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Abstract: Digitalization and knowledge management in the water sector, and their impacts on
performance, greatly depend on two factors: human capacity and digital maturity. To understand the
link between performance, human capacity, and digital maturity, six AGS water retail utilities were
compared with all Portuguese utilities using Portuguese benchmark data (2011–2019). AGS utilities
achieved better results, including in compound performance indicators, which are assumed to be
surrogates for digital maturity. These compound indicators were also found to correlate positively
with better performance. In fact, AGS utilities show levels of non-revenue water (NRW) (<25%)
below the national median (30–40%), with network replacement values similar to the national median
(<0.5%). These results seem to imply that higher digital maturity can offset relatively low network
replacement levels and guarantee NRW levels below the national average. Furthermore, regarding
personnel aging index and digital maturity—two internally developed indicators—there was an
increase in the digital maturity and aging of the staff, which, again, raises questions about long-term
sustainability. The growing performance and the slight increase in digital maturity can be attributed
to group-wide capacity building and digitalization programs that bring together staff from all AGS
utilities in year-long activities.

Keywords: water utilities; knowledge management; digital maturity

1. Introduction

Water utilities worldwide face the challenge of supplying water in an increasingly
complex market [1]: while the population and demand are increasing, infrastructure is
aging, sources are dwindling [2,3], prices are expected to stay low [4–7], and the sector’s
carbon footprint must be further reduced in the context of climate change [8]. It is thus
crucial for water utilities to improve knowledge management and to implement smart and
innovative water solutions to collect and analyze data in a more efficient and coherent
manner [5,9,10], in order to optimize the efficiency of operational and administrative
processes.

From the perspective of a water utility, this complex context includes three comple-
mentary areas: (i) knowledge management; (ii) staff capacity; and (iii) data/knowledge
digitization and service digitalization [5,11–13]. These three aspects complement each
other, and their optimization will result in a water utility that has the capacity to more
easily thrive in this complex context.

Water utilities worldwide already make extensive use of digital services, for example
for billing, customer relationship management, geographic cadastre, supervisory control
and data acquisition. The implementation of these tools has been shown to increase a
utility’s performance [5]. However, data quality is an issue [14] and only a fraction of the
data collected are used, that is, it is a process that is data-rich in terms of quantity but poor
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in terms of information [11,15], and these data are not shared in corporate systems, greatly
limiting deeper understanding [15]. Furthermore, there are more advanced techniques
that are yet to be fully exploited by the sector, including Internet of Things (IoT) [16],
real-time monitoring and sensorization [17–19], digital twinning [20–22] and artificial
intelligence [23–25]. These techniques will produce large datasets—big data—that will
have to be checked, analyzed, and interpreted, a process that is regarded as a vehicle
for the improvement of processes and efficiency [4]. However, this data-driven decision-
making process will require the availability of highly trained staff, in a process entitled
Water 4.0 by the German Water Partnership [4,26]. Furthermore, infrastructure investment
costs [27,28] and cyber-threats to critical infrastructure, such as water supply, must be
carefully considered in the path towards digitalization [29–31], for example with the
widespread deployment of IoT [32,33], since water utilities are considered as “one of the
most sensitive components in smart cities” [34]. In fact, the digitalization of urban water
systems is typically left behind when compared to other utilities, particularly gas and
telecommunications, probably due to a combination of the fear of new vulnerabilities in a
sector that is essential to human life [5] and financial constraints. However, the fact that
this is a slow-moving sector can be seen as an opportunity, since lessons can be learned
from other sectors, and risks can be mitigated [35].

All this points to the complementarity between knowledge management and process
digitalization. Currently, many utilities in the West are still in the process of digitizing their
processes, and large parts of utilities knowledge, for example, the location of the network,
is tacit (in the head of the staff), or kept in physical form (physical registries of water
produced). In fact, much of the knowledge of utilities’ staff is tacit and not systematized in
an accessible way that can be fully exploited by the utility either now or after the staff’s
retirement [5,12]. If not tackled, the latter will translate into the loss of critical and gathered
knowledge [36]. Therefore, knowledge management will be paramount for water utilities,
ahead of digitalization, to thrive in the coming years, as many utilities: (i) must systematize
and register tacit knowledge, and (ii) make space for incoming big data processes. However,
this process may be undermined by aging staff in utilities [13,37,38].

Therefore, water utilities managers must keep a balance between the systematization
of tacit knowledge, the deployment of new and innovative tools, and the hiring of younger
and more highly skilled staff to complement the existing staff.

However, there is very limited information available regarding metrics used to assess
a utility’s digitization and digitalization, as well as staff seniority. Regarding staff man-
agement, there are performance indicators for water utilities that deal with the amount
of staff allocated to specific tasks in the utilities, such as the breakdown of utilities’ staff
or outsourced staff [39]. To complement this information, an indicator entitled the Per-
sonnel Aging Index (PAI) was developed [12]. Regarding digitization and digitalization,
IWA proposed a qualitative framework to qualitatively assess water utilities [11], which
is parametrized in this article. Furthermore, to the knowledge of the authors, this is the
first time that a quantitative link between digital maturity, staff maturity level and utility
performance/sustainability has been studied using nationwide benchmark data.

2. Materials and Methods
2.1. Context

Water retail utilities in Portugal follow one of three possible management models:
direct management, delegated management, and concessions [40]. The service is regulated
by Portugal’s water and waste services regulation authority (ERSAR, www.ersar.pt/en,
(accessed on 3 July 2021)), which is also responsible for the Portuguese water and waste
sector’s benchmarking. AGS, owned by Marubeni, is a privately held company responsible
for the operation and maintenance of several water and wastewater treatment facilities
and for the management of 13 utilities in Portugal and Brazil under concession agreements,
public-private partnerships, and for the provision of engineering services to water utilities
in Europe, South America and Asia [41]. Since 2005, AGS has been actively participating
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in various European and Portuguese studies and capacity building initiatives, including
Care-W [42], Aware-P [43] and LNEC’s Asset Management’s initiative [44]. Building
on this experience, AGS has developed several in-house initiatives (with its utilities)
covering various topics, such as asset management, non-revenue water reduction, the
implementation of benchmarking methodologies (e.g., AquaRating’s [45]), customer meter
management and cybersecurity, with the initiatives contributing to the utilities’ overall
performance improvement.

This article analyzes the performances of six water supply retail utilities managed
by AGS. Other utilities, e.g., bulk suppliers of drinking water and wastewater-related
services, were not considered. To qualitatively evaluate the impact of digitalization and
the deployment of innovative management tools, the performance of these utilities was
compared to the performance of all Portuguese water supply retail utilities using public
data made available by ERSAR. Afterwards, AGS’s utilities were further analyzed in terms
of its human resources age maturity and its digital maturity.

2.2. Water Utilities Performance Assessment

The data used for benchmarking in this article are public data freely available from
ERSAR’s webpage [46]. ERSAR data are available for the period of 2011–2019 and cover
all Portuguese water, wastewater and solid waste utilities. Due to ERSAR’s very com-
prehensive questionnaire, which must be filled-in by each utility, it is possible to use this
information to compare utilities’ performances and as surrogate indicators for digital ma-
turity. Thus, the results presented in the article can be easily validated and reproduced.
The performance indicators used to evaluate the water utilities (Table 1) were selected
based on the available information to characterize the performance of the water distribu-
tion network. Non-revenue water was selected to characterize the current condition of a
distribution network, a common performance indicator mentioned in the literature [47–50].
Network rehabilitation is a common research subject within the context of strategic asset
management [51,52] that assumes that limited resources have to be invested [53] in order
to guarantee the maintenance of the level of service. Therefore, network rehabilitation
was selected, as it allows for characterizing the long-term infrastructural sustainability
of a utility. Furthermore, the flow measuring index and infrastructure knowledge index
were selected as they are indicators linked to the various facets of digital maturity in water
utilities, since they take into consideration the availability of databases and information
systems that are intimately linked with digital maturity.

Additionally, this study only considered retail water utilities (256 for 2019), as all AGS
utilities considered for this study are retail. Therefore, all bulk water utilities were disre-
garded in the analysis (10 for 2019). The AGS utilities included in this work participated
in AGS’s internal capacity building initiatives (see Section 2.1 Context). In 2019, of the
six AGS utilities surveyed in this article, one followed a delegated management model,
whereas the remaining five were concessions. The breakdown for ERSAR utilities is the
following: 202 utilities under direct management, 26 under delegated management and
28 under concessions. It can be hypothesized that the management model plays a role in
utility performance [54,55].
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Table 1. Indicators used to evaluate the performances of water utilities. More information can be found in ERSAR’s latest
version of the quality evaluation guidelines [39].

Designation Units Formula Quality Reference Values

Non-revenue water
(NRW) %

100 × Volume of non-revenue water physical
losses [m3/year]/Volume of water entering

the system [m3/year]

Good <20

Fair 20–30

Poor >30

Network rehabilitated
per year in the last 5

years
%

(100/5) × Length of network rehabilitated in
the last five years [km]/Average network

length [km]

Good 1–4

Fair 0.8–1

Poor <0.8

Flow measuring (FM)
index -

Assess whether all locations considered
relevant for optimizing the management of
the system’s operation are equipped with

flow meters. Determined by the sum of the
scores of each class under analysis, with a

predefined number of points being assigned
to each question. From 0 to 200 with 200 being the

maximum score
(without reference values)

Infrastructure
knowledge (IK) index -

Assess the entity’s knowledge of the existing
water supply service infrastructure.

Determined by the sum of the scores of each
class under analysis, with a predefined

number of points being assigned to each
question. This index attributes points, for
example, to the existence of a pipe burst

database, and the interconnection between
GIS and other utilities’ information systems.

2.3. PAI

In order to evaluate each utility’s team maturity levels and the corresponding knowl-
edge loss risk, a Personnel Aging Index (PAI) [12] was developed, which describes staff’s
average working career as the ratio between the sum of the remaining useful professional
life and total lifetime career for each employee. Briefly, the PAI can be computed for the
entire organization or a single department. It can also be determined per professional
category, since each implies a different useful professional lifespan according to gradua-
tion level and/or the period needed to acquire specific skills through working experience
and/or training in the organization. For example, graduate employees begin their careers
later than undergraduates and coordination responsibilities should only be assumed by
technicians with some level of work experience. These differences are translated into
different useful professional lives and total lifetime careers. The PAI can be determined
according to the following equation:

PAI(t) =
∑n

i=1 RUpli,t
∑n

i=1 Cli
(1)

where PAI(t) is the Personnel Aging Index at time t (dimensionless); n is the total number of
employees; RUpli,t is the remaining useful professional life of employee i at time t (years);
and Cli is the maximum career length of employee i (years).

2.4. Digital Maturity Index

The concept of a digital maturity index was developed internally at AGS since a need
was felt to homogenize the digital characterization of the water utilities and systematize
the needs for improvement (Table 2). This index took as a starting point the qualitative
assessment framework proposed by IWA [11]. For each water utility, digital maturity was
evaluated at seven different levels, ranked by increasing complexity. Each level is divided
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into several sub levels, which are evaluated in terms of both availability and usability, with
grades from 1 to 3. Finally, the digital maturity of a utility is calculated using Equations (2)
and (3) as a ratio between the total number of points per water utility and the maximum
number of points across the seven levels. To remove bias from the self-evaluation, Table 2
was filled in by the authors for each of the utilities surveyed in this article, in particular, the
grades for the availability of the system and its usability.

Table 2. Matrix used to determine digital maturity for a water utility.

Description
Number

of
Points

Type of
System in

Place
System

Operation

Level 1 Level 2 Level 3 Level 1 Level 2 Level 3

Level 1—Basic IT
capabilities

Cybersecurity system 10

No system or
methodology

in place

Generic
approach or
methodol-

ogy
followed

Dedicated
system in

place

Either:

1. No system
or

methodology
in place

2. Existing
system or

methodology
not in use

Only basic
capabilities

used

Full
capabilities

used

Customer relationship
manager 10

Level 2—Network
sensorization and

digitization

Flow gauges 10/3 System
covering the

most
important
sections of

the network

Most of the
network
(>80% of

consumption)
covered,

monitored,
and

automated

Pressure gauges 10/3

Telemetry system 10/3

Cadastre in digital
format 10

Level 3—SIG,
automated data
collection and

modeling

Digitalized network
model 10

Generic
approach or
methodol-

ogy
followed

Dedicated
system in

place

GIS system 10

SCADA system 10

Level 4—Operational
management and

maintenance systems

Work order
management system 10

Maintenance system 10

Level 5—Optimization
systems

Flow-monitoring
system 10

Optimization system 10

Level 6—Planning
systems

Domestic flow
metering systems 10

Integrated asset
management system 10

Level 7—Predictory
systems

Digital twins 10

AI systems 10
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Digital maturity for utility A is calculated using Equation (2):

Digital maturityutility A =
∑n

i=1 PointsUtility A
item i

∑n
i=1 Pointsmax

item i
(2)

where ∑n
i=1 PointsUtility A

item i is the summation of points, per item i, for Utility A (Equation (3));
∑n

i=1 Pointsmax
item i is the maximum number of points for all items.

PointsUtility A
item i = Pointsmax

item i ×
(
Gradeitem i

avail + Gradeitem i
usabil

)(
Grademax, item i

avail + Grademax, item i
usabil

) (3)

where Pointsmax
item i is the maximum number of points possible for item i (Table 2);

Gradeitem i
avail +Gradeitem i

usabil is the grade obtained for the availability (avail) and usability (usabil)
of item i’s system; Grademax, item i

avail + Grademax, item i
usabil are the maximum grades (=3) for the

availability (avail) and usability (usabil) of item i’s system.

2.5. Data Handling and Visualization

All analyses were performed using R 4.0.5 [56]. The data visualization employed
ggplot2 [57]. The correlation plots were produced using R package GGally [58].

3. Results and Discussion
3.1. Characterization of the Water Utilities

An overall characterization of the surveyed utilities for the year 2019 is given in
Table 3. Across all the variables, AGS utilities have higher mean and minimum values, but
lower maximum values.

Table 3. General characteristics of all Portuguese retail water utilities and AGS’ water utilities (all retail). Obtained for 2019
from [46].

ERSAR AGS

Variable Units Mean Min Max Mean Min Max

Staff supporting
water supply Number 32 0 392 75 24 138

Outsourced staff
supporting water

supply
Number 4 0 288 6 2 14

Network length km 449 8 4025 828 417 1392

House connections Number 12,863 571 153,037 21,430 10,917 33,887

Water entering the
system m3 5,804,197 121,572 221,836,250 7,943,717 2,605,203 18,407,025

Tariff income EUR 2,591,241 0 97,486,957 7,968,945 3,174,878 21,122,610

3.2. Performance Assessment and Benchmarking

Benchmarking, in addition to sometimes being a pre-requisite on the side of a regula-
tory body, can also assist utilities in delivering better services [59]. An evaluation of the
performance of AGS’s utilities and a comparison with all Portuguese water retail utilities,
including those of AGS, can be seen in the figures below using the indicators described in
Table 1.

Overall, service and operational performance within AGS’ utilities increased signifi-
cantly after 2011, and has stayed stable or increased slightly in the period of 2016–2019. By
2019, AGS’s performance was in the range of 20–30% for NRW and below 0.8% for network
rehabilitation. It should be mentioned that such low levels of network rehabilitation, at a
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national level, pose serious questions about service sustainability in the coming years and
decades.

AGS’s utilities have performed better than most of the utilities benchmarked by
ERSAR (Figure 1), with levels below average for NRW and slightly higher levels for
network rehabilitation. This indicates that even though the rehabilitation rates are below
the optimal range defined by ERSAR (Table 1), AGS utilities present lower NRW losses,
which can be hypothesized as being a result of optimized operational programs using
systematized methodologies and software, which are often developed in-house. In fact, it
has been shown that the implementation of digital, real-time monitoring tools can lead to
tangible performance improvements, such as reductions in NRW [5].
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Furthermore, for the flow-measuring index, the infrastructure asset management
index and the infrastructure knowledge index, AGS utilities perform better than ERSAR’s
evaluated utilities (Figure 2). For all the indices, the utilities were asked to fill in very
detailed surveys, and some information is given in Table 1 [39]. For the flow-measuring
index, the survey covers increasingly finer sampling points—abstraction wells, water
treatment plants, network reservoirs, pumping stations, DMAs, and the measuring of
consumption for (non-)domestic clients. For the infrastructure knowledge index, the
survey poses detailed questions regarding the existence of GIS (or other format) maps
of the network, which include treatment plants, reservoirs, pumping stations, pipes, and
house connections.

The level of detail and scope of the two indicators mean that to perform well in these
indicators, i.e., to collect all necessary data, utilities are expected to have deployed, and
made extensive use of, (digital) management support tools; in other words, better network
knowledge.

Additionally, there is a negative correlation (statistically significant, with p-value < 0.001)
between NRW and both the flow-measuring index and the infrastructure knowledge index,
which means that more network knowledge can be translated into lower NRW, i.e., better
service performance (Figure 3). This performance can only be maintained through the hiring
of staff and by deploying digital tools, i.e., increasing a utility’s digital maturity. In fact, in a
previous study, implementing digital tools was shown to assist two water utilities in reducing
NRW, respectively, from 35.8% to 27.6% and from 42.8% to 36.1% [5].

Both staff management and service digitalization will now be evaluated in detail,
solely for AGS utilities, as there are not enough available data to accurately extend this
analysis to all ERSAR’s utilities.
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Figure 3. Correlation matrix for non-revenue water (NRW), network rehabilitation (Net. rehab.),
infrastructure knowledge index (IK index) and flow-measuring index (FM index). The upper panel
depicts the correlation between the continuous variables. The lower panels depict the scatter plots of
the variables. The diagonal panels depict the density plots, similar to a histogram, of the variables.
The stars (*) indicate the p-value of the correlation values, i.e., “***” if the p-value is <0.001, “**” if the
p-value is <0.01, “*” if the p-value is <0.05, “.” if the p-value is <0.10, and “ ” otherwise.
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3.3. Internal Assessment for Digital Maturity and Human Resources

To be able to further optimize planning in the long term, and understand and evaluate
knowledge creation, transfer, and retention, AGS has created two maturity indicators.
These indicators measure digital maturity and human resources, and were calculated for
the six AGS utilities surveyed in this article (Figure 4). PAI decreased for three utilities,
remained stable for two, and increased slightly for one. A lower PAI indicates that, in
general, the staff are closer to retirement age, and that the natural aging of the staff was not
offset by the hiring of younger staff [12].
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Utility 1 was still at acceptable values for PAI (ideally 0.4–0.6). However, it showed a
significant decrease in the 5-year period under analysis. Utility 2 had the higher digital
maturity level but a low PAI. Utilities 3 and 4 were evolving in digital maturity and
ensuring human resources renovation, maintaining acceptable values for this indicator.
Utility 5 had the lowest growth in digital maturity and, similar to Utility 2, had a very low
PAI that underwent a significant drop in this period. Finally, Utility 6 was the only one with
increased PAI, and was also increasing digital maturity. The greatest threat to maintaining
a stable PAI with knowledge retention is to compensate staff retirement with the utility’s
ability to attract younger employees [7,60]. In some utilities, this process is hindered by the
reduction in active population, either due to aging or dislocation to other municipalities,
and particularly from rural areas to cities [61]. As such, utilities must, in parallel, make use
of other tools to guarantee knowledge management and to maintain the provision of the
best service to their customers. For the six AGS utilities, the increase in digital maturity was
the chosen strategy, and each utility presented different levels of digital maturity due to the
specific characteristics of each utility. In fact, it is not possible to establish a recognizable
pattern in technology adoption across the sector in many countries [62]. Nevertheless,
digital maturity increased for the six AGS utilities in the period of 2016–2021 (Figure 4 and
Table 4), and simultaneously, the performances of all utilities also increased. This seems to
indicate that a balance between PAI and digital maturity leads to improved performance.
However, due to the absence of a control group—utilities for which we can quantify digital
maturity that are not part of AGS—it is not possible to prove causality, only correlation.
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From Table 4, it can be concluded that this increase in digital maturity occurred due to
the deployment of cybersecurity systems (for all utilities except Utility 6 and in Levels 4
to 6), particularly in flow-measuring technology and flow-monitoring software. None of
the utilities surveyed made use of Level 7 technologies at the time of the study. However,
with the sustained increase in digital maturity, AGS utilities are expected to reach this level
in the coming 5–10 years, mostly through capacity building initiative that will lead to the
interaction of the various utilities with innovative digital tools, and increases in technology
affordability and access [63]. However, staff aging, although not extreme, is a reality across
the utilities, and must be managed adequately in the coming 5–10 years, assuming that
there is an intangible risk of the retiring of older staff, i.e., loss of knowledge [13,37,64].

Table 4. Details of the digital maturity survey given to AGS utilities.

Utility 1 Utility 2 Utility 3 Utility 4 Utility 5 Utility 6

2016 2021 2016 2021 2016 2021 2016 2021 2016 2021 2016 2021

Level 1—Basic IT capabilities

Cybersecurity system 3 6 3 4 3 5 3 5 3 5 3 3

Customer relationship
manager 10 10 10 10 10 10 10 10 10 10 10 10

Level 2—Network sensorization and digitization

Flow gauges 3 3 3 3 3 3 3 3 3 3 3 3

Pressure gauges 2 2 2 2 2 2 2 2 2 2 2 2

Telemetry system 2 2 3 3 3 3 3 3 3 3 3 3

Cadastre in digital format 10 10 10 10 10 10 10 10 10 10 10 10

Level 3—SIG, automated data collection and modeling

Digitalized network model 3 3 8 8 3 3 10 10 8 8 2 2

GIS system 10 10 10 10 10 10 10 10 10 10 10 10

SCADA system 10 10 10 10 10 10 10 10 10 10 10 10

Level 4—Operational management and maintenance systems

Work order management
system 7 7 7 8 5 8 10 10 10 10 5 5

Maintenance system 5 5 5 5 5 5 5 5 10 10 5 5

Level 5—Optimization systems

Flow-monitoring system 10 10 10 10 3 7 3 8 3 3 3 8

Optimization system 0 0 0 0 0 0 0 0 0 0 0 0

Level 6—Planning systems

Domestic flow metering
systems 7 7 7 10 7 7 7 7 7 7 7 10

Integrated asset management
system 3 3 7 8 5 5 7 7 7 7 3 3

Level 7—Prediction systems

Digital twins 0 0 0 0 0 0 0 0 0 0 0 0

AI systems 0 0 0 0 0 0 0 0 0 0 0 0

Total 86 89 95 102 80 88 93 100 97 99 77 85

Total (%) 57% 59% 63% 68% 53% 59% 62% 67% 64% 66% 51% 57%
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4. Conclusions

Digitalization is expected to play a major role in the coming decades for decision
support by exploiting big data, Internet of Things, real-time sensorization and artificial
intelligence. Within water utilities, this process is still in its infancy in various utilities, in
Portugal and across the world, and is still lagging in the process of converting information
in physical format into a digital one (information digitization), which is a first step towards
digitalization. The shift towards digitalization—and, we assume, towards improved
performance—will require a balance with more human capacity and more digital maturity.
It should be mentioned that given the importance of public infrastructure, such as water
distribution networks, the path towards full service digitalization also entails risks, e.g.,
cyber threats and privacy issues. A full analysis and quantification of these risks should be
carefully considered when drafting the roadmap.

Looking at performance, AGS improved in the analyzed period and performed better
than ERSAR’s average. Regarding network rehabilitation, AGS’s performance was in line
with that of ERSAR’s evaluated utilities, and below ideal levels (>2% per year), which
poses serious questions regarding service performance in the coming years and decades.
Nevertheless, it can also be hypothesized that higher rehabilitation rates are not necessarily
linked to low NRW, and that low rehabilitation rates can be compensated for by raising
digitalization and data-driven decision support. This point will require further work.
Furthermore, regarding PAI and digital maturity—two internally developed indicators—
there was an increase in digital maturity and aging of the staff, which, again, raises
questions about long-term sustainability. The improving performance and slight increase
in digital maturity can be attributed to group-wide capacity-building and digitalization
programs that bring together staff from all AGS utilities in year-long activities. In fact, by
implementing collaborative projects within AGS’s utilities, knowledge management with
the systematization of methodologies and increases in digital maturity have resulted in a
sustained and continuous operation and the provision of water services.

This article shows that both PAI and the digital maturity indicator are strong tools
for internal analysis, and they allow for identifying and highlighting frailties, at the utility
level, that can support knowledge management and the roadmap towards digitalization.
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