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Abstract: High resolution models from the High-Resolution Model Intercomparison Project (High-
ResMIP), part of CMIP6, have the capacity to allow a better representation of the climate system in
tropical regions, but how different model resolutions affect hydrological outputs remains unclear.
This research aims to evaluate projections of hydro-climatic change of the Johor River Basin (JRB) in
southern Peninsular Malaysia between 1985 to 2015 and 2021 to 2050, focusing on uncertainty quan-
tification of hydrological outputs from low (>1◦), medium (0.5◦ to 1◦) and high (≤0.5◦) horizontal
resolution models. These projections show future increases in annual precipitation of 0.4 to 3.1%,
minimum and maximum temperature increases of 0.8 to 0.9 ◦C and 0.9 to 1.1 ◦C, respectively. These
projected climate changes lead to increases in annual mean streamflow of 0.9% to 7.0% and surface
runoff of 7.0% to 20.6% in the JRB. These annual mean changes are consistent with those during
the wet period (November to December), e.g., streamflow increases of 4.9% to 10.8% and surface
runoff of 28.8 to 39.9% in December. Disagreement in the direction of change is found during the dry
seasons, (February to March and May to September), where high resolution models project a decrease
in future monthly precipitation and streamflow, whilst increases are projected by the medium- and
low-resolution models.

Keywords: climate change; CMIP6; HighResMIP; SWAT; water resource; resolution; Malaysia; Johor

1. Introduction

Hydro-climatic projection provides critical information for promoting disaster mitiga-
tion, sustainable urban planning, ecological analysis and water resource and agricultural
management under future climate change. Such an operation has been relying on the incor-
poration of climate simulation from General Circulation Models (GCMs) into hydrological
models so that the future hydro-climatic changes are quantified under greenhouse gas
emission scenarios [1–3]. Dating back to the 1950s, GCMs were initially developed to simu-
late the large-scale behavior of atmospheric circulation by Phillips [4]. Since then, GCMs
have undergone numerous evolutions from simply capturing realistic regional climate
patterns by a few modelers during the 1960s–1970s to solving the major technical features
of the climate by a group of international modelling communities in the late 1990s [5].
These developments have made GCMs a crucial source of information for investigating the
changing state of climate systems, particularly for their uses in the recently released sixth
assessment report of the Intergovernment Panel in Climate Change (IPCC), providing the
latest physical science basic of climate change for policy makers and the public [5,6].
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The Coupled Model Intercomparison Project (CMIP), a collaborative modelling frame-
work was formed in 1995 to foster the management and improvement of GCMs. The
early phases (1 and 2) of CMIP started with model experiments based on 18 GCMs, and
the ensemble size has expanded to 25 GCMs in Phase 3 launched in 2005–2006. In 2010,
CMIP Phase 5 was initiated and its GCM ensemble consisted of 40 GCMs. Currently, the
latest CMIP Phase 6 (CMIP6) launched in 2013 includes the output of 55 GCMs [7,8]. A
major difference between CMIP6 and CMIP5 is the scenario of GHG emissions for future
anthropogenic forcing of climate change, where CMIP5 projections are simulated based
the radiative forcing pathways (RCPs) [9], while the recent CMIP6 applies socio-economic
pathways (SSPs) [10]. In addition, the CMIP6 GCMs include models with finer spatial
resolution, and models with enhanced representation of cloud microphysical and earth
system processes [11]. The significance of HighResMIP is that it allows investigation of
the sensitivities of present-day climate representation and future climate projection solely
to changes in GCM resolution. The CMIP6 GCMs have been extensively used to evaluate
climate extremes such as precipitation, temperature and drought [8,12,13]. To date, the
use of the CMIP6 in hydrological studies is relatively rare, but such outputs are likely to
increase dramatically in the near future [2].

Tropical rivers, especially for those over Southeast Asia, are generally characterized
by pronounced streamflow seasonality, with some having two flood peaks observed within
a year due to the influence of monsoon-induced rainfall and equatorial convective rain-
fall [14]. Jahandideh-Tehrani, et al. [15] revealed that climate change has a significant
impact on tropical streamflow, hence, the responses of tropical streamflow to climate
change have been extensively investigated in tropical basins [16–18]. As previously noted,
GCMs are a major tool to provide precipitation and temperature information to facilitate
assessment of potential future tropical streamflow changes. Therefore, application of the
latest CMIP6 GCMs can provide new insights into possible tropical hydro-climatic changes
under climate change.

Considerable biases have been found in GCMs with coarse resolution when they are
used to simulate fields of regional precipitation and convection rainfall for hydrological
modelling. For instance, Lebel [19] found that GCMs with coarse resolutions (1.6◦ × 3.75◦)
exhibit biases in representing the seasonal precipitation in West Africa due to the poorly
resolved mesoscale convective systems. To address the issue of the coarse GCM resolution,
dynamic or statistical downscaling is needed to narrow down the gap between GCMs
and hydrological model [3]. As one of the CMIP6-endorsed MIPs, the recently released
HighResMIP provides a suite of GCMs simulations with atmospheric horizontal grid
spacing of ~25 km or finer [7]. The ability to resolve small scale weather features is
important for basin scale analysis, and means HighResMIP GCMs will likely be employed
by hydrologists to study hydro-climatic changes around the world, including the tropical
regions. Tan, et al. [20] found that high-resolution HighResMIP models projected a higher
flow rate during flood season than low-resolution models in the Kelantan River Basin,
Malaysia. To date, there has been little investigation of about the role of HighResMIP
models resolution on hydro-climatic projections. This study attempts to explore how
different model resolutions could affect the tropical streamflow outputs.

The Johor River Basin (JRB) is a tropical river basin closely associated with freshwater
supply for Malaysia. It is also a vital water source of Singapore as it provides up to
1157 million litres of freshwater per day [21]. Historical record indicates a number of
severe drought events in 1990, 1997, 2005, 2010, 2010–2014 and 2019, leading to water
supply disruption in Johor [22,23]. Floods also occur frequently in this region, for example,
in 2006–2007 flooding caused 18 deaths, more than 100,000 people were evacuated and
about USD 0.5 billion of losses were sustained [24]. Thus, studying streamflow changes is
important to help local authorities to mitigate the impact of these events. Tan, et al. [25]
reported high flows in the JRB will increase significantly, particularly under the RCP4.5
and RCP8.5 scenarios. In addition, the number of meteorological droughts over the JRB is
expected to increase in the mid-21st century, based on the Coordinated Regional Climate



Water 2021, 13, 3158 3 of 17

Downscaling Experiments—Southeast Asia (CORDEX-SEA) projections [26]. However,
investigation of the streamflow changes under the latest SSP scenario is still lacking, so this
study provides new insight on potential streamflow changes of the JRB.

The main purpose of this study is to evaluate future hydro-climatic changes of the JRB
in the southern Peninsular Malaysia by incorporating the latest CMIP6 HighResMIP climate
projections into the Soil and Water Assessment Tool (SWAT), focusing on uncertainty
quantification of the streamflow outputs from different model ensemble sub-sets, e.g., all
models (Ens_Mean), low resolution (Ens_LR, >1◦), medium resolution (Ens_MR, 0.5◦ to
1◦) and high resolution (Ens_HR, ≤0.5◦) horizontal resolution models. SWAT is a widely
used hydrological model in many parts of the world [27,28], including Southeast Asia [29].
A total of 10 HighResMIP GCMs under the SSP5-8.5 scenario were used to project the
differences of hydro-climatic changes between historical (1985–2014) and future (2021–2050)
periods. The findings can be used by local authorities to prepare climate adaptation and
mitigation strategies based on the latest IPCC suggested socio-economic scenarios. Further,
the research framework developed here could be readily duplicated and applied in other
river basins, especially those located in the tropical regions.

2. Materials and Methods
2.1. Study Area

The JRB in the southern part of Peninsular Malaysia was selected as the study site
because it is important to Malaysia and Singapore (Figure 1). In addition, the basin ex-
periences a tropical rainforest climate under the Köppen climate classification, where
precipitation falls throughout the year, high mean annual temperatures and small temper-
ature ranges. Precipitation amount in the JRB is highly associated with both monsoonal
and convective rainfall system. The total area of the basin is about 1644 km2. The mean
annual total precipitation during the 1985–2014 period ranged from 1825 mm yr−1 to
2958.5 mm yr−1. The climate of the JRB is strongly influenced by the northeast monsoon
(wet season) from November to March and the southwest monsoon (dry season) from May
to September [30]. Intense convective precipitation occurs in two inter-monsoon periods of
April and October. The annual mean daily maximum and minimum temperatures during
the same period were 23 ◦C and 32 ◦C, respectively.

The mean annual streamflow of the Johor River, as measured at the Rantau Panjang
station, is 37.7 m3s−1, while the peak monthly streamflow reached up to 200 m3s−1 in the
early 1984 and 1996. Palm oil is the major use of land cover within the basin, followed by
forest, rubber and other agricultural activities [31]. The Linggiu reservoir, with a storage
capacity of 760 MCM [32], is located in the northern part of the basin and commenced
operation in 1993 [32]. The reservoir is principally used to augment raw water deficit at the
downstream Johor River Water Works (JRWW), especially during the dry season. Previous
drought events in the JRB have typically occurred between February to September [23,33].

2.2. Data

The digital elevation model of Shuttle Radar Topography Mission (SRTM) with a
spatial resolution of 30 m was downloaded from https://dwtkns.com/srtm30m/ (accessed
on 1 June 2021) for basin delineation and river network formation. The land use map
of 2008 was obtained from the Ministry of Agricultural Malaysia. The digital soil map
prepared by the Food and Agriculture Organization of the United Nations (FAO-UNESCO)
was used as soil input into the SWAT model. Daily precipitation, maximum and mini-
mum temperatures from 1980 to 2014 were collected from the Malaysia Meteorological
Department for HighResMIP bias correction and SWAT development.

https://dwtkns.com/srtm30m/
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Figure 1. The location of (a) the Johor River Basin, (b) Peninsular Malaysia and (c) part of Southeast Asia.

Monthly streamflow data from 1985 to 2014 at the Rantau Panjang station were
collected from the Department of Irrigation and Drainage Malaysia to calibrate and validate
the SWAT model. As shown in Figure 1, the streamflow station is not located at the end of
the river outlet due to seawater intrusion issue during dry season [23]. Generally, a full
spatial calibration and validation is difficult at the entire basin scale due to insufficient
observed data [34]. Hence, the application of calibrated parameters for basin or sub-basin,
with similar climatic, land use and soil conditions, is an accepted approach within the
SWAT community [34]. As the downstream part of the JRB is a more populated region
where floods and water rationing commonly occur and where any changes in streamflow
will have greater impact, this study selected the outlet near to the river mouth for a better
understanding of potential hydro-climatic changes in the region.

2.3. CMIP6 HighResMIP Models

This study employs 10 atmospheric-only simulations for present and future climate
from six GCMs of the CMIP6 HighResMIP protocol (Table 1). The experiments for future
climate simulations used in this study apply a high-end emission scenario from the latest
Shared Socioeconomic Pathways (SSPs), a scenario framework of differential levels of
anthropogenic greenhouse gas emission [10] covered by the upcoming IPCC sixth assess-
ment report. At the sea level, these atmosphere-only simulations are forced by sea-surface
temperature and sea-ice data from observations (for present climate simulations) and
simulations (for future climate) by the ensemble of coupled experiments of CMIP6 under
the 8.5 scenario of the Representative Concentration Pathways. The used atmosphere-land
only experiments from HighResMIP were forced by the SSP5-8.5 scenario while and pre-
scribed forcing of sea-surface temperature and sea-ice is based on the future projection of
the CMIP5 experiments produced using the RCP8.5 scenario [35]. The SSP5-8.5 scenario
represents the highest level of greenhouse gas emissions in the near future [10]. High-
ResMIP provides high resolution GCM experiments along with experiments with the same
scientific configuration but at coarser model resolutions [35]. In this study, the used climate
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simulations cover the historical periods of 1985–2014 and the future period of 2021–2050.
The data are collected from the data platform of the Earth System Grid Federation. The
HighResMIP experiments are run for the period of 1950 to 2050, therefore, analysis of future
changes in this study can only extend up to 2050. We note, however, that information on
the hydro-climatic changes over the 2021–2050 period will be useful for near-term policy
planning and development.

Table 1. Summary of the GCMs used in this study from the CMIP6 HighResMIP experiments. LR, MR and HR represent
low, medium and high resolutions, respectively.

No Symbol Model Resolution (Longitude × Latitude) Organization

1 CNRM
CNRM-CM6-1

LR—1.406◦ × 1.406◦ French National Centre for Meteorological Research
2 CNRM-HR HR—0.5◦ × 0.5◦

3 EC-Earth EC-Earth3P MR—0.703◦ × 0.703◦ 27 institutes in Europe

4 FGOALS-L FGOALS-f3 LR—1.25◦ × 1◦ Institute of Atmospheric Physics/Chinese Academy
of Sciences

5 GFDL GFDL-CM4C192 MR—0.625◦ × 0.5◦ Geophysical Fluid Dynamics Laboratory/NOAA (U.S.)
6 HadGEM3-LM

HadGEM3-GC31
LR—1.875◦ × 1.25◦ The UK Met Office Hadley Centre for Climate Change

7 HadGEM3-MM MR—0.83◦ × 0.56◦

8 HadGEM3-HM HR—0.35◦ × 0.23◦

9 MRI-H
MRI-AGCM3-2

MR—0.563◦ × 0.563◦ Meteorological Research Institute (Japan)
10 MRI-S HR—0.188◦ × 0.188◦

To differentiate hydro-climatic changes as projected at different resolutions, the
10 HighResMIP GCMs were further divided into four ensemble groups: (1) Ens_Mean—
ensemble of all ten HighResMIP GCMs; (2) Ens_LR—ensemble mean of climate models
with horizontal resolution more than 1◦ which comprises of CNRM, FGOALS-L and
HadGEM3-LM; (3) Ens_MR—ensemble mean of EC-Earth, GFDL. HadGEM3-MM and
MRI-H which have horizontal resolution between 0.5◦ to 1◦; and (4) Ens_HR—ensemble
mean of models with equal or less than 0.5◦, e.g., CNRM-HR, HadGEM3-HM and MRI-S.
Precipitation, maximum and minimum temperature projections from the HighResMIP
models are first interpolated to the station level before being input to the SWAT model for
hydro-climatic impact assessment [36]. Bias correction is performed for the interpolated
inputs to properly exclude the expected differences between grid box values and station
values. For this purpose, the quantile mapping approach is used, which is one of the most
popular methods in the hydro-climatic modelling community [37,38]. This approach first
computes correction parameters at different quantile ranges by calculating the ratio of
mean values within different quantile ranges between the GCM outputs and the observed
data. Then, within each quantile range, the computed parameters are used to nudge the
values from the GCM outputs towards those from the observed data.

2.4. Soil and Water Assessment Tool (SWAT)

SWAT is a semi-distributed, continuous-time and process-based model developed for
assessing different management practices on water resources and non-point source pollu-
tion within a river basin [39,40]. More than 4500 research articles have been documented
in the SWAT literature database [41], showing that it has been considered worldwide to
understand local water resources issues. The capability of SWAT in simulating streamflow
has been verified in different parts of the world [27,42,43], including Southeast Asia [29].
Assessing climate change impact on water resources and pollution is the current principal
use of SWAT. In any such study, the model should ideally be calibrated for at least a 30-year
period using observed data to ensure it captures historic streamflow variability.

Moriasi, et al. [44] recommended a set of guidelines based on the Coefficient of de-
termination (R2), Nash-Sutcliffe Efficiency (NSE) and Relative Bias (RB) to determine the
performance rating of SWAT (Table 2). The model assessment is not using only NSE and R2

since both metrics are not contrasting metrics. A third metric is at least required for a more
appropriate multi-objective assessment. Therefore, SWAT modelers have begun to use
Kling-Gupta Efficiency (KGE) in the capability assessment of the SWAT model [45,46] be-
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cause it provides a balanced optimization of model bias, variability and temporal fit [45,47].
The performance rating of KGE for monthly streamflow simulation can be found in the
studies conducted by Thiemig, et al. [48] and Kouchi, et al. [49]. Hence, this study con-
sidered four statistical approaches to assess SWAT’s capability in the JRB. The Sequential
Uncertainty Fitting Version (SUFI-2) calibration approach within the SWAT Calibration
and Uncertainty Program (SWAT-CUP) tool that developed by Abbaspour et al. [50] was
used for the SWAT calibration and validation.

Table 2. Final SWAT performance rating as recommended by Moriasi et al. [44] and Kouchi et al. [49].

Method Very Good Good Satisfactory Not Satisfactory

R2 >0.85 0.75 < R2 ≤ 0.85 0.60 < R2 ≤ 0.75 ≤0.60
NSE >0.80 0.65 < NSE ≤ 0.80 0.50 < NSE ≤ 0.70 ≤0.50

RB (%) >±5.00 ±5.00 < RB ≤ ±10.00 ±10.00 < RB ≤ ±15.00 ≥±15.00
KGE >0.90 0.75 ≤ R2 < 0.90 0.50 ≤ R2 < 0.75 <0.50

Due to the limited availability of Linggiu Reservoir management data, previous SWAT
calibration and validation in the JRB focused only the unregulated flow period before the
reservoir operates [25,26,31]. This study seeks to address this by considering the regulated
flow period after 1993. Some basic reservoir information, e.g., reservoir operational year,
surface area, volume, that are available in open-source articles [21,32], were added in the
SWAT model setup for this study. In addition, the maximum allowable water extraction of
1157 million liters per day by Singapore under the 1962 Water Agreement [21] was used as
guide to set the water usage parameter. Moreover, maximum and minimum daily outflow
parameters were also added in the SWAT model setup and calibration. In addition, some
groundwater related parameters were included to the model calibration as groundwater
processes influence the streamflow simulation performance.

3. Results
3.1. SWAT Sensitivity Analysis, Calibration and Validation

The JRB has been divided into 23 sub-basins and 151 Hydrologic Response Units
(HRUs). For SWAT calibration, 15 parameters that affect streamflow and baseflow, includ-
ing two newly added reservoir management parameters, as listed in Table 3, have been
selected from SWAT studies in Malaysia [26,51,52]. Global sensitivity analysis shows that
Initial SCS CN II value (CN2), soil evaporation compensation factor (ESCO), Manning’s n
for main channel (CH_N2), maximum canopy storage (CANMX) and groundwater “revap”
coefficient (GW_REVAP) are the five most sensitive parameters in the JRB. CN2 that linked
to surface runoff has been regarded as the most sensitive parameter in SWAT modeling
in many tropical river basins [16,53,54]. A detailed description of each parameter can be
found in the SWAT theoretical document written by Neitsch, et al. [55].

The SWAT model was run from 1980 to 2014 with the first 5 years as a model spin up
period. The calibration was performed for the regulated period from 1994 to 2004 with
2000 iterations, while the SWAT validation was divided into unregulated (1985–1993) and
regulated (2005–2014) flow periods. A comparison between the observed and simulated
monthly streamflow at the Rantau Panjang station is shown in Figure 2. Based on the
SWAT performance rating for KGE and PB as listed in Table 2, the model can be rated as
satisfactory for all the three calibration and validation periods. In summary, the perfor-
mance of the SWAT model in the validation 1 period outperformed the other two periods,
showing SWAT is capable of capturing the unregulated flows accurately. Meanwhile, based
on the R2 and NSE values, SWAT was able to simulate monthly streamflow satisfactorily
in the calibration and validation 1 periods, while the performance is acceptable for the
validation 2 period since the NSE value was greater than 0 [56]. The statistical values are
slightly lower in the validation 2 period as compared to the calibration and validation 1
period due to the lack of details reservoir and daily water withdrawal information that is
restricted to the public.
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Table 3. Calibrated SWAT parameters for the Johor River Basin.

No Parameter Name Optimal Min Max

1 R__CN2.mgt Initial SCS CN II value −0.31 −0.5 0.5

2 V__ESCO.hru Soil evaporation
compensation factor 0.96 0 1

3 V__CH_N2.rte Manning’s n for main channel 0.28 0 0.3
4 V__CANMX.hru Maximum canopy storage 6.92 0 10

5 V__GW_REVAP.gw Groundwater “revap”
coefficient 0.18 0.02 0.2

6 R__SOL_Z(..).sol Depth from soil surface to
bottom of layer −0.30 −0.5 0.5

7 V__GW_DELAY.gw Groundwater delay 120.38 0 500
8 R__SOL_AWC(..).sol Available water capacity −0.50 −0.5 0.5

9 V__OFLOWMX(..).res Maximum daily outflow for
the month 1835.50 0 2000

10 R__SLSUBBSN.hru Average slope length −0.46 −0.5 0.5

11 R__SOL_K(..).sol Saturated hydraulic
conductivity 0.50 −0.5 0.5

12 V__RCHRG_DP.gw Deep aquifer percolation
fraction 0.31 0 1

13 R__SOL_BD(..).sol Moist bulk density 0.03 −0.5 0.5

14 V__OFLOWMN(..).res Minimum daily outflow for
the month 36.75 0 1000

15 R__HRU_SLP.hru Average slope steepness −0.24 −0.5 0.5
V_ indicates the original parameter value is replaced with the given value, R indicates the parameter value is
multiplied with 1 + the given value.
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comparisons between observed and simulated streamflow for (b) validation 1, (c) calibration and (d) validation 2 periods.

3.2. CMIP6 HighResMIP Models Evaluation and Bias Correction

The climatological performance of GCMs was evaluated for monthly precipitation,
monthly mean daily maximum and minimum temperatures with respect to observations,
for both raw and bias-corrected HighResMIP model output for the period 1985–2014
(Figure 3). Two peaks can be found in the observed monthly mean precipitation, with
a primary peak in December and a secondary peak in April. Most of the HighResMIP
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models simulate the primary peak 1 or 2 months earlier than observations, while the
CNRM models simulate this peak 1 month later. This finding was also reported by Tan
et al. [26] for the CMIP5 models in the same basin, showing the mismatch of the peak
monthly precipitation by GCMs in this tropical basin remains unsolved in CMIP6 even in
high-resolution models. However, the monthly precipitation variability as captured by
the Ens_MR and Ens_HR is closer to the observations than Ens_LR and Ens_Mean. For
example, FGOALS-L and HadGEM-LM significantly underestimated the precipitation from
June to September and January to March, respectively (Figure 3a). A possible explanation
for the poorer performance of Ens_LR could be partly due to the poorly resolved mesoscale
precipitating systems by the coarse model resolution [57].
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Figure 3. Original and bias corrected monthly mean (a,d) precipitation, (b,e) minimum temperature
and (c,f) maximum temperature over the Johor River Basin during the period of 1985 to 2014.

The raw HighResMIP GCMs all reproduce the observed seasonal cycle of monthly
mean daily minimum and maximum temperatures with greater fidelity than precipita-
tion, except Ens_LR for maximum temperature. This is because the Ens_LR models are
less able to capture the peak temperatures in April and October as shown in Figure 3c,
e.g., FGOALS-L, which simulated the peak in June. Most of the HighResMIP GCMs overes-
timate minimum temperatures, with HadGEM3_LR having the largest overestimation. By
contrast, an underestimation was found for maximum temperature, while the CNRM and
CNRM-HR models were unable to capture the maximum temperature climatology. This
spread in performance indicates that inter-model variability poses a significant challenge
to accurate hydro-climatic impact assessment. In summary, Ens_HR is slightly closer
to the observed data than other ensemble models in the temperature simulations in the
JRB. This is consistent with the results reported by Squintu, et al. [58] who compared the
high-resolution HighResMIP GCMs (0.23◦ to 0.5◦) with their low-resolution counterparts
(0.94◦ to 1.88◦) in extreme winter minimum temperature simulations over the Europe from
1970 to 2014. The biases of monthly precipitation, minimum and maximum temperatures
are reduced dramatically through the quantile mapping approach (Figure 3). Further
evaluation of the simulated mean streamflow from 1985 to 2014 shows the SWAT model is
able to capture the climatology of the historical streamflow at the Rantau Panjang station
(Figure 4).
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Figure 4. Comparison of mean monthly streamflow from observation, SWAT-simulated with gauge
and corrected CMIP6 HighResMIP projections at the Rantau Panjang station from 1985 to 2014.

3.3. Bias Corrected CMIP6 HighResMIP Future Projections

Table 4 indicates changes in the mean annual precipitation, annual mean daily mini-
mum and maximum temperatures over the JRB during the 2021–2050 period relative to the
1985–2014 baseline period. The annual precipitation results show minor differences across
the HighResMIP models, except the FGOALS-L and GFDL models. The ensemble mean
annual precipitation is projected to increase by 0.4 to 3.1%, with the smallest change for the
Ens_HR models, which is consistent with the ensemble mean increase of CMIP5 GCMs [25].
In contrast, differences between models and the ensemble are more obvious in the monthly
precipitation projections shown in Figure 5. The models and ensembles indicate a universal
increase in precipitation over the JRB during the flood period of November, December and
January by 0.4 to 4.4%, 9.2 to 13.4% and 1.1 to 9.8%, respectively. In contrast, for the low
precipitation period of February and June to July, there is less consistency. For instance,
Ens_LR projects increased precipitation in February by 9.2%, while the Ens_mean, Ens_HR
and Ens_MR models showed a decreasing amount of 0.7 to 7.0%. Ens_HR projected a
reduction of monthly precipitation from February to June and September to October by 1.5
to 11.9% and 1.8 to 1.9%, respectively.

Table 4. Changes in annual total precipitation, annual mean daily minimum temperature and maximum temperature,
streamflow at Rantau Panjang station and surface runoff under CMIP6 HighResMIP projections over the Johor River Basin
between 2021 and 2050 and 1985 and 2014.

Type Symbol Precipitation (%)
Minimum

Temperature
(◦C)

Maximum
Temperature

(◦C)
Streamflow (%) Surface Runoff

(%)

Ens_Mean 2.1 0.8 1.0 4.1 15.2
Ens_LR 2.4 0.8 0.9 3.1 15.6
Ens_MR 3.1 0.8 0.9 7.0 20.6
Ens_HR 0.4 0.9 1.1 0.9 7.0

LR CNRM −2.7 0.8 1.1 −10.7 −5.8
HR CNRM-HR 0.4 1.0 1.1 −1.3 1.9
MR EC-Earth 1.5 1.0 0.9 2.7 10.6
LR FGOALS-L 8.3 0.7 0.7 19.3 31.6
MR GFDL 7.8 0.9 1.1 18.8 47.7
LR HadGEM3-LM 1.5 0.8 1.0 0.8 20.4
MR HadGEM3-MM 1.9 0.9 1.1 5.6 20.4
HR HadGEM3-HM −2.7 1.0 1.3 −5.6 −6.8
MR MRI-H 1.2 0.7 0.7 0.9 5.0
HR MRI-S 3.6 0.8 0.8 9.7 26.2
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Figure 5. Changes in monthly (a) precipitation, (b) minimum temperature, (c) maximum temperature, (d) streamflow at
Rantau Panjang station and (e) surface runoff of the Johor River Basin under the CMIP6 HighResMIP projections between
2021–2050 and 1985–2014.

For the study region, increases in mean annual daily minimum and maximum temper-
atures of up to 0.9 ◦C and 1.1 ◦C are projected by all ensembles, with Ens_HR projecting
the largest increases (Table 4). Similar increasing trends of minimum and maximum tem-
peratures over the basin were also projected by the CMIP5 GCMs [25] and CORDEX-SEA
RCMs [26]. The increase of monthly mean daily minimum temperature is slightly higher
in April to June and October to December, which is about 1 ◦C, as illustrated in Figure 5b.
The variation of mean daily monthly maximum temperature across HighResMIP models is
larger than mean daily monthly minimum temperature. Figure 5c shows Ens_HR generally
projects greater increases in monthly mean daily maximum temperature than Ens_LR, with
up to a 0.4 ◦C difference in May. Overall, these result shows both night time and daytime
temperature of the JRB will become warmer in the mid of 21st century, with those increases
being greatest during March–April and September–October, at the start and end of the
dry season.

3.4. Hydrological Projections

Table 4 shows annual mean streamflow at the Rantau Panjang station is projected
to increase from 0.9% for Ens_HR to 7.0% for Ens_MR under SSP5-8.5 by the 2021–2050
period relative to the 1985–2014 period, which is similar to the ensemble mean of CMIP5
models reported by Tan et al. [25]. Monthly mean streamflow is projected to increase during
the flood period by 2.4% to 15.6% in January and 4.9% to 10.8% in December (Figure 5d),
indicating that the intensity of floods may increase in the future. Figure 6 shows the monthly
mean streamflow changes at sub-basin level during the flood period from November to
January. A greater increment can be found mainly over the sub-basins located in the eastern
and southern JRB. Figure 6a shows monthly mean streamflow increasing over most of the
sub-basins, except Ens_LR which projects slight decreases.
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Figure 6. The percentage change of monthly streamflow during the flood periods of November (a–d), December (e–h) and
January (i–l) projected by the CMIP6 HighResMIP models.

For the dry period, Ens_HR projects that monthly mean streamflow at the Rantau
Panjang station will decrease from March to July by 1.6% to 7.2% and September to October
by 1.8% to 4.19% by the mid-21st century (Figure 5d). These results contrast with the lower
resolution ensembles, except in March and April, indicating water scarcity issues will more
likely occur in these 2 months. In March, drier conditions are observed over most of the
river basin, apart from some sub-basins located in the western region (Figure 7). In July,
Ens_LR shows a large increase of monthly mean streamflow across the sub-basins, while a
slight decrease was projected by Ens_HR. These differences can be explained in part by
the inter-model variation, where FGOALS-L projects dramatic increases of monthly mean
streamflow up to 46.5% in the JRB during the dry period. By contrast, decreases of monthly
mean streamflow during the dry period are mainly found in the Ens_HR.

Surface runoff is considered in this study since it is highly related to flood events. In
general, annual mean surface runoff of the JRB is projected to increase in the mid-21st cen-
tury by 7.0% to 20.6% across the model the ensemble. The majority of the HighResMIP mod-
els show increases in annual surface runoff, except CNRM and HadGEM3-HM. Figure 5e
shows monthly mean surface runoff is projected to increase significantly in January (3.1 to
48.3%), May (10.7 to 67.8%), July (3.0 to 60.8%), August (11.9 to 32.4%) and December (28.8
to 39.9%) in all ensembles. Of particular note are the increases of surface runoff that are
projected from May to September as shown in Figure 5e, which can be interpreted in the
context of recent unusual flood events which have occurred in Johor during the southwest
monsoon season [59]. However, severe floods occur almost every year in the early phase of
the northeast monsoon (December/January) and the consistent projections of increased
surface runoff those months may lead to enhanced flood damage.
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4. Discussion

The SWAT model exhibited a better performance (Figure 2) during the period prior to
reservoir management being introduced in 1993. Restriction of reservoir management data
to the public or researchers is a common issue for many transboundary basins in developing
and less developed countries [60], and further information is needed to improve the SWAT
modelling in the regulated flow period. This study demonstrates that adding some basic
reservoir and water supply information along with reservoir parameter calibration im-
proved the SWAT capability in regulated flow simulation period. Kim and B. Parajuli [61]
found that selection of a suitable reservoir outflow approach is important to accurately
simulate the regulated streamflow. Zhang et al. [52] incorporated water usage information
into SWAT to better simulate regulated flow under the absence of detailed reservoir man-
agement information. However, the reservoir module within SWAT is relatively simple and
it can be difficult to provide reliable estimation of reservoir release [62]. Recently, reservoir
operation functions have been integrated into the SWAT+ version, but this improvement
is solely based on the operation of reservoirs within the United States. In future work,
more comprehensive reservoir operational and parameter calibration modules need to be
developed to cope with tropical conditions.

The analyses of KGE indicate that the SWAT model reasonably simulate both the
unregulated and regulated flows (Figure 2). Noted that the KGE values are higher than
the NSE and R2 values, but they cannot be compared directly since there is no unique
relationship between them [63]. Additionally, high NSE values do not directly translate
into high KGE values [63]. In general, NSE analysis leans towards informing the model’s
capability in high flows simulation due to the quadratic nature of the analysis [64]. Figure 2
shows that the SWAT model underestimated some high flow periods during the regulated
validation period. A lack of precipitation data in the upstream part of the JRB may lead to
the model being unable to accurately capture the precipitation pattern, thus resulting in
the underestimation.

In summary, Ens_HR has a slightly better ability to simulate the observed temperature
data than the lower resolution model ensembles in the JRB. Consistent with the IPCC’s
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most recent assessment report [6], the estimated warming of the JRB is likely to increase
around 1 ◦C by the mid-21st century (Table 1). We note that both the mean daily minimum
and maximum temperatures are projected to increase at a similar rate, which is contrary
with the observed historical trends in Malaysia. In fact, the observed rate of warming
in minimum temperature actually increased about two-times greater than the maximum
temperature from 1985 to 2018 over Malaysia as measured at multiple ground stations [30].

The HighResMIP GCMs showed a better capability in capturing temperature than
precipitation over the JRB, and similar findings have been reported in other CMIP6 mod-
els [65]. The low-resolution models were unable to capture the seasonal precipitation
cycle over the JRB accurately compared to the moderate- and high-resolution models. For
example, FGOALS-L and HadGEM-LM underestimated precipitation during the southwest
monsoon (May to September) and the second phase of the northeast monsoon (February to
March) as shown in Figure 3a. This shows systematic wet biases are still existing in CMIP6
models in this region, particularly in the low resolution HighResMIP GCMs.

In hydro-climatic modelling, climate models are invariably cited with a larger uncer-
tainty than hydrological models, calibration parameter and bias correction technique [66–68].
Streamflow and surface runoff are highly sensitive to changes in precipitation [69]. High
resolution climate models have demonstrated the ability to better represent the large-scale
atmospheric circulation, tropical instability waves, storm tracks, and other circulation
features [35]. Mean monthly flows during the flood period (November to December) are
projected to increase across all the ensembles, by 2.6 to 10.8% for Ens_HR and 0.2 to 15.6%
for Ens_MR compared to −3.7 to 4.9% for Ens_LR (Figure 5d). Ens_HR suggests a reduction
of monthly flows during the southwest monsoon, but Ens_MR and Ens_LR project wetter
conditions such that improved hydro-climatic assessment in tropical region will require
greater confidence in precipitation projections in the dry season as well as the wet season.

5. Conclusions

The ability to adapt to future changes in precipitation, water availability and flooding
requires hydro-climatic projections at a local scale. This study incorporated the latest CMIP6
HighResMIP GCMs into a calibrated SWAT model to project the future hydro-climatic
changes over the JRB, Malaysia, and investigate the role played by the spatial resolution of
GCMs. Model projections were classified into different groups of multi-GCM ensemble,
including of all simulations (Ens_Mean), low resolution (Ens_LR), medium resolution
(Ens_MR) and high resolution (Ens_HR) HighResMIP groups. Changes in hydro-climatic
features for both the dry and wet seasons were evaluated between a baseline (1985–2014)
and mid-21st century period (2021–2050) using a high level GHG emissions scenario.

In the JRB, SWAT presented a good performance in producing the observed hydro-
logical features, which was presented in terms of both unregulated and regulated (before
and after the Linggiu reservoir was constructed) monthly streamflow. The CN2 parameter
related to surface runoff was found to be the most sensitive parameter in this basin. We
note that addition of reservoir parameters during calibration and water supply information
in the model setup could improve SWAT’s performance where reservoir management data
is not available. The SWAT model tended to underestimate both the high and low flows
in this basin, showing that more studies are needed to improve the SWAT modelling in
regulated flow simulations in the absence of reservoir management data.

Assessment of different GCM resolutions in simulating historical climate is required
both as part of model development and to help in selecting better models for impact assess-
ment and decision making, e.g., IPCC reports [6,70]. This spread in performance indicates
that inter-model variability poses a significant challenge to accurate hydro-climatic impact
assessment. Historical temperature is simulated somewhat better than precipitation by the
HighResMIP GCMs over the JRB. The models simulated the primary precipitation peak
one or two months earlier than observations. This bias was evident in the CMIP5 models
and persists in the latest CMIP6 models, even in the high-resolution models. However,
the moderate- and high-resolution models better capture the seasonal precipitation cycle
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compared to the low-resolution models. Our findings show that the low-resolution models
had a larger uncertainty during the low rainfall period simulations as compared to high
precipitation periods in this basin. In addition, the high-resolution models better represent
minimum temperatures than the low-resolution models, though there is less spread in their
ability to simulate maximum temperature simulations across different resolutions.

In the JRB, annual total precipitation is projected to increase by 0.4 to 3.1% across the
variable resolution ensemble evaluated here. The high-resolution models, project increased
precipitation during the flood period up to 13.4%, but a decrease of up to 11.9% was found
during the dry period, indicating an amplification of the seasonal cycle. Annual mean daily
minimum and maximum temperatures are projected to increase up to 0.9 ◦C and 1.1 ◦C,
respectively, over the JRB. Associated with these changes in precipitation and temperature
are projections of increases in annual streamflow and surface runoff from 0.9% to 7.0% and
7.0% to 20.6%, respectively. Similar to precipitation trend, monthly streamflow and surface
runoff will likely be increased up to 15.6% and 48.3% during the flood period (November
to January). The model experiments analyzed exhibit a certain degree of disagreement
between high-resolution and low-resolution GCMs in the projected changes over during the
dry period (February to March and May to September) in terms of precipitation, streamflow
and surface runoff, while more consistent changes are seen during the wet seasons. The
uncertainty is presented under a single GHG emission scenario due to the limited data
availability of HighResMIP. Such an uncertainty is worth further investigation in future
works using simulations of different SSP scenarios (SSP1-2.6, SSP2-4.5 and SSP3-7.0) and for
a longer study period until the end of this century, though this can be strongly constrained
by the limited computational resources, especially for high-resolution simulations.

Whilst this study has highlighted some limitations in the ability of state-of-the-art
climate models to simulate the current climate in the JRB, it has shown that the models,
particularly those with higher resolution, are able to reproduce the key hydrological features
of the current climate. When those model outputs are used as inputs to a hydrological
model and combined with future climate projections, they show some consistent patterns
of hydro-climatic change which provide important information for the government and key
stakeholders in the region in the context of adaptation. In particular, this study highlights
an analysis framework that could be readily reproduced in other basins and extended to
include other global and regional climate models.
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