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Abstract: The vast majority of reservoirs, although built for irrigation and water supply purposes,
are also used as regulation tools during floods in river basins. Thus, the selection of the most suitable
model when facing the simulation of a flood wave in a combination of river reach and reservoir is not
direct and frequently some analysis of the proper system of equations and the number of solved flow
velocity components is needed. In this work, a stretch of the Ebro River (Spain), which is the biggest
river in Spain, is simulated solving the Shallow Water Equations (SWE). The simulation model covers
the area of river between the city of Zaragoza and the Mequinenza dam. The domain encompasses
721.92 km2 with 221 km of river bed, of which the last 75 km belong to the Mequinenza reservoir. The
results obtained from a one-dimensional (1D) model are validated comparing with those provided by
a two-dimensional (2D) model based on the same numerical scheme and with measurements. The 1D
modelling loses the detail of the floodplain, but nevertheless the computational consumption is much
lower compared to the 2D model with a permissible loss of accuracy. Additionally, the particular
nature of this reservoir might turn the 1D model into a more suitable option. An alternative technique
is applied in order to model the reservoir globally by means of a volume balance (0D) model, coupled
to the 1D model of the river (1D-0D model). The results obtained are similar to those provided by
the full 1D model with an improvement on computational time. Finally, an automatic regulation is
implemented by means of a Proportional-Integral-Derivative (PID) algorithm and tested in both the
full 1D model and the 1D-0D model. The results show that the coupled model behaves correctly even
when controlled by the automatic algorithm.

Keywords: reservoir model; numerical simulation; shallow water equations; PID regulation

1. Introduction

As extreme phenomena, flood events raise concern among governments, institutions
and general society. The European Union has been developing plans and directives during
the last decades focusing on the control of their impact [1]. River overflows cause the
flooding of adjacent lands, urbanised areas and other infrastructures. Additionally, floods
can also take human lives, as reported by the UN [2], specially in areas with poor prevention
plans and a lack of predictive tools. Frequently, dams and reservoirs are present in river
basins as hydraulic elements with different functions. Not only to ensure enough water
supply for agricultural activities or energy production, but also as hydraulic structures
for discharge adjustment and control during flood events. Basin authorities manage their
operation focusing on available space in the reservoir, maximum acceptable downstream
discharges, and peak arrival times.

In this context, the development of predictive tools that provide information about
the temporal and spatial evolution of water level and discharge along a river during flood
events can help to quantify the damage caused and has been widely addressed in last
decades [3]. Some works are focused on urban areas coupling their overland models
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with sewer systems [4,5]. Some others are more oriented to large scale floods quantifying
inundated areas in crops and surrounding fields [6,7], including components such as weirs,
gates, dams and reservoirs [8,9]. Nowadays, there are even operational tools developed to
simulate extremely large domains using massive parallel algorithms [10]. In either case,
all models are then used to generate information and data for other models and tools
that analyse and classify flood-prone areas [11,12]. Fast and efficient numerical models
for the resolution of the equations that govern free surface flows in rivers have been
developed and improved in recent years [6,7,10,13–17]. However, including a reservoir
in the numerical model of the river reach is an additional difficulty. Even today, it is
widely accepted that three dimensional models (3D) are computationally expensive and
the phenomenon of a flood in a river at a large scale can be addressed by averaging
the equations vertically (2D approximation) [6,7]. However, flood event simulations
often involve large domains and long time scales, and practical applications require a
compromise between spatial resolution and computational efficiency [18,19]. To achieve
the necessary spatial resolution, in many cases quite fine computational grids are needed,
so more data storage is required, proportionally increasing the number of operations and
reducing the size of the time step allowed for explicit calculations. Therefore, flood risk
evaluations are often performed considering the average in the cross section to reduce the
phenomenon to a 1D approximation [13]. Finally, depending on terrain morphology, some
particular river reaches might transport hydrographs almost immediately, as reservoirs.

On the other hand, reservoirs can be assessed with different approximations depend-
ing on the variables of interest. Reservoirs can be solved either as part of the river reach;
this is, discretised. Alternatively, they can be considered as a storage volume with a con-
stant level [20,21]. When the detailed phenomena that might occur within a reservoir
are of interest, complex numerical models are developed. In [22], a 3D model based on
the Reynolds-Averaged Navier-Stokes equations is used to study secondary currents and
three dimensional behaviour of the velocity field. When the details of the 3D velocity
field are not required but the longitudinal profile of the water surface is of interest, they
can be incorporated as part of 1D discretised models [23]. Additionally, when some other
additional phenomena must be simulated, such as eutrophization [24] or sediment trans-
port [25], also a spatial discretisation of the reservoir is needed, whether in one or three
dimensions. An alternative is an aggregated reservoir routing where only a volume bal-
ance is considered [26–28]. This may include runoffs, evaporation and some other mass
exchanges. In any case, each reservoir must be specifically analysed. Aggregated models
may be suitable, due to the representation of the reservoir as a unique volume, providing
CPU times in the order of seconds [28], and a discretised model must compute as many
operations as grid elements, leading to higher computational times [22]. However, the
main disadvantage of these simplified approaches is that they do not represent in detail
the flow behaviour of the river and floodplains [29–31].

Concerning optimization of the reservoir as a hydraulic structure, several works have
focused on their hydropower potential. In [32], for instance, a linear optimization model
with three different objective functions was implemented to automatically manage the
reservoir in order to maximize total energy.

The aim of the present work is to couple recent research tools based on shallow
water numerical models for flood forecasting with an aggregated model for the reservoir,
developing a complete efficient simulation tool during flood events.

First, a comparison of the results obtained with a 2D and a 1D model in the middle
reach of the Ebro river is carried out for validation purposes. Both, the 2D and the 1D
model, are based on a finite volume scheme, which uses terrain data for the 2D mesh and
1D bathymetry creation. The 1D modelling is likely to lose the detail of the floodplain, but
nevertheless the computational cost is expected much lower compared to the 2D model.
Additionally, the particular nature of this reservoir, which is highly channelised, might
turn the 1D discretisation into a more suitable option than the 2D discretisation. Therefore,
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the quality of the 1D results should be checked and the calculation times of both models
should be compared.

Due to the particularity of the simulated section and the Mequinenza reservoir, which
transports flood waves almost immediately, an aggregated alternative technique is applied.
This approach formulates the reservoir flow globally by means of a volume balance model.
Our focus is on checking if the results obtained are similar to those provided by the fully
1D model and comparing the computation times of both simulations. This later option is
completed with a PID algorithm for regulation purposes.

2. Study Area

The Ebro River basin is one of the largest drainage areas in the Iberian Peninsula, as
seen in Figures 1a,b, where the Ebro River represents the biggest river in Spain. In this
work, a stretch of this Ebro River is simulated solving the Shallow Water Equations (SWE).
The simulation model, delimited in dashed line in Figure 1c, covers the area between the
city of Zaragoza and the Mequinenza dam, encompassing 721.92 km2. Between the inlet
and outlet locations, there are 221 km of river bed of which the last 75 km belong to the
Mequinenza reservoir, where the dynamics of the river changes to be nearly at rest. During
the entire stretch, the river descends from 208 m.a.s.l. of the elevation in Zaragoza up to
approximately 60 m.a.s.l. at the bottom of the riverbed in the Mequinenza dam, leaving an
average slope of 6 per 10,000.

(a) (b) (c)

Figure 1. Location of Spain in Europe (a); location of the Ebro River basin in Spain (b) and location
of the computational domain of the study in the basin (c).

The Ebro river is managed by the Ebro River Authority (CHE, www.chebro.es), which
controls, rules and prepares the reports of the basin (http://www.chebro.es/contenido.
visualizar.do?idContenido=14093&idMenu=3048; accessed on 20 October 2021). CHE
monitors the evolution of the flow discharge and water levels at a few control stations
along the river course storing data every 15 min. Figure 2 represents the Ebro River reach
simulated in this work. In the figure, the most important cities and the CHE gauging
stations available for data comparison are marked. The represented domain coincides with
the 2D domain used for simulations. The gauging stations in this reach are located in Pina,
Villafranca and Gelsa. Additionally, a point of estimation exist near the Mequinenza dam.
Each of these stations has an official label that can be seen in the same figure. This region
is of special interest due to its agricultural activity, and frequently suffers flooding with
important damages. It is a river reach where two different parts can be identified: the
first part of the region is characterised by marked meanders and large flooding areas; the
second part, around 75 km of the reach, is dominated by the large Mequinenza reservoir
provided with vertical walls. The dynamics of the river changes in the reservoir: its velocity
is reduced until water is practically at rest and flood waves are transported almost instantly.

The Mequinenza reservoir, the largest in the entire region, covers a surface area of
about 7540 hectares, with a maximum capacity of 1530 hm3 at a maximum normal surface
level of 121 m.a.s.l. The reservoir is exploited for hydroelectric production and irrigation to
nearby agricultural areas. At the same time, with its 124 m crest above sea level and its
6 gates, the dam is used to regulate the water storage in order to dump peak discharge
during floods and to guarantee hydroelectric generation. At the reservoir, there is only
a measurement point for water level that is transformed by CHE into a discharge value

http://www.chebro.es/contenido.visualizar.do?idContenido=14093&idMenu=3048
http://www.chebro.es/contenido.visualizar.do?idContenido=14093&idMenu=3048
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through volume estimations. CHE uses two different approaches for discharge estimation,
so that the results in the Mequinenza reservoir are compared not with observed but with 2
different estimated data.

Figure 2. Representation of the 2D simulation domain of the Ebro River with the most important
cities and gauging stations of CHE. The labels correspond to the official names of the gauging stations.

Two historical events of the Ebro River, the 2015 and the 2018 floods, have been
identified as relevant. Information concerning discharge hydrographs as well as time
evolution of the water surface level are available at the gauging stations. Additionally, the
European Emergency System (EMS) provides data of flooded area extensions, as seen in
Figure 3 (https://emergency.copernicus.eu/; accessed on 20 October 2021). This helped to
choose the domain extension setting the boundaries far enough not to interfere the flow.

Figure 3. Zoom view of an ortophoto with measured extension of the flooded area (blue) in 2018
flood event.

https://emergency.copernicus.eu/
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3. Methodology

Derived from the Navier-Stokes equations by depth averaging and assuming hydro-
static pressure, the Shallow Water Equations (SWE) can be considered to govern the free
surface flow of a river.

3.1. Two Dimensional (2D) Model

The 2D model can be compactly formulated as

∂U
∂t

+
∂F(U)

∂x
+

∂G(U)

∂y
= S(U) (1)

with:

U =

 h
hu
hv

 F(U) =

 hu
hu2 + gh2/2

huv

 (2)

G(U) =

 hv
huv

hv2 + gh2/2

 S(U) =

 0
gh(Sox − S f x)
gh(Soy − S f y)

 (3)

in terms of the water depth, h, the depth averaged unit discharges hu and hv in the x and
y directions respectively. The slopes Sox and Soy are the two components of the bottom
surface gradient zb(x, y):

Sox = −∂zb
∂x

Soy = −∂zb
∂y

; (4)

and S f x and S f y represent friction slopes, that are here formulated as:

S f x =
n2u
√

u2 + v2

h4/3 S f y =
n2v
√

u2 + v2

h4/3 (5)

where n stands for the semiempirical Manning friction coefficient ([33]).

3.2. One Dimensional (1D) Model

When the equations are averaged over the cross sectional area of the flow, a 1D model
is obtained, representing changes along the longitudinal direction of the river. The obtained
system is analogous to the 2D system, with a mass conservation equation and a linear
momentum equation along the river channel:

∂U
∂t

+
∂F(U)

∂x
= S(U) (6)

with:

U =

(
A
Q

)
F =

(
Q

Q2/A + gI1

)
S =

(
0

g[I2 + A(S0 − S f )]

)
(7)

where Q stands for transversal discharge, A is the cross section wetted area and I1, I2 are
hydrostatic pressure integrals. S0 is the bottom slope along the longitudinal coordinate of
the channel:

S0 = −∂zb
∂x

(8)

and S f is the friction slope, that is also formulated through the Manning law as:

S f =
Q2n2

A2R4/3 (9)
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where R is the hydraulic radius, defined as R = A/P, being A the wetted area and P the
wetted perimeter. Finally, the Manning friction coefficient is obtained empirically ([33]).

3.3. Finite Volume Model for the 1D Flow Equations

In this work, an explicit upwind first order finite volume method is used for both
systems of equations ([34–36]). The systems of Equations (1) and (6), can be generally
expressed as:

∂U
∂t

+
−→∇E = S (10)

where E =

(
F
G

)
in the 2D model, F and G are given by (2) and (3). Moreover, E = F in the

1D model, with F given by (7). When integrating (10) into a control volume or cell, Ω and
applying the divergence theorem, the following expression is obtained:

d
dt

∫
Ω

U dΩ +
∮

∂Ω
E(U) · n̂ dl =

∫
Ω

S(U) dΩ (11)

where n̂ is the outward unit vector in the normal direction to the volume Ω. From this, the
1D approach is next developed and details for the 2D approach can be found in [7,37]

Due to the hyperbolic character of the 1D equations, the numerical scheme used to
solve them is based on the Jacobian matrix of the fluxes:

J =
∂(E · n̂)

∂U
1 D−−→ J =

∂F
∂U

=

(
0 1

c2 − u2 2u

)
(12)

whose eigenvalues are:
λ1 = u− c λ2 = u + c (13)

with u and c given by:

u =
Q
A

c =
√

g A/B (14)

being A the cross section and B the free surface width. The celerity c characterizes the
speed of the infinitesimal surface deformation waves defining the dimensionless Froude
number Fr = u

c .
Following [16,35,38], the final updating scheme for a cell i of the domain in the time

tn+1 takes into account the contributions of neighbour cells containing fluxes and source
terms as:

Un+1
i = Un

i −
∆t1D
∆x

[
2

∑
m=1

(
λ̃+γ̃ẽ

)m
i−1/2 +

2

∑
m=1

(
λ̃−γ̃ẽ

)m
i+1/2

]n

(15)

being λ̃ and ẽ, respectively, the eigenvalues and eigenvectors of the Jacobian matrix of the
flux, J̃, linearised on the cell edge. Additionally, ∆x stands for the cell size. The upwind
scheme sends the information to the wave propagation direction through the eigenvalues
and their sign:

λ̃±m
i+1/2 =

1
2
(λ̃± |λ̃|)m

i+1/2 (16)

This scheme for the ordinary computational cells must be complemented with proper
initial and boundary conditions. The numerical scheme is stabilised by dynamically
limiting the time step size, ∆t1D, with the CFL condition:

∆t1D = CFL minm,k

(
∆x
|λ̃m

k |

)
(17)

where 0 < CFL ≤ 1 [39].
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3.4. Reservoir Model

In the context of the 1D shallow water model, the reservoir can be modelled with
two different approaches. In both cases, sketched in Figure 4, the upstream river reach
is discretised with a 1D finite volume method. However, the two approaches differ in
reservoir representation:

(a) 1D model: Fully discretised as the rest of the domain and solving the flow at each cell
(see Figure 4a).

(b) 1D-0D model: assuming a lake-at-rest condition within the reservoir and embedding
it into an aggregated model (0D) (see Figure 4b).

As depicted in Figure 4, the aim of approach (b) is to remove the computational cells
needed for the reservoir. Using the sketch as an example, while the fully 1D distributed
model encompasses from xL = 0 to xL = L, the coupled 1D-0D model has a discretised
domain only from xL = 0 to xL = L′, so that the computational cost is reduced.

(a) (b)

Figure 4. Representation of the two different approaches for reservoir representation: 1D distributed
discretisation as the rest of the domain (a); or coupling the 1D model of the river with an aggregated
0D model of the reservoir (b).

In near-rest flows, such as those in a reservoir, the velocity field is negligible so that it is
likely that the flow behaviour is properly solved only with volume balance. This represents
a 0D approximation. The Modified Puls Method [21] is based on the hypotheses that the
flow surface is always horizontal, the stored volume in the reservoir can be formulated
as a function of water level (V = V(H)) and the outlet discharge can also be expressed
as a water level function (Qout = Qout(H)). Thus, the volume variation is given by the
difference between the reservoir inlet, Qin, and outlet, Qout, as:

dV
dt

= Qin −Qout (18)

Discretising Equation (18) in time by assuming ∆V = S(Hn)(Hn+1 − Hn) with S the
free surface reservoir area (S = f (H)) leads to:

Hn+1 = Hn +
∆t

S(Hn)

(
Qn+1

in + Qn
in

2
− Qn+1

out + Qn
out

2

)
(19)

When combining this formulation with the 1D model to lead to the 1D-0D model,
the water level calculated with expression (19) is set at L′ (Figure 4b). It is important to
note, that the resolution of (18) requires knowing Qin(t) and the relation between Qout and
volume V at the reservoir. The inflow discharge to the reservoir is directly given by the
computation at the last cell of the 1D model. On the other hand, the reservoir outflow
discharge depends on the geometry and characteristics of the dam. In the present work
the downstream boundary condition, either for pure 1D or for 1D-0D model, is based on a
weir/dam law of the form [40]:

Qn+1 =
2
3

√
2gbCH4/3

w +
8

15

√
2gtan

(
θ

2

)
CH5/2

w (20)
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where Hw = H − hCrest is the water depth above the weir crest. Assuming a trapezoid
shape, b is the width of the minor length of the horizontal sides of the weir and θ the
opening angle of the trapezoid. Finally, C is an energy loss coefficient here taken as
C = 0.611 [9,26].

It is important to note that for both approaches, the full 1D model and the 1D-0D
model, the 1D river reach upstream the reservoir must be identically discretised, this
is, using the same ∆x, so that the analysis can show the differences provoked by the
reservoir model.

3.5. PID Regulation

The Mequinenza dam gates can be manually operated at present according to energy,
agricultural or safety criteria. In this work, a control Proportional-Integral-Differential
(PID) algorithm is implemented to show the possibility to dynamically include in the
simulation model the control of the gate opening during a flood. In particular, a specific
maximum reservoir surface level is set as target in the automatic algorithm so that the gate
opening must change under discharge variations during the flood event.

The PID controller computes the error between the predicted value of the variable
water surface level and the stated reference value, and uses it to compute a change on the
free parameter, gate opening, using an algorithm based on:

• Proportional term: Expresses a proportionality between the required action and the
error.

• Integral term: The required action takes into account the time integral of the error
over a given period.

• Derivative term: The controller actuation is formulated from the time derivative of
the error.

The equation that describes those PID terms is:

hCrest(t) = K
{

e(t) +
1
Ti

∫ Ti

0
e(t) dt + Td

de(t)
dt

}
= P + I + D (21)

where e(t) is the control error (e(t) = Hre f − H(t)), Hre f is the reference value (or setpoint)
of water level and H(t) is the current water level at time t. K is the proportional coefficient,
Ti and Td are integration and derivative times, respectively.

Equation (21) is discretised as:

hCrest(tn) = α1 K
(

1 +
Ts

Ti
+

Td
Ts

)
e(tn)− α2 K

(
1 +

2Td
Ts

)
e(tn−1) + α3 K

Td
Ts

e(tn−2) (22)

where e(tn) = Hre f (tn)−H(tn), e(tn−1) = Hre f (tn−1)−H(tn−1) and e(tn−2) = Hre f (tn−2)−
H(tn−2), being n the current time step. Parameters α1, α2 and α3 are the weights given to
each of the time steps that are included on the controller operation. Parameter Ts stands
for the sampling period for the input data to the algorithm.

The values for K, Ti, Td and Ts directly affect the hCrest evolution and, thus, have an
effect on the speed at which the controlled variable (i.e. water level) reaches the setpoint.
Therefore, proper determination of those parameters is essential to optimize and stabilize
the algorithm. Otherwise, the controller could lead to extreme gate opening values hence
destabilizing the system.

4. Model Application
4.1. Discretisation of the Domain

The Ebro River reach has been first simulated to validate the 1D model comparing
with results obtained with the 2D model [7] applied to the same stretch. In both cases
the discretisation of the reservoir is included within the computational grid. The aim is
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to evaluate if the 1D approach provides reliable results improving the efficiency of the
2D model. Once the 1D model is demonstrated to be reliable enough, the coupled 1D-0D
model and the control algorithm are evaluated.

The domain discretisation is different depending on the numerical scheme. In the
2D model, the mesh is an unstructured triangulation of the (x, y) domain with piecewise
uniform values of terrain elevation and roughness. The triangles can be of variable size
and adapt to the terrain topography. The mesh used was generated from a DTM in
RASTER format and included 949445 triangular elements. In the 1D model, the domain is
discretised into a set of cells separated by cross sections along the riverbed evenly spaced
at a distance ∆x.

The 1D mesh was generated from topographic information of the field compound by
433 cross sections. Among them, 100 sections are within the reservoir region (as in example
in Figure 5). The lateral span of the sections must capture the shape of the river bed to avoid
losing information relevant to the evolution of the variables but avoiding overlapping. It
is of vital importance that the sections are always normal to the river in curved regions,
as seen in Figure 5. Finally, a 1D mesh of 2000 cells is obtained. Additionally, a uniform
roughness coefficient n = 0.032 is chosen ([33]). A steady flow with a discharge value that
matches the value at the initial time of the inlet hydrograph is set as initial condition. The
upstream boundary condition is a hydrograph, while the downstream boundary condition
is a spillway condition, which represents the presence of the Mequinenza dam.

Figure 5. Top view of several sections over the raster with different river meanders.

4.2. Performance Analysis of the 1D and 2D Models

Two historical events of the Ebro River, the 2015 and the 2018 floods, have been
simulated with both the 1D and the 2D models. The 2015 inlet hydrograph, obtained from
the Zaragoza gauging station (see Figure 2), is set in Zaragoza as inlet boundary condition
and can be seen in Figure 6. The comparison between results obtained with both simulation
models and real observation data for this event can be seen in Figures 7 and 8. They show,
respectively, the time evolution of discharge and water level at Gelsa (A263) station and
Mequinenza dam (E003). It is important to note that the data provided by the CHE gauging
station are for water depth (h) and not for water level (H = h + zb), and the actual bed
elevation of the station is unknown.
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It can be seen in Figures 7 and 8 that the 1D and 2D simulations produce remarkably
similar data which follow the tendency of the actual data. However, neither of the two
models is able to reproduce the detail of the curves at t = 380 h. This is possibly due to
a dynamic change in the terrain such as a levee breach not included in the static terrain
representation of the models owing to the lack of available information. It should be noted
that, in the first 250 h, it is the 1D model which offers data closer to the reality. This suggests
that the flow was more channeled in this period of time and the overflow is estimated by
the 2D model too early. From t = 300 h it is the 2D model which provides a behaviour
closer to the real one, possibly due to the fact that, near the peak flow, the floodplains
are inundated.

Figure 6. Inlet hydrograph for the Ebro River flood event in 2015 in Zaragoza (A011).

Figure 7. Cont.
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Figure 7. Discharge temporal evolution comparison between 1D model, 2D model and observa-
tion at Gelsa (A263) gauging station (upper) and comparison between models and estimations at
Mequinenza dam (E003) (lower) for 2015 event.

Figure 8. Water level temporal evolution comparison between 1D model, 2D model and observation
data at Gelsa (A263) gauging station for the 2015 event.

Figure 9 shows the 2018 inlet hydrograph used as upstream boundary condition.
Figure 10 displays the discharge time evolution as computed with the 1D and the 2D models
together with the observation at Gelsa (A263) gauging station (upper) and Mequinenza dam
(E003) (lower) for this event. The time evolution of the surface water level at Villafranca
gauging station (the only measured variable) is displayed in Figure 11. The evolution of
the water levels predicted by the two models is again quite similar to that of the real data
until approximately t = 100 h. Around this time, the measured data suffer a slight decrease
not predicted by the 2D model.
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Figure 9. Inlet hydrographs for the Ebro River flood event in 2018 in Zaragoza (A011).

Figure 10. Cont.
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Figure 10. Discharge temporal evolution comparison between the 1D model, the 2D model and the
observation at Gelsa (A263) gauging station (upper) and comparison between models and estimations
in Mequinenza dam (E003) (lower) for the 2018 event.

Figure 11. Water level temporal evolution comparison between the 1D model, the 2D model and the
observation in Gelsa (A263) gauging station for the 2018 event.

Regarding computational times, for the 2015 case the 1D model required 511 s to
compute the full event, while the 2D model took 47 h, as seen in Table 1. These computations
were performed with High Performance Computing (HPC) techniques for the 2D model.
In particular, a NVIDIA GeForce GTX 1080 Ti GPU was used to compute the 2D cases,
while a simple paralellization into 8 Intel Xeon X5650 CPU’s was necessary for the 1D
computations. For the 2018 event, which is a bit shorter, the computational time required
by the 1D model was 364 s, while that of the 2D model was 23.8 h.
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Table 1. Comparison of computational times for the two flood events simulated in the Ebro River.

Event Duration 2D GPU Time 1D CPU Time

2015 600 h 47 h 511 s
2018 430 h 23.8 h 364 s

4.3. Performance Analysis of the 1D and 1D-0D Models

The comparison between the full 1D model and the 1D-0D model is next carried out
for the 2015 flood event. The discretisation of the full 1D model is the same used in the
former subsection, while the 1D-0D model is characterised by a partial discretisation of the
domain embedding the reservoir zone within the outlet boundary condition. In this last
case, only the first 352 sections and 1511 mesh cells are necessary for the discretised part.
This is, following Figure 4, for the river reach from xL=0 to xL=L’.

Figure 12 represents the river profile for different times of both the full 1D model
(fine and dark lines) and the 1D-0D model (wider and light lines). Bottom elevation, zb, as
well as water level, h + zb, profiles are represented for both models. The initial condition
can be seen at the upper picture of the figure, with a low water depth profile upstream
the reservoir area, where the level remains uniform and the water depth increases. The
middle picture corresponds to t = 300 h, when the discharge is increasing and a higher
water depth can be seen. The lower picture coincides with the discharge peak of the inlet
hydrograph (see Figure 6), reaching the highest value of water level. In the three cases, the
level reached by the last cell of the 1D-0D model is almost the same as the value of the full
1D model, which discretises the whole reservoir. Therefore, it can be said that embedding
the reservoir in the outlet boundary condition provides very similar results to those of a
full model, without the necessity of such amount of computational cells.

As illustrated in Figure 12, the section located at xL = L′ is not exactly the beginning
of the reservoir, as the length of the reservoir varies throughout the simulation depending
on the level of the water surface. For that reason, this section is chosen displaced forward
ensuring that it always belongs to the reservoir. Thus, for high level values, there is part of
the reservoir being discretised and also simulated by the 1D numerical scheme.

The temporal evolution of the water level at xL = L′ can be seen in Figure 13. Although
there is a very good agreement, the figure shows that the level of the 1D-0D model is slightly
below the value of the full model at that location (xL = L′). This is because there is not a
uniform level in the entire reservoir and the 1D model represents this behaviour. However,
the 0D model assumes a constant level in the reservoir that matches quite exactly the
level at the end of the reservoir in the 1D model (xL = L). In addition, the lag previously
obtained by the model 1D-0D is no longer present. The reservoir surface area function,
S(H), corresponds to the entire reservoir. However, as part of the reservoir is being
discretised by the 1D model, the boundary condition of the 1D-0D model causes a slower
evolution of the level, as it is considering that there is a larger modeled reservoir than there
should be and, therefore, it overestimates the value of S(H).

The computational times of these simulations can be seen in Table 2. It can be seen how
the 1D-0D model allows for considerable time reduction due to the due to the absence of the
cells representing the reservoir. These results show that the coupled model results accurate
enough to predict water levels along the river providing a performance improvement.

Table 2. Computational times for 2015 flood event simulated in the Ebro River with the 1D-0D model
and the pure 1D model.

Event Duration Pure 1D 1D-0D

2015 600 h 511 s 196 s
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t = 0 h

t = 300 h

t = 400 h

Figure 12. Longitudinal profile of bottom level, z, and water surface elevation (WSE) at different
times computed with the 1D model and the coupled 1D-0D model for the 2015 case.



Water 2021, 13, 3160 16 of 20

Figure 13. Comparison of computed water surface elevation (WSE) at xL=L’ using 1D model and
1D-0D model and computed WSE at xL=L using 1D model.

4.4. Performance Analysis of the 1D and 1D-0D Models Including DAM Regulation

Once the coupled 1D-0D model has been proved to perform properly, a dam regulation
algorithm is implemented in both the coupled and the full 1D model. This is, both models
include in their outlet boundary condition a PID algorithm that updates the dam crest,
hcrest, to approach or to maintain a reference water level or setpoint, regardless of the
inlet discharge.

For that purpose, both models have been discretised exactly as in the preceding section.
The parameters used in the PID controller must be first calculated and validated. In this
work, the chosen values are K = 11576, Ti = 12 s, Td = 3 s, Ts = 1000 s, α1 = 0.5, α2 = 0.3
and α3 = 0.2. Those values were obtained following [41]. The dam movement is limited
by vmax = 0.01 m per time interval and the water surface level is limited by a maximum
and minimum value of 115 m and 105 m respectively. The target water surface level is
Hre f = 112 m. The comparison is done at xL = L′ (see Figure 4).

It is worth mentioning that variations of dam crest, hcrest, are a practical representation
of variations in cross section area of spillways. In reality, dams can not change their crest,
but the gate opening of their structure. However, the discharge law implemented would be
the same and the dam crest results in a very representative parameter of the dam opening.

The Figure 14 shows the temporal variation of water level at xL = L′ for both models.
Besides that, the figure also represents the time evolution of the dam crest throughout
the simulation. At the same time, Figure 15 depicts, also for both models, the temporal
evolution of outlet discharge. It worth mentioning that this discharge is the flow rate
passing through the dam.

Figure 14 shows that, at the beginning of the simulation, the level of the reservoir is
much lower than the setpoint (Hre f = 112 m), so the dam crest is at its maximum height
preventing the water leaking (see Figure 15) and provoking an increase of water level.
Once the reference is reached, the dam crest varies to maintain a constant water level while
the inlet flow rate changes. At that time, the outflow hydrograph tends to resemble the
inflow rate.

The time evolution of hCrest displayed in Figure 14 is rather similar for both models,
reaching the target value in a short time. It is worth noting that the 1D model reaches the
objective earlier than the 1D-0D model. This is provoked by the lower level obtained with
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the 1D-0D model at xL=L’ (see Figure 4) in comparison with that computed with the 1D
model. This causes a delay in the reservoir filling up to the setpoint.

Figure 14. Temporal evolution of the water level and dam crest computed with the fully 1D model
and the coupled 1D-0D model for the 2015 case with the control of a PID algorithm.

Figure 15. Temporal evolution of the outlet discharge at Mequinenza dam (E003) computed with the
1D model and the coupled 1D-0D model for the 2015 case with the control of a PID algorithm.

The computational times for the model with the PID algorithm are shown in Table 3.
The same trend found for the comparison between the different approaches for the reservoir
modellization results into an improvement of the optimization when using the 1D-0D
model. Besides that, the PID algorithm does not penalize the computational time, but it
makes the model more efficient.

Table 3. Computational times for 2015 flood event simulated in the Ebro River with the 1D-0D model
and the pure 1D model, both with the dam regulated with a PID algorithm.

Event Duration Pure 1D 1D-0D

2015 600 h 484 s 176 s
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5. Conclusions

In this work, the performance of several modelling approaches has been compared in
order to evaluate their results and computational requirements in a transient river flow
event in a reach of the Ebro river (Spain) that includes a reservoir covering a large area.
A 2D distributed shallow water model solved over a triangular grid and a 1D shallow
water model have been used to discretise the full domain. Additionally, an aggregated
volume balance model has been implemented to model the reservoir region in order to
allow computational saving. This has led to a coupled 1D-0D model. Finally, a PID control
algorithm has been implemented as a regulation technique at the dam location and has
been combined with both the 1D model and the 1D-0D model.

From the comparison of the performance of the 2D and 1D models, it can be be
concluded that the results of the 1D model for the recent flooding events at the considered
Ebro River reach are very similar to those provided by the 2D model. The water level
and discharge data predicted by both models follow the same trend. The cross sections
used to build the 1D model computational mesh were carefully located to reproduce the
river curvature in detail, which is important to obtain a realistic evolution of the hydraulic
variables. This effort is justified by the immense computational saving that the use of the
1D model offers, as long as there is no interest in representing the floodplain flow, that the
1D model does not take into account.

The coupling of the 1D model for the river flow at the upstream reach and the 0D model
for the reservoir (1D-0D model) offers results very similar to those from the full 1D model.
There is some lag due to the instantaneous propagation of the hydrograph in the reservoir
assumed by the 0D model but this is acceptable considering the computational savings
that the use of this model implies compared to the full 1D model. The computational times
observed with the 1D-0D model justifies the use of this combined approach. Therefore, the
coupling of a 0D model for the reservoir with the 2D model for the upstream river reach is
envisaged as future work since this will lead to high computational savings, something
very positive for simulations with 2D models as well as the possibility to simulate the
floodplain flow behaviour.

The PID control algorithm has been implemented with the objective to ensure a fixed
surface water level at the dam. The results show that this target level value is never reached
despite the time variable discharge, which means that the implementation of the control
algorithm is a correct security measure to avoid exceeding certain levels in the reservoir. It
will be convenient in the future to implement an algorithm that takes into account more
realistic and complex objectives.
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