybrid 

algorithm of particle swarm optimization and bat algorithm and it was compared with 

particle swarm optimization and bat algorithm [29]. The parameters in the two types of 

NLMM were estimated to improve precision using the hybrid algorithm combining the 

improved real-coded adaptive genetic algorithm and the Nelder–Mead simplex [28]. Most 

of the previously proposed hybrid methods combine optimization algorithms, but the 

hybrid method of this study is a method combining the inflow at the previous time and 

the inflow at the next time in the Muskingum flood routing. The honey bee mating 

optimization algorithm was combined with the generalized reduced gradient algorithm 

to estimate parameters of improved Muskingum flood routing model and applied to the 

single and multi-peak flood hydrographs [35]. 

In this study, a new Muskingum flood routing model was suggested. The new 

Muskingum flood routing model, which considers continuous inflow at previous and next 

time in the storage and inflow calculations, can enable accurate flood routing in various 

flood data. The self-adaptive vision correction algorithm (SAVCA), a recently developed 

meta-heuristic optimization algorithm, was applied to calibrate various parameters in the 

new Muskingum flood routing model. SAVCA can overcome the disadvantages of the 

previously developed vision correction algorithm (VCA). When applied to mathematical 

benchmark functions and water distribution problems, SAVCA has previously displayed 

good performance [36]. Various meta-heuristic optimization algorithms as well as SAVCA 
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can be applied to the new Muskingum flood routing model to show good results. In the 

previous study, the type of meta-heuristic optimization algorithm did not significantly 

affect the results of Muskingum flood routing models [37]. 

2. Materials and Methodologies 

2.1. Overview 

The two primary methods used in this study were the SAVCA and new Muskingum 

flood routing model. The error between the flood outflow data and the calculated outflow 

in the new Muskingum flood routing model was used as an objective function in the 

SAVCA, which applied an iterative calculation to minimize the error. The iterative 

calculation progresses as follows: 

1. A group of initial solutions is generated by a random value determined between the 

lower and upper boundaries for each variable of the new Muskingum flood routing 

model. 

2. One among a group of existing solutions is then selected, or a new solution is 

generated according to the selected probability. 

3. The inflow, storage, and outflow are calculated according to the generated solution, 

and the error between the flood outflow data and calculated outflow is determined 

as the objective function. 

4. The error is calculated using the sum of squares (SSQ), the Nash–Sutcliffe efficiency 

(NSE), and the root mean square error (RMSE). 

The solution refers to the values of the parameters for Muskingum flood routing 

models. The calculation in the SAVCA is as follows: If all initial solutions are calculated 

according to the new Muskingum flood routing model process, the errors of the initial 

solutions are calculated and sorted in ascending order. SAVCA consists of two types of 

parameters: self-adaptive and fixed. Division rate 1 (DR1), division rate 2 (DR2), and the 

compression factor (CF) are self-adaptive parameters. The modulation transfer function 

rate (MR) and astigmatic rate (AR) are fixed parameters. 

DR1 determines whether a new solution should be generated in the range of each 

variable (global search) or if one solution should be selected from the existing solution 

group (local search). If the generation of a new solution is determined in DR1, the positive 

and negative direction searches are determined by DR2. The decision variables of the new 

solution, generated by global search or selected by local search, are adjusted in detail by 

MR, CF, and AR. After generating a new solution, the calculation process of the new 

Muskingum flood routing model is applied. The error (SSQ) is calculated for the inflow, 

storage, and outflow during each time period. If the error of the new solution is lower 

than that of the worst solution among the existing solution groups, the new solution is 

included in the existing solution group. DR1 and DR2 are adjusted according to the 

calculation process for the new solution. All processes are repeated until a certain number 

of iterations of SAVCA. 

The SSQ was used to calculate the first error value for the Muskingum flood routing 

models in this study. The SSQ between the observed and calculated outflows was used as 

the objective function in the optimization process. In the new Muskingum flood routing 

model, eight parameters were used as decision variables, and the objective function is 

shown in Equation (1). 

Minimize SSQ = ∑(Oo − Os)2 (1) 

where Oo is the observed outflow (m3/s), and Os is the calculated outflow (m3/s). The NSE 

was used to calculate the second error value for the Muskingum flood routing models in 

this study. The equation of NSE is shown in Equation (2). 
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NSE = 1 −
∑ (Oo − Os)2n

i=1

∑ (Oo − O̅o)2n
i=1

 (2) 

where O̅o is the average of observed outflow (m3/s), and n is the number of data. The 

RMSE was used to calculate the third error value for the Muskingum flood routing models 

in this study. The equation of RMSE is shown in Equation (3). 

RMSE = √
∑ (Oo − Os)2n

i=1

n
 (3) 

2.2. New Muskingum Flood Routing Model 

The initial LMM was calculated by assuming the amount of storage in the channel as 

the sum of prism storage and wedge storage. Prism storage is proportional to the outflow, 

and wedge storage is proportional to the difference between the inflow and outflow. In 

the LMM, storage is calculated using Equation (4). 

𝑆𝑡 = 𝐾[𝑋𝐼𝑡 + (1 − 𝑋)𝑂𝑡] (4) 

where St, It, and Ot are the storage, inflow, and outflow at time t, respectively, and X is the 

weighted factor. In the NLMM, the nonlinear factor is added in the exponential form of 

Equation (4). Equation (5) represents the storage in an NLMM. 

𝑆𝑡 = 𝐾[𝑋𝐼𝑡 + (1 − 𝑋)𝑂𝑡]𝑚 (5) 

where m is a nonlinear factor, namely different from 1. The storage calculation in the new 

Muskingum flood routing model is applied by considering an existing generalized 

storage. The storage is calculated by considering not only the inflow at the current time 

(t) but also the inflow at the next time point (t + 1). The reason for considering the inflow 

at t + 1 instead of t − 1 in the storage calculation is as follows. In the nonlinear Muskingum 

flood routing models, it is assumed that the storage at time t depends on the upstream 

storage Sin, and the downstream storage Sout. Inflow (I), outflow (O), Sin, Sout were 

organized as follows according to water depth [38]. I and Sin are shown in Equations (6) 

and (7). 

𝐼 = 𝑎1𝑦𝑐1  (6) 

𝑆𝑖𝑛 = 𝑏1𝑦𝑑1  (7) 

where y is the water depth and a1, b1, c1, d1 are coefficients. If c1 and d1 are equal, then Sin is 

shown in Equation (8). 

𝑆𝑖𝑛 = 𝑏1 (
𝐼

𝑎1

) (8) 

O and Sout are shown in Equations (9) and (10). 

𝑂 = 𝑎2𝑦𝑐2  (9) 

𝑆𝑜𝑢𝑡 = 𝑏2𝑦𝑑2  (10) 

where a2, b2, c2 and d2 are coefficients. If c2 and d2 are equal, then Sout is shown in Equation 

(11). 

𝑆𝑜𝑢𝑡 = 𝑏2 (
𝑂

𝑎2

) (11) 

In NLMM, inflow, outflow and storage are assumed to be water depth related. The 

storage can be summarized in Equation (12) [38]. 

𝑆 = 𝑋𝑆𝑖𝑛 + (1 − 𝑋)𝑆𝑜𝑢𝑡 (12) 
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The storage with K = b1/a1 = b2/a2 can be expressed as Equation (13). 

𝑆 = 𝐾𝑋𝐼 + 𝐾(1 − 𝑋)𝑂 (13) 

Nonlinear parameter m was applied to Equation (11) and it can be expressed as 

Equation (14). 

𝑆 = 𝐾[𝑋𝐼 + (1 − 𝑋)𝑂]𝑚 (14) 

Additionally, it is assumed that there is an interdependence between the storage at 

time t and storage at time t + 1 in generalized storage [10]. 

𝑆𝑡 = 𝑋1𝑆𝑖𝑛,𝑡 + 𝑋2𝑆𝑖𝑛,𝑡+1 + (1 − 𝑋1 − 𝑋2)𝑆𝑜𝑢𝑡,𝑡 (15) 

Equation (16) can be rearranged as in the process from Equations (12)–(14) and it 

represents storage in the new Muskingum flood routing model. 

𝑆𝑡 = 𝐾[𝑋1𝐼𝑡 + 𝑋2𝐼𝑡+1 + (1 − 𝑋1 − 𝑋2)𝑂𝑡]𝑚 (16) 

where X1 is the weighted factor at time t, and X2 is the weighted factor at time t+1. In 

addition, It is the inflow at time t, and It+1 is the inflow at time t + 1. Based on Equation (4), 

the outflow calculation is summarized in Equation (17). 

𝑂𝑡 =
1

(1 − 𝑋1 − 𝑋2)
(

𝑆𝑡

𝐾
)

1
𝑚

−
𝑋1

(1 − 𝑋1 − 𝑋2)
𝐼𝑡 −

𝑋2

(1 − 𝑋1 − 𝑋2)
𝐼𝑡+1 (17) 

A weighted inflow, including a continuous inflow has been proposed previously [2]. 

In this study, the inflow at time t + 1 was included to consider the additional continuous 

inflow, and the weighted inflow could be calculated as shown in Equation (18). 

𝑊𝑡 = [(1 − 𝜃1 − 𝜃2 − 𝜃3)𝐼𝑡 + 𝜃1𝐼𝑡−1 + 𝜃2𝐼𝑡−2 + 𝜃3𝐼𝑡+1] (18) 

where Wt is the weighted inflow at time t, and θ1 is the weighted factor of the previous 

inflow at time t − 1. In addition, θ2 is the weighted factor of the previous inflow at time t 

− 2, and θ3 is the weighted factor of the next inflow at time t + 1. In previous studies, the 

inflow at time t − 1 (It−1) and the inflow at time t − 2 (It − 2) were considered [2,9]. In this 

study, all inflows before and after the current time were considered by including the 

inflow at time t + 1 (It + 1). If the weighted inflow of Equation (18) is substituted into 

Equation (17), the outflow is calculated using Equation (19). 

𝑂𝑡 =
1

(1 − 𝑋1 − 𝑋2)
(

𝑆𝑡

𝐾
)

1
𝑚

−
𝑋1

(1 − 𝑋1 − 𝑋2)
𝑊𝑡 −

𝑋2

(1 − 𝑋1 − 𝑋2)
𝑊𝑡+1 (19) 

where Wt+1 is the weighted inflow at time t + 1. The storage at time t + 1 can be calculated 

from the outflow in Equation (19) and the observed inflow. The general storage equation 

is calculated as Equation (20). 

𝑑𝑆

𝑑𝑡
= 𝐼𝑡 − 𝑂𝑡  (20) 

Equation (21) shows the modified storage equation that considers a change in lateral 

flow.  

𝑑𝑆

𝑑𝑡
=

∆𝑆

∆𝑡
= (1 + 𝛽)𝐼𝑡 − 𝑂𝑡 (21) 

where β is the parameter accounting for the lateral flow. The storage at time t + 1 is shown 

in Equation (22). 

𝑆𝑡+1 = 𝑆𝑡 + ∆𝑆 (22) 

Equation (23) represents the storage at time t + 1, and it can be obtained by 

substituting Equation (21) into Equation (22). 
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𝑆𝑡+1 = 𝑆𝑡 + [(1 + 𝛽)𝐼𝑡 − 𝑂𝑡]∆𝑡 (23) 

where St+1 is the storage at time t + 1. The outflow in the new Muskingum flood routing 

model is calculated using eight variables, i.e., K, X1, X2, m, β, θ1, θ2, and θ3. The initial 

Muskingum flood routing model is based on mass conservation. Therefore, the new 

Muskingum flood routing model was calculated based on the mass conservation. 

2.3. Self-Adaptive Vision Correction Algorithm 

SAVCA has a total of six parameters: DR1, DR2, MR, CF, AR, and AF. Among these, 

DR1, DR2, and CF are self-adaptive, and MR, AR, and AF are fixed. Table 1 shows the 

parameter types of SAVCA [36]. 

Table 1. Parameter types of SAVCA. 

Parameters DR1 DR2 MR CF AR AF 

Types Self-adaptive Self-adaptive Fixed Self-adaptive Fixed Fixed 

In SAVCA, the initial decision variables and decision variables generated by the 

global search are randomly generated within the range between the upper and lower 

boundaries. Decision variables in the global search are between the current optimal value 

and the upper boundary or between the lower boundary and the current optimal value 

based on the probability of DR2. The decision variable generated between the current 

optimal decision variable and the upper boundary by a global search is shown in Equation 

(24). 

𝑥𝑛 = 𝑥𝑏 + 𝑟𝑎𝑛𝑑𝑜𝑚(0, 1) × (𝑏𝑢 − 𝑥𝑏) (24) 

where xn is the new decision variable, and xb is the current optimal value. In addition, 

random(0, 1) is a random value generated from 0 to 1, and bu is the upper boundary. The 

decision variable generated between the lower boundary and the current optimal decision 

variable through a global search is shown in Equation (25). 

𝑥𝑛 = 𝑏𝑙 + 𝑟𝑎𝑛𝑑𝑜𝑚(0, 1) × (𝑥𝑏 − 𝑏𝑙) (25) 

where bl is the lower boundary. In SAVCA, each decision variable is adjusted by the 

parameters used in the local search, such as MR, CF, AR, and AF. Equation (26) shows the 

calculation of the new decision variable. 

𝑥𝑛 = 𝑥𝑛 × {1 + 𝑀𝑇𝐹 × 𝑟𝑎𝑛𝑑𝑜𝑚(−1, 1) × (1 −
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑡𝑜𝑡𝑎𝑙 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
)

𝐶𝐹

} (26) 

where MTF is the calculated modulation transfer function value. The term random(−1, 1) 

is a random value between −1 and 1. In addition, CF is a parameter for lens compression. 

The calculation of MTF is based on the distance (dx) between the current best decision 

variable and the selected decision variable. dx can be calculated using Equation (27). 

𝑑𝑥 =
𝑟𝑎𝑛𝑘(𝑥𝑠) − 𝑟𝑎𝑛𝑘(𝑥𝑏)

𝑟𝑎𝑛𝑘(𝑥𝑙) − 𝑟𝑎𝑛𝑘(𝑥𝑏)
 (27) 

where dx is the relative distance between each decision variable, rank(xs) is the fitness rank 

of the selected decision variable (xs), rank(xb) is the fitness rank of the best decision variable 

(xb), and rank(xl) is the fitness rank of the worst decision variable (xl). The fitness rank is 

the order in which the values of the objective function are sorted. The worst decision 

variable has the lowest fitness rank. Figure 1 shows the relative distance of dx. 
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Figure 1. Relative distance of dx. 

The calculation of the MTF by applying dx is shown in Equation (28). 

𝑀𝑇𝐹𝑠 = (
𝑑𝑥𝑠

(∑ 𝑑𝑥𝑖
2𝑘

𝑖=1 )0.5
)

0.5

 (28) 

where MTFs is the MTF value of the selected decision variable, and k is the total number 

of decision variables. In addition, dxs is the relative distance of the selected decision 

variable, and dxi is the relative distance of the i-th decision variable. The CF in SAVCA 

can be calculated as shown in Equation (29). 

𝐶𝐹 = 10 × {
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑥𝑖)

𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑥𝑖)
} (29) 

where xi is the i-th decision variable. The probability of applying the astigmatism 

correction process is determined using the AR. The new decision variable adjusted by the 

application of the astigmatism correction process on a local search is shown in Equation 

(30). 

𝑥𝑛 = 𝑥𝑛 × {1 + 𝑟𝑎𝑛𝑑𝑜𝑚(−1, 1) × sin2(𝐴𝐹)} (30) 

where AF is the angle of the astigmatic axis. The application process of SAVCA is 

summarized as follows: (1) generation of an initial solution group, (2) calculation of the 

fitness of the initial solution groups, (3) generation of a new solution, (4) application of 

MR and AR, (5) decision to replace after comparing the new solution with the worst 

solution in the existing solution group, and (6) repeating (2)–(5) until the total number of 

iterations is reached. The worst solution is the solution with the lowest fitness rank among 

the existing solution group. Figure 2 shows the application process. 
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Figure 2. Application process. 

An initial solution group was created to apply SAVCA to the new Muskingum flood 

routing model. The weighted inflow, storage, outflow, and SSQ were then calculated. 

According to the probability of DR1, a new solution was generated by a global search, or 

one of the existing solution groups was selected through a local search. When creating a 

new solution with a global search, a new decision variable was created in the positive and 

negative directions based on the current best decision variable. Each new decision variable 

was corrected using the MR and AR. In addition, the weighted inflow, storage, outflow, 

and SSQ were calculated using the new solution with new decision variables. Whether a 

new solution should be added to the existing solution group was determined by 

comparing the SSQ of the new solution with the SSQ of the worst solution among the 

existing group of solutions. 

2.4. Flood Data 

Five types of flood data were applied to the Muskingum flood routing models: 

Wilson’s flood data, Wang’s flood data, flood data for River Wye December in 1960, 

Sutculer flood data, and flood data for River Wyre October in 1982 [5,39–41]. All flood 

data used in this study have been applied in several Muskingum flood routing models in 

existing studies. The most important aspect of the Muskingum flood routing model is the 

range of each parameter. The range of each parameter in the new Muskingum flood 

routing model applied to the five flood datasets is presented in Table 2. 
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Table 2. Range of parameters in the new Muskingum flood routing model. 

Parameters 
Wilson’s Flood 

Data 
Wang’s Flood Data 

Flood Data for 

River Wye 

December in 1960 

Sutculer Flood 

Data 

Flood Data for 

River Wyre 

October in 1982 

K 0.01 − 50.00 0.01 − 50.00 0.01 − 50.00 0.01 − 50.00 0.01 − 50.00 

X1 −0.50 − 0.50 −1.50 − 1.50 −0.50 − 0.50 −0.50 − 0.50 −0.50 − 0.50 

X2 −0.50 − 0.50 −1.50 − 1.50 −0.50 − 0.50 −0.50 − 0.50 −0.50 − 0.50 

m 1.00 − 3.00 1.00 − 3.00 1.00 − 3.00 1.00 − 3.00 0.00 − 1.00 

β −0.10 − 0.10 −3.00 − 3.00 −0.10 − 0.10 −0.10 − 0.10 −3.00 − 3.00 

θ1 0.00 − 1.00 0.00 − 1.00 0.00 − 1.00 0.00 − 1.00 0.00 − 1.00 

θ2 0.00 − 1.00 0.00 − 1.00 0.00 − 1.00 0.00 − 1.00 0.00 − 1.00 

θ3 0.00 − 1.00 0.00 − 1.00 0.00 − 1.00 0.00 − 1.00 0.00 − 1.00 

Various Muskingum flood routing models, i.e., LMM, LMM-L, NLMM, NLMM-L, 

ANLMM-L, and the new Muskingum flood routing model, were compared herein. The 

parameters used in each Muskingum flood routing model are listed in Table 3. 

Table 3. Parameters used in each Muskingum flood routing model (○: applied, X: not applied). 

Parameters LMM LMM-L NLMM NLMM-L ANLMM-L This Study 

K ○ ○ ○ ○ ○ ○ 

X1 ○ ○ ○ ○ ○ ○ 

X2 Ⅹ Ⅹ Ⅹ Ⅹ Ⅹ ○ 

m Ⅹ Ⅹ ○ ○ ○ ○ 

β Ⅹ ○ Ⅹ ○ ○ ○ 

θ1 Ⅹ Ⅹ Ⅹ ○ ○ ○ 

θ2 Ⅹ Ⅹ Ⅹ Ⅹ ○ ○ 

θ3 Ⅹ Ⅹ Ⅹ Ⅹ Ⅹ ○ 

Differences were observed in the results of the Muskingum flood routing models 

proposed in other studies. However, the simulation used in this study was conducted 

according to the parameters listed in Table 3. The data values from existing studies were 

considered only up to two decimal points when using them as an input for the models in 

this study. The parameters of Muskingum flood routing models without results from 

previous studies were obtained by applying SAVCA. However, the values of each 

parameter were all calculated differently. 

3. Application and Results 

The first flood dataset used for the application of all Muskingum flood routing 

models was Wilson’s flood data. The parameters of the LMM for Wilson’s flood data were 

determined to be 29.164640 for K, and 0.118200 for X1. The parameters of the new 

Muskingum flood routing model for Wilson’s flood data were determined to be 0.943442 

for K, 0.340333 for X1, −0.00102 for X2, 1.744439 for m, −0.02166 for β, 0.758873 for θ1, 

0.230779 for θ2, and 0.047773 for θ3. The results, including those obtained using the new 

Muskingum flood routing model, are compared in Table 4. 
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Table 4. Results when using Wilson’s flood data. 

Time 

(h) 

Inflow 

(m3/s) 

Outflow 

(m3/s) 

LMM 

(m3/s) 

LMM-L 

(m3/s) 

[5] 

NLMM 

(m3/s) 

[42] 

NLMM-L 

(m3/s) 

[9] 

ANLMM-L 

(m3/s) 

[2] 

This Study 

(m3/s) 

0 22 22 22.00 22.00 22.00 22.00 22.00 22.00 

6 23 21 21.87 21.10 22.00 21.71 21.57 21.33 

12 35 21 20.52 21.70 22.40 22.02 21.67 21.13 

18 71 26 19.07 22.60 26.60 26.08 25.46 25.53 

24 103 34 26.90 30.70 34.50 33.51 34.59 34.75 

30 111 44 43.58 44.70 44.20 42.83 43.73 43.52 

36 109 55 59.58 58.10 56.90 55.44 54.59 54.62 

42 100 66 72.32 68.90 68.10 66.67 66.01 66.08 

48 86 75 80.65 76.10 77.10 75.77 75.52 75.53 

54 71 82 83.91 79.20 83.30 82.12 82.16 82.11 

60 59 85 82.51 78.50 85.90 84.78 85.04 85.08 

66 47 84 78.63 75.60 84.50 83.42 84.00 83.89 

72 39 80 72.32 70.70 80.60 79.44 79.62 79.61 

78 32 73 65.49 65.10 73.70 72.48 72.63 72.53 

84 28 64 58.21 59.10 65.40 64.08 63.80 63.81 

90 24 54 51.70 53.40 56.00 54.58 54.31 54.27 

96 22 44 45.50 47.90 46.70 45.22 44.80 44.84 

102 21 36 40.15 43.10 37.70 36.34 36.25 36.32 

108 20 30 35.82 38.90 30.50 29.21 29.45 29.52 

114 19 25 32.26 35.40 25.20 24.21 24.63 24.66 

120 19 22 29.17 32.30 21.70 20.96 21.39 21.46 

126 18 19 26.93 29.90 20.00 19.41 19.81 19.77 

SSQ 

(m3/s)2 
- - 605.63 815.68 36.77 9.82 4.54 4.11 

Squared root 

of SSQ 

(m3/s) 

- - 24.61 28.56 6.06 3.13 2.13 2.03 

NSE - - 0.974322 0.974326 0.992412 0.999583 0.999808 0.999826 

RMSE 

(m3/s) 
- - 5.310259 5.369885 2.919411 0.683993 0.464124 0.442254 

Among the results in Table 4, those of the LMM-L, NLMM, NLMM-L, and ANLMM-

L were calculated in previous studies [2,5,9,42]. The results of LMM and new Muskingum 

flood routing model were calculated using Wilson’s flood data by applying SAVCA. 

Notably, the results of the LMM are better than those of the LMM-L. This is because the 

results of the LMM-L are the results of a previous study wherein the optimization method 

was not used, while the results of the LMM were obtained using SAVCA. It should be 

noted that the results of the new Muskingum flood routing model were better than those 

of the LMM, LMM-L, NLMM, NLMM-L, and ANLMM-L because the new Muskingum 

flood routing model showed the smallest error in the initial part from 0 to 24 h and showed 

the smallest error in the overall results. Because the errors of the NLMM-L and ANLMM-

L were small, the new Muskingum flood routing model did not lead to a substantial 

improvement. 

Among the existing Muskingum flood routing models, ANLMM-L showed the best 

results (smallest error). The difference in SSQ between the ANLMM-L and new 

Muskingum flood routing model was 0.43 (m3/s)2. The differences between the results of 

the two models were most notable from 6 to 18 h and from 108 to 126 h. The new 
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Muskingum flood routing model showed the closest outflow to the observed outflow 

from 6 to 18 h. Among other Muskingum flood routing models, the outflows obtained 

from LMM-L at 6 h, LMM at 12 h, and NLMM-L at 18 h were close to the observed outflow. 

The difference between the observed outflow and the outflow obtained from the new 

Muskingum flood routing model was smaller than that attained using other Muskingum 

flood routing models. 

The second flood dataset was Wang’s flood data. The parameters of the LMM-L for 

Wang’s flood data were determined to be 1.075331 for K, −0.762101 for X1, and −0.003024 

for β. The parameters of the new Muskingum flood routing model for Wang’s flood data 

were determined to be 0.079266 for K, −1.49742 for X1, 0.011592 for X2, 1.360300 for m, 

−0.000450 for β, 0.421275 for θ1, 0.044483 for θ2, and 0.261537 for θ3. The results using 

Wang’s flood data, including those for the new Muskingum flood routing model, are 

compared in Table 5. 

Table 5. Results when using Wang’s flood data. 

Time 

(12 h) 

Inflow 

(m3/s) 

Outflow 

(m3/s) 

LMM 

(m3/s) 

[39] 

LMM-L 

(m3/s) 

NLMM 

(m3/s) 

[8] 

NLMM-L 

(m3/s) 

[9] 

ANLMM-L 

(m3/s) 

[2] 

This Study 

(m3/s) 

1 261 228 228.00 228.00 228.00 228.00 228.00 228.00 

2 389 300 305.19 300.19 303.80 299.74 300.92 301.75 

3 462 382 382.00 377.92 382.30 382.57 381.51 382.38 

4 505 444 442.70 440.10 442.40 442.76 443.15 442.81 

5 525 490 483.60 482.17 482.40 482.16 482.69 483.63 

6 543 513 513.00 511.70 511.2 509.89 510.09 510.15 

7 556 528 534.29 532.96 532.30 530.72 530.66 530.75 

8 567 543 550.44 548.97 548.50 546.77 546.62 546.79 

9 577 553 563.53 561.89 561.70 559.96 559.77 559.53 

10 583 564 573.16 571.53 571.60 569.94 569.80 569.75 

11 587 573 580.02 578.38 578.70 577.07 576.95 577.89 

12 595 581 587.32 585.44 586.20 584.39 584.22 584.03 

13 597 588 592.14 590.40 591.20 589.68 589.60 589.77 

14 597 594 594.59 592.93 593.90 592.34 592.30 591.61 

15 589 592 592.02 590.68 591.80 590.33 590.34 586.67 

16 556 584 574.89 574.62 575.70 574.68 574.86 576.15 

17 538 566 556.85 556.15 558.50 556.41 556.23 556.07 

18 516 550 536.93 536.22 539.00 537.43 537.13 536.33 

19 486 520 512.18 511.79 514.80 513.47 513.35 521.23 

20 505 504 507.96 505.60 509.60 507.07 506.51 502.72 

21 477 483 493.22 492.40 484.90 494.86 494.95 492.05 

22 429 461 462.34 462.82 464.80 464.39 464.94 463.80 

23 379 420 421.87 422.73 425.10 423.97 424.15 422.09 

24 320 368 372.34 373.60 376.10 375.05 375.07 374.32 

25 263 318 318.97 320.23 322.40 321.35 321.35 322.59 

26 220 271 270.39 271.06 272.50 271.42 271.40 271.68 

27 182 234 226.99 227.38 227.50 226.94 227.09 229.70 

28 167 193 197.20 196.67 195.70 194.92 195.13 194.64 

29 152 178 174.87 174.28 172.60 172.46 172.76 174.61 

SSQ 

(m3/s)2 
- - 1086.84 999.83 979.96 917.06 909.35 759.79 
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Squared root 

of SSQ 

(m3/s) 

- - 32.97 31.62 31.30 30.28 30.16 27.56 

NSE - - 0.998247 0.998326 0.998359 0.998464 0.998478 0.998728 

RMSE 

(m3/s) 
- - 6.008111 5.8711693 5.813054 5.623423 5.598762 5.118558 

The results of LMM, NLMM, NLMM-L, and ANLMM-L were calculated in previous 

studies [2,8,9,39]. The results of LMM-L and new Muskingum flood routing model were 

calculated by applying SAVCA. Notably, the results improved dramatically when the 

lateral inflow was considered, indicated by the difference between the results of the LMM 

and LMM-L and between those of the NLMM and NLMM-L. A difference between the 

results of the ANLMM-L and new Muskingum flood routing model was also observed, 

although it was not due to a lateral inflow but to differences in the calculation equations 

of the weighted inflow and storage. The results of the new Muskingum flood routing 

model were overwhelmingly better than those of other Muskingum flood routing models 

because the new Muskingum flood routing model showed the smallest error in the latter 

part from 19 to 29 h and showed the smallest error in the overall results. 

Among the existing Muskingum flood routing models, the ANLMM-L showed the 

best results (smallest error). The difference in SSQ between the ANLMM-L and new 

Muskingum flood routing model was 149.56 (m3/s)2. The difference between the two 

results was clear from 228 (19) to 288 (24) h. The differences in the outflow obtained using 

the Muskingum flood routing models and the observed outflow was small. The outflow 

calculated by the new Muskingum flood routing model was closest to the observed 

outflow. Among other Muskingum flood routing models, the outflow obtained using 

NLMM at 21 h was close to the observed outflow. The difference between the observed 

outflow and the outflow obtained using the new Muskingum flood routing model was 

smaller than that when using other Muskingum flood routing models. 

The third flood dataset was the flood data of River Wye December in 1960. The 

parameters for the LMM using these data were determined to be 23.877307 for K, and 

0.153174 for X1. The parameters for the new Muskingum flood routing model using these 

data were determined to be 2.318963 for K, 0.499999 for X1, 0.000390 for X2, 1.359406 for 

m, 0.057839 for β, 0.805567 for θ1, 0.233550 for θ2, and 6.88×10−11 for θ3. The results of all 

the models for these data are compared in Table 6. 

Table 6. Results when using flood data of River Wye December in 1960. 

Time 

(h) 

Inflow 

(m3/s) 

Outflow 

(m3/s) 

LMM 

(m3/s) 

LMM-L 

(m3/s) 

[5] 

NLMM 

(m3/s) 

[42] 

NLMM-L 

(m3/s) 

[9] 

ANLMM-L 

(m3/s) 

[2] 

This Study 

(m3/s) 

0 154 102 102.00 102.00 102.00 102.00 102.00 102.00 

6 150 140 118.15 116.00 154.00 149.50 146.52 141.89 

12 219 169 115.12 120.00 152.00 156.59 155.74 155.50 

18 182 190 152.64 147.00 181.00 191.40 194.41 185.46 

24 182 209 161.35 158.00 191.00 200.79 194.19 190.53 

30 192 218 165.67 165.00 185.00 195.14 196.05 195.99 

36 165 210 178.37 176.00 187.00 197.46 198.35 196.69 

42 150 194 177.11 178.00 179.00 188.48 186.83 188.20 

48 128 172 173.05 176.00 162.00 170.80 172.12 175.53 

54 168 149 152.45 164.00 141.00 148.10 150.37 157.72 

60 260 136 140.42 160.00 154.00 162.59 167.56 169.06 

66 471 228 137.74 167.00 198.00 210.36 216.61 213.24 

72 717 303 192.13 218.00 264.00 281.58 294.27 287.51 
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78 1,092 366 280.05 303.00 344.00 367.75 378.29 378.89 

84 1,145 456 511.40 484.00 416.00 447.65 461.17 465.87 

90 600 615 797.99 690.00 599.00 629.57 612.03 609.41 

96 365 830 781.75 700.00 871.00 892.78 862.51 863.65 

102 277 969 674.00 642.00 834.00 859.01 884.60 887.00 

108 227 665 565.24 572.00 689.00 719.30 737.54 730.86 

114 187 519 472.11 505.00 535.00 567.50 565.33 555.56 

120 161 444 392.21 442.00 397.00 427.85 414.97 410.06 

126 143 321 326.86 386.00 283.00 308.86 297.45 300.33 

132 126 208 275.37 338.00 202.00 220.90 216.14 224.40 

138 115 176 233.04 296.00 152.00 163.64 164.43 174.61 

144 102 148 200.36 260.00 124.00 131.90 134.94 143.56 

150 93 125 172.80 228.00 106.00 111.93 114.46 121.64 

156 88 114 150.03 201.00 94.00 99.28 101.24 106.75 

162 82 106 132.71 179.00 88.00 92.90 94.00 97.42 

168 76 97 118.75 160.00 82.00 86.14 86.94 89.67 

174 73 89 106.60 144.00 75.00 79.34 80.13 82.79 

180 70 81 97.18 130.00 73.00 76.46 76.87 78.56 

186 67 76 89.65 118.00 69.00 73.13 73.54 74.88 

192 63 71 83.66 109.00 66.00 69.85 70.23 71.46 

198 59 66 78.25 100.00 62.00 65.09 65.60 67.24 

SSQ 

(m3/s)2 
- - 196,077.12 251,802.00 37,944.15 25,915.27 20,494.98 18,816.99 

Squared root 

of SSQ 

(m3/s) 

- - 442.81 501.80 194.79 160.98 143.16 137.18 

NSE - - 0.916666 0.921600 0.959208 0.988986 0.991290 0.992003 

RMSE 

(m3/s) 
- - 77.082625 74.765750 53.930178 28.023612 24.921077 23.879109 

LMM-L, NLMM, NLMM-L, and ANLMM-L results were calculated in previous 

studies [2,5,9,42]. The results of LMM and new Muskingum flood routing model were 

calculated by applying SAVCA. Table 6 displays a notable difference between the results 

of the LMMs and NLMMs; the difference was large because the error in the flood data of 

River Wye from December 1960 was large. The new Muskingum flood routing model 

results were better than those of other Muskingum flood routing models because the new 

Muskingum flood routing model showed the smallest error from 102 to 198 h including 

the peak value and showed the smallest error in the overall result. 

Among other Muskingum flood routing models, ANLMM-L showed the best results 

(smallest error). The difference in SSQ between the ANLMM-L and new Muskingum 

flood routing model was 1,677.99 (m3/s)2. The greatest difference between the models 

occurred at 138–186 h. Among other Muskingum flood routing models, the outflow from 

ANLMM-L was close to the observed outflow at 180 and 186 h. The difference between 

the observed outflow and the outflow for the new Muskingum flood routing model was 

smaller than that for other Muskingum flood routing models. 

The fourth flood dataset used was Sutculer flood data which is a flood data with a 

double-peak. The parameters of the LMM for Sutculer flood data were determined to be 

1.0 for K, and −0.006097 for X1. The parameters of the LMM-L for Sutculer flood data were 

determined to be 1.0 for K, −0.025914 for X1, and −0.041042 for β. The parameters of the 

NLMM for Sutculer flood data were determined to be 1.0 for K, −0.053787 for X1, and 

1.002498 for m. The parameters of the new Muskingum flood routing model for Sutculer 
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flood data were determined to be 0.931599 for K, −0.092988 for X1, 0.009066 for X2, 1.000013 

for m, −0.036144 for β, 0.817639 for θ1, 0.214801 for θ2, and 0.745272 for θ3. The results of 

all models are shown in Table 7.  

Table 7. Results when using Sutculer flood data. 

Time 

(h) 

Inflow 

(m3/s) 

Outflow 

(m3/s) 

LMM 

(m3/s) 

LMM-L 

(m3/s) 

NLMM 

(m3/s) 

NLMM-L 

(m3/s) 

[9] 

ANLMM-L 

(m3/s) 

[2] 

This Study 

(m3/s) 

0 7.53 7.00 7.00 7.00 7.00 7.00 7.00 7.00 

1 9.06 8.00 7.59 7.25 7.58 7.24 7.26 8.14 

2 28.00 23.00 10.06 9.11 9.94 9.00 9.01 11.97 

3 79.80 25.00 29.95 27.66 29.56 27.35 27.35 25.63 

4 64.30 75.00 76.04 74.92 75.86 74.84 74.81 73.93 

5 38.20 60.00 63.47 61.36 63.70 61.57 61.59 62.61 

6 41.40 40.00 39.84 37.33 39.96 37.40 37.41 37.54 

7 41.30 41.00 41.30 39.64 41.31 39.63 39.62 39.37 

8 33.80 41.00 40.87 39.42 40.92 39.47 39.47 39.72 

9 32.00 32.00 34.10 32.55 34.15 32.57 32.58 32.56 

10 29.00 30.00 31.95 30.66 31.98 30.68 30.68 31.10 

11 35.00 34.00 29.51 28.03 29.49 28.00 28.00 29.48 

12 63.10 35.00 36.30 34.10 36.10 33.93 33.93 36.09 

13 110.00 60.00 64.26 60.98 63.81 60.62 60.62 63.47 

14 170.00 105.00 110.82 105.81 110.12 105.25 105.25 108.08 

15 216.00 160.00 169.24 162.69 168.46 162.06 162.07 157.14 

16 131.00 206.00 208.43 203.95 208.54 204.11 204.11 205.42 

17 101.00 128.00 133.73 126.88 134.55 127.58 127.61 126.32 

18 65.00 97.00 100.81 96.74 101.33 97.14 97.10 98.08 

19 62.40 61.00 66.91 63.14 67.19 63.33 63.32 63.18 

20 53.80 60.00 62.16 59.71 62.26 59.78 59.76 59.18 

21 36.30 50.00 53.27 51.37 53.44 51.51 51.50 51.71 

22 29.60 33.00 36.89 35.07 37.03 35.16 35.16 35.19 

23 25.00 27.00 29.75 28.44 29.82 28.49 28.48 28.49 

24 21.30 23.00 25.06 24.00 25.11 24.03 24.03 24.13 

25 19.60 19.00 21.42 20.47 21.44 20.49 20.49 20.53 

26 18.00 18.00 19.61 18.80 19.63 18.81 18.81 18.90 

27 17.30 17.00 18.05 17.28 18.06 17.29 17.29 17.38 

28 17.00 17.00 17.33 16.60 17.33 16.60 16.60 16.63 

29 16.00 17.00 16.96 16.29 16.97 16.29 16.29 16.53 

SSQ 

(m3/s)2 
- - 512.87 282.89 510.18 281.11 280.95 217.73 

Squared root 

of SSQ 

(m3/s) 

- - 22.65 16.82 22.59 16.77 16.76 14.76 

NSE - - 0.992557 0.995895 0.992596 0.995921 0.995922 0.996840 

RMSE 

(m3/s) 
- - 4.134694 3.070802 4.123823 3.061080 3.060593 2.694028 

Among the results in Table 7, those of NLMM-L and ANLMM-L were calculated in 

previous studies [2,9]. The results of LMM, LMM-L, NLMM, and new Muskingum flood 

routing model were calculated by applying the SAVCA. Notably, the models that consider 
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the lateral inflow show good results. In addition, the results of LMM-L, NLMM-L, and 

ANLMM-L were better than those of LMM and NLMM because LMM-L, NLMM-L, and 

ANLMM-L showed relatively small errors in the overall results. Moreover, the difference 

between the results of the new Muskingum flood routing model and other Muskingum 

flood routing models was substantial. 

The ANLMM-L showed the best results (smallest error) among the considered 

models. The difference in SSQ between the ANLMM-L and new Muskingum flood 

routing model was 63.22 (m3/s)2. The time required to show the difference between the 

two results ranged from 1 to 3 h. At 1 h, the outflow of most Muskingum flood routing 

models was close to the observed outflow. At 2 and 3 h, except for the new Muskingum 

flood routing model, the outflow of most Muskingum flood routing models showed a 

difference from the observed outflow. 

The last flood dataset analyzed was the flood data of River Wyre October in 1982. 

The parameters of the LMM for the flood data of River Wyre from October 1982 were 

determined to be 3.950351 for K and 0.295668 for X1. The parameters of the NLMM for the 

flood data of River Wyre from October 1982 were determined to be 8.248204 for K, 

0.284338 for X1, and 0.812821 for m. The parameters of the new Muskingum flood routing 

model for the flood data of River Wyre from October 1982 were determined to be 0.931599 

for K, −0.092988 for X1, 0.009066 for X2, 1.000013 for m, −0.036144 for β, 0.817639 for θ1, 

0.214801 for θ2, and 0.745272 for θ3; the results, and their comparison with those of the 

other models, are shown in Table 8.  

Table 8. Results when using flood data of River Wyre October in 1982. 

Time 

(h) 

Inflow 

(m3/s) 

Outflow 

(m3/s) 

LMM 

(m3/s) 

LMM-L 

(m3/s) 

[5] 

NLMM 

(m3/s) 

NLMM-L 

(m3/s) 

[9] 

ANLMM-L 

(m3/s) 

[2] 

This Study 

(m3/s) 

0 2.60 8.30 8.30 8.30 8.30 8.30 8.30 8.30 

1 4.20 9.00 5.58 8.20 6.00 8.51 8.52 8.73 

2 12.30 9.90 1.68 8.10 2.27 8.79 9.94 10.11 

3 25.40 10.20 0.00 12.70 0.00 10.94 12.74 12.75 

4 24.10 18.90 9.67 27.90 8.66 20.28 19.71 19.51 

5 20.30 35.90 16.45 39.90 15.50 37.54 35.73 36.22 

6 23.30 51.80 16.58 45.70 16.02 49.07 48.87 49.25 

7 27.70 59.40 17.15 52.20 16.91 55.11 55.95 55.83 

8 27.70 63.30 20.94 61.40 20.90 62.50 62.74 62.54 

9 26.90 69.60 23.71 68.90 23.78 71.44 71.35 71.33 

10 24.80 76.70 25.73 74.70 25.80 78.03 77.95 77.87 

11 26.90 82.00 24.52 77.20 24.59 82.07 82.67 82.68 

12 33.70 85.30 22.52 79.80 22.77 83.72 85.27 85.10 

13 33.90 89.00 26.45 87.80 26.92 87.43 88.11 87.71 

14 27.80 94.60 31.69 95.50 32.09 95.49 94.74 94.61 

15 20.80 98.80 33.23 97.70 33.18 100.88 99.90 99.91 

16 15.60 98.00 30.95 94.40 30.43 99.29 98.87 98.75 

17 11.90 91.80 26.98 87.90 26.29 92.06 92.05 91.82 

18 9.50 82.30 22.57 79.80 21.98 82.22 82.36 82.12 

19 7.80 72.00 18.59 71.50 18.24 71.75 71.88 71.67 

20 6.50 61.90 15.26 63.60 15.19 61.94 61.93 61.80 

21 5.80 53.00 12.40 56.10 12.60 53.12 53.10 53.03 

22 5.00 45.60 10.37 49.60 10.74 45.47 45.37 45.34 

23 4.80 39.20 8.52 43.70 9.04 39.14 39.04 39.07 

24 4.50 33.80 7.31 38.80 7.87 33.76 33.65 33.68 



Water 2021, 13, 3170 17 of 24 
 

 

25 4.10 29.30 6.47 34.60 7.03 29.55 29.39 29.44 

26 3.70 26.20 5.78 30.90 6.34 26.12 25.96 26.02 

27 3.40 23.50 5.16 27.70 5.71 23.20 23.08 23.14 

28 3.20 21.20 4.61 24.80 5.14 20.67 20.59 20.64 

29 2.90 19.20 4.23 22.30 4.73 18.52 18.44 18.48 

30 2.80 17.70 3.79 20.10 4.27 16.71 16.68 16.72 

31 2.60 16.40 3.52 18.20 3.96 15.12 15.09 15.23 

SSQ 

(m3/s)2 
- - 53,544.67 468.84 53,544.99 53.66 40.16 38.81 

Squared root 

of SSQ 

(m3/s) 

- - 231.40 21.65 231.40 7.33 6.34 6.23 

NSE - - −0.213958 0.989570 −0.213965 0.998842 0.999090 0.999120 

RMSE 

(m3/s) 
- - 40.905633 3.790780 40.905755 1.263563 1.120320 1.101288 

Of the results given in Table 8, the LMM-L, NLMM-L, and ANLMM-L results were 

calculated in previous studies [2,5,9], while those of the LMM and NLMM were calculated 

by applying SAVCA; the results of the latter two models were the same. The errors were 

the greatest for the results of both LMM and NLMM, and some of the calculated outflow 

values obtained were negative. The new Muskingum flood routing model results in Table 

8 were also calculated by applying SAVCA.  

Notably, the results obtained for the models considering the lateral inflow were good; 

those of the LMM-L, NLMM-L, and ANLMM-L were significantly better than those of the 

LMM and NLMM. The difference in the results of all Muskingum flood routing models 

occurs from 26 to 31 h. The outflows of NLMM-L, ANLMM-L, and new Muskingum flood 

routing model were the closest to the observed outflow from 26 to 31 h. Although the 

results of the NLMM-L and ANLMM-L were similar to the observed outflow at 26 h, these 

differed over time. However, the new Muskingum flood routing model results did not 

differ significantly from the observed outflow from 26 to 31 h. ANLMM-L showed the 

best results (smallest error) among the existing Muskingum flood routing models. The 

difference in SSQ between the ANLMM-L and new Muskingum flood routing model was 

1.35 (m3/s)2. Although varying results were obtained when using different flood data for 

the various models, the overall results of new Muskingum flood routing model were 

better than those of other Muskingum flood routing models because the error of new 

Muskingum flood routing model was relatively small in the latter part from 16 to 31 h. 

The new flood data in Daechung were applied to calibrate and validate the new 

Muskingum flood routing model. The flood data in April, 2014 were used for calibration 

and the flood data in April, 2018 were used for validation. Among various Muskingum 

flood routing models, LMM-L considering lateral inflow to LMM, NLMM considering 

nonlinearity to LMM and new Muskingum flood routing model were applied to 

Daechung flood data and compared.  

The parameters of LMM were 3.989981 for K and −0.034950 for X. The parameters of 

LMM-L were 3.865970 for K, −0.043293 for X, and −0.020080 for β. The parameters of 

NLMM were 2.225924 for K, −1.5 for X, and 1.0 for m. The parameters of NLMM-L were 

2.225076 for K, −1.406061 for X, 1.000000 for m, −0.007072 for β, 1.000000 for θ. The 

parameters of ANLMM-L were 2.123526 for K, −1.500000 for X, 1.000000 for m, −0.010223 

for β, 1.000000 for θ1, and 0.017871 for θ2. The parameters of new Muskingum flood 

routing model were 2.220910 for K, −1.498329 for X1, 0.094832 for X2, 1.000008 for m, 

−0.012616 for β, 0.999660 for θ1, 0.000093 for θ2, and 0.000288 for θ3. Each parameter was 

applied equally for 2014 and 2018 data. A total of 100 simulations were conducted for each 

Muskingum flood routing model, yielding the best results. Table 9 shows the results of 

Daechung flood data in 2014. 
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Table 9. Results of Daechung flood data in 2014. 

Time 

(h) 

Inflow 

(m3/s) 

Outflow 

(m3/s) 

LMM 

(m3/s) 

LMM-L 

(m3/s) 

NLMM 

(m3/s) 

NLMM-L 

(m3/s) 

ANLMM-L 

(m3/s) 

This Study 

(m3/s) 

0 0.79 0.47 0.47 0.47 0.47 0.47 0.47 0.47 

3 2.12 1.04 0.75 0.75 0.64 0.65 0.65 0.62 

6 3.54 2.11 1.79 1.80 1.81 1.80 1.78 1.79 

9 50.75 3.19 4.66 4.96 3.14 3.12 2.62 2.34 

12 103.90 38.32 39.94 40.42 41.86 41.65 40.88 41.01 

15 112.33 90.68 86.69 86.43 89.99 89.68 89.43 89.79 

18 82.41 106.18 104.31 102.80 104.36 104.08 104.41 104.44 

21 45.06 82.32 87.14 84.88 84.25 83.98 84.39 84.04 

24 23.12 51.59 55.83 53.70 52.80 52.46 52.58 52.12 

27 15.76 31.21 31.82 30.31 30.74 30.33 30.17 29.87 

30 15.03 20.82 20.13 19.22 20.63 20.23 19.98 19.86 

33 17.22 17.24 16.50 15.97 17.41 17.07 16.86 16.80 

36 17.27 17.65 17.02 16.64 17.91 17.64 17.51 17.50 

39 15.04 16.09 17.13 16.76 17.58 17.38 17.32 17.30 

42 9.97 13.02 15.44 15.05 15.59 15.44 15.44 15.41 

45 6.38 10.39 11.34 10.98 11.16 11.04 11.04 10.98 

48 5.67 8.17 7.71 7.43 7.59 7.49 7.45 7.39 

51 4.45 7.07 6.19 5.99 6.36 6.27 6.23 6.21 

54 4.23 5.99 4.92 4.77 4.99 4.92 4.89 4.87 

57 4.18 4.91 4.42 4.30 4.52 4.46 4.43 4.42 

60 2.25 4.20 4.18 4.07 4.32 4.27 4.27 4.27 

63 2.33 4.02 2.78 2.69 2.67 2.64 2.63 2.60 

66 2.24 3.01 2.45 2.38 2.51 2.48 2.46 2.45 

69 2.11 3.13 2.29 2.24 2.34 2.31 2.30 2.30 

72 2.83 3.49 2.18 2.14 2.18 2.16 2.14 2.13 

75 4.25 4.55 2.70 2.67 2.73 2.71 2.68 2.67 

78 2.83 4.20 3.78 3.72 3.94 3.92 3.92 3.94 

81 2.15 2.08 3.07 2.99 2.95 2.93 2.94 2.92 

84 2.13 1.04 2.40 2.33 2.33 2.31 2.30 2.37 

SSQ 

(m3/s)2 
- - 88.23 73.81 43.79 42.32 40.16 39.55 

Squared root 

of SSQ 

(m3/s) 

- - 1.78 1.62 1.25 1.23 1.20 1.19 

NSE - - 0.996612 0.997166 0.998319 0.998375 0.998458 0.998482 

RMSE 

(m3/s) 
- - 1.775135 1.623577 1.250501 1.229365 1.197584 1.188440 

Based on the variable values determined from the 2014 flood data, it was applied to 

the 2018 flood data. Table 10 shows the results of Daechung flood data in 2018. 
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Table 10. Results of Daechung flood data in 2018. 

Time 

(h) 

Inflow 

(m3/s) 

Outflow 

(m3/s) 

LMM 

(m3/s) 

LMM-L 

(m3/s) 

NLMM 

(m3/s) 

NLMM-L 

(m3/s) 

ANLMM-L 

(m3/s) 

This Study 

(m3/s) 

0 0.53 0.32 0.32 0.32 0.32 0.32 0.32 0.32 

3 1.86 1.02 0.52 0.52 0.43 0.44 0.44 0.41 

6 3.30 2.09 1.54 1.55 1.57 1.56 1.54 1.55 

9 59.34 3.79 4.71 5.08 2.91 2.90 2.30 1.95 

12 85.37 42.46 45.27 45.61 48.82 48.58 48.05 48.45 

15 124.77 79.88 75.73 75.51 75.72 75.50 75.05 74.93 

18 88.73 115.68 110.14 108.82 113.04 112.65 112.85 113.28 

21 48.98 87.42 93.24 90.93 89.96 89.69 90.22 89.81 

24 25.23 57.05 60.29 58.03 56.88 56.55 56.70 56.21 

27 17.09 25.19 34.54 32.93 33.26 32.85 32.68 32.36 

30 12.43 19.64 21.71 20.70 22.29 21.88 21.66 21.54 

33 19.03 15.39 15.19 14.63 15.69 15.35 15.09 14.96 

36 16.39 20.74 17.89 17.51 19.31 19.02 18.88 18.94 

39 16.44 15.69 16.80 16.43 17.01 16.81 16.74 16.68 

42 8.97 12.45 16.28 15.89 16.71 16.54 16.55 16.56 

45 6.89 10.17 10.90 10.52 10.48 10.36 10.36 10.26 

48 6.76 9.50 7.98 7.71 7.97 7.86 7.80 7.76 

51 4.90 5.93 7.03 6.83 7.28 7.19 7.15 7.15 

54 4.55 4.98 5.47 5.31 5.49 5.41 5.39 5.36 

57 3.51 4.50 4.76 4.63 4.88 4.82 4.80 4.79 

60 2.45 4.05 3.82 3.70 3.85 3.80 3.80 3.88 

SSQ 

(m3/s)2 
- - 221.92 180.41 171.45 161.99 159.84 157.64 

Squared root 

of SSQ 

(m3/s) 

- - 2.82 2.54 2.47 2.41 2.39 2.37 

NSE - - 0.990792 0.992514 0.992886 0.993279 0.993368 0.993459 

RMSE 

(m3/s) 
- - 2.815292 2.538342 2.474522 2.405271 2.389282 2.372746 

Figure 3 shows the results of calibration and validation in Daechung flood data. 
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Figure 3. Results of calibration and validation in Daechung flood data (a) 2014 flood data; (b) 2018 flood data. 

In the 2014 flood data, the SSQs of LMM, LMM-L, NLMM, NLMM-L, ANLMM-L 

and new Muskingum flood routing model were 88.23, 73.81, 43.79, 42.32, 40.16, and 39.55, 

respectively. In the 2014 flood data, the error of new Muskingum flood routing model was 

relatively small and the calibration of new Muskingum flood routing model was relatively 

accurate. The SSQs of new Muskingum flood routing model in the 2018 flood data was 

relatively small. In the 2018 flood data, the SSQs of LMM, LMM-L, NLMM, NLMM-L, 

ANLMM-L and new Muskingum flood routing model were 221.92, 180.41, 171.45, 161.99, 

159.84, and 157.64, respectively. In the results of Figure 2, more accurate flood routing was 

performed by applying the new Muskingum flood routing model compared to LMM, 

LMM-L, NLMM, NLMM-L and ANLMM-L. 

4. Discussion 

Because the calculation process differs for each Muskingum flood routing model, the 

time required to find the parameters when applying a meta-heuristic optimization 

algorithm is different for each method. The time required to apply SAVCA was 

summarized to determine the parameters of each Muskingum flood routing model for 

Wilson’s flood data. The parameters of SAVCA were set at a constant, and the simulation 

was conducted 10 times. In addition, the number of iterations was set to 100,000. Table 11 

shows the time taken for SAVCA when using Wilson’s flood data. 

Table 11. Time required by Muskingum flood routing models when using Wilson’s flood data. 

Comparative Indicators LMM LMM-L NLMM NLMM-L ANLMM-L This Study 

Time (s) 634 633 741 753 810 936 

Depending on the parameters of the SAVCA and flood data, the results over time 

using the Muskingum flood routing models differ from the results in Table 9. As the 

number of parameters of the Muskingum flood routing models increased, the time 

required also increased. The time required by LMMs, LMM and LMM-L, was the shortest. 

NLMM and NLMM-L required a greater amount of time compared to the LMMs. The new 

Muskingum flood routing model required more time than the ANLMM-L, which in turn 
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required more time than the NLMM-L. The time required by the new Muskingum flood 

routing model was approximately 1.5-times that required by LMM and LMM-L. In 

conclusion, the new Muskingum flood routing model produced more accurate results but 

took more time owing to the greater number of parameters and calculations. 

An analysis was conducted on how each parameter of new Muskingum flood routing 

model affects the results. Daechung flood data in April, 2014 was applied to analyze the 

sensitivity of each parameter in the new Muskingum flood routing model. Figure 4 

showed the results of the sensitivity analysis for the parameters in the new Muskingum 

flood routing model. 

 

Figure 4. Results of sensitivity analysis for the parameters in the new Muskingum flood routing model (a) K; (b) X1; (c) X2; 

(d) m; (e) β; (f) θ1; (g) θ2; (h) θ3. 

SSQ decreases and then increases as parameter K increases, and SSQ increases as 

parameter X1 increases. SSQ increases as parameter X2 increases and SSQ increases as 

parameter m increases. SSQ decreases and then increases as parameter β increases, and 

SSQ decreases as the parameter θ1 increases. SSQ increases as parameter θ2 increases, and 

SSQ increases as parameter θ3 increases. As each parameter changed, the change of the 
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results was not constant. It is difficult to find a uniform pattern in all the results. However, 

what can be confirmed from the results of sensitivity analysis is that a meta-heuristic 

optimization algorithm such as SAVCA is required to produce results with a low SSQ. 

5. Conclusions 

The Muskingum flood routing model is a representative hydrologic flood routing 

model that is widely used owing to its easy applicability. The proposed Muskingum flood 

routing model in this study is a simple model that can be applied by researchers that use 

the existing Muskingum models for accurate flood routing. 

In this study, the new Muskingum flood routing model was applied to various flood 

data, and the results obtained were compared with those of previously developed 

Muskingum flood routing models. As an index for comparison, the error was calculated 

between the observed and simulated outflows using the SSQ, NSE and RMSE. In addition, 

SAVCA, a meta-heuristic optimization algorithm, was applied to adjust the parameters of 

the new Muskingum flood routing model. 

In the sensitivity analysis, the changes of the eight parameters in the new Muskingum 

flood routing model are different. There are parameters whose results are improved as 

the value (θ1) increases, some parameters (m, θ2, θ3, x1, x2) whose results are improved as 

the value decreases, and some parameters (K, β) whose results are changed (improved 

and then deteriorated) as the value increases. The eight parameters of the new 

Muskingum flood routing model are decision variables of SAVCA and are calculated 

through the optimization process. 

Muskingum flood routing models considering the lateral inflow are capable of 

relatively sophisticated simulations, which corroborates that the influence of lateral 

inflow on the outflow can be considered. Among the existing models, the ANLMM-L 

showed the highest accuracy, although the difference between its results and those of the 

other Muskingum flood routing models was insignificant. In the new Muskingum flood 

routing model, the improved calculation method of the inflow at previous time and next 

time reflected the trend of the observed outflow. 

Since the Muskingum flood routing model proposed in this study has eight 

parameters, the calculation process is more complicated than the existing Muskingum 

flood routing models. Accurate flood prediction is possible due to the complicated 

calculation process, but the calculation time is long. 

Many studies, including this study, have been performed by applying various meta-

heuristic optimization algorithms to the Muskingum flood routing models. Since various 

optimization algorithms cannot show advantages in all problems, the results can be 

improved by appropriately selecting the operators of each meta-heuristic optimization 

algorithm. In addition, deep learning techniques have been widely used to apply various 

flood prediction methods including Muskingum flood routing models. By replacing the 

optimizer in deep learning techniques with meta-heuristic optimization algorithms, it 

would be possible to produce improved results in flood prediction. 
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Abbreviations 

ANLMM-L Advanced nonlinear Muskingum flood routing model considering continuous inflow 

NLMM-L Nonlinear Muskingum flood routing model incorporating lateral flow 

NLMM Nonlinear Muskingum method 

LMM-L Linear Muskingum method incorporating lateral flow 

LMM Linear Muskingum method 

SAVCA Self-adaptive vision correction algorithm 

DR1 Division rate 1 

DR2 Division rate 2 

MTF Modulation transfer function 

CF Compression factor 

AR Astigmatic rate 

AF Astigmatic angle 

SSQ Sum of squares 

NSE Nash–Sutcliffe efficiency 

RMSE Root mean square error 
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