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Abstract: The transport of agricultural nonpoint source (NPS) pollutants in water pathways is
affected by various factors such as precipitation, terrain, soil erosion, surface and subsurface flows,
soil texture, land management, and vegetation coverage. In this study, based on the transmission
mechanism of NPS pollutants, we constructed a five-factor model for predicting the path-through
rate of NPS pollutants. The five indices of the hydrological processes, namely the precipitation
index (α), terrain index (β), runoff index (TI), subsurface runoff index (LI), and buffer strip retention
index (RI), are integrated with the pollution source data, including the rural living, livestock and
farmland data, obtained from the national pollution source census. The proposed model was applied
to the headwater of the Miyun Reservoir watershed for identifying the areas with high path-through
rates of agricultural NPS pollutants. The results demonstrated the following. (1) The simulation
accuracy of the model is acceptable in mesoscale watersheds. The total nitrogen (TN) and total
phosphorus (TP) agriculture loads were determined as 705.11 t and 3.16 t in 2014, with the relative
errors of the simulations being 19.62% and 24.45%, respectively. (2) From the spatial distribution of
the agricultural NPS, the TN and TP resource loads were mainly distributed among the upstream of
Dage and downstream of Taishitun, as well as the towns of Bakshiying and Gaoling. The major source
of TN was found to be farmland, accounting for 47.6%, followed by livestock, accounting for 37.4%.
However, the path-through rates of TP were different from those of TN; rural living was the main
TP source (65%). (3) The path-through rates of agricultural NPS were the highest for the towns of
Wudaoying, Dage, Tuchengzi, Anchungoumen, and Huodoushan, where the path-through rate of TN
ranged from 0.17 to 0.26. As for TP, it was highest in Wudaoying, Kulongshan, Dage, and Tuchengzi,
with values ranging from 0.012 to 0.019. (4) A comprehensive analysis of the distribution of the NPS
pollution load and the path-through rate revealed the towns of Dage, Wudaoying, and Tuchengzi as
the critical source areas of agricultural NPS pollutants. Therefore, these towns should be seriously
considered for effective watershed management. In addition, compared with field monitoring, the
export coefficient model, and the physical-based model, the proposed five-factor model, which is
based on the path-through rate and the mechanism of agricultural NPS pollutant transfer, cannot
only obtain the spatial distribution characteristics of the path-through rate on a field scale but also be
applicable to large-scale watersheds for estimating the path-through rates of NPS pollutants.

Keywords: nonpoint source pollution; path-through rate; pollution load; hydrological process

1. Introduction

The second national census of pollution sources indicated that agriculture is the
leading cause of nonpoint source (NPS) pollution in China [1]. Sustainable agriculture
depends on a delicate balance between economic stability (achieved through the increase
in agricultural productivity to meet national food demands), reduction in the use of finite
natural resources, and reduction of NPSs, which have detrimental effects on the environ-
ment [2,3]. Contrary to point source pollution, NPS pollution is characterized by random
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and intermittent occurrences, complex mechanisms and processes, uncertain discharge
channels and amounts, variable spatial and temporal pollution loads, and difficulties
in monitoring, simulation, and control [4]. These characteristics cause challenges in the
simulation and evaluation of the transport processes of NPS pollutants from agricultural
sources to sinks [5].

Many studies have indicated that NPS pollution is closely related to watershed runoff
and confluence, while it is not evidently related to watershed-scale loading and concen-
tration [6]. In general, the migration of NPS pollutants and their transport process can be
divided into two hydrological processes: the generation of pollutants and their transfer to
waterbodies [7]. The path-through rate is an all-new concept and a comprehensive parame-
ter that can describe the NPS pollution transfer process, starting from pollutant generation
to transfer to waterbodies [8]. Based on this concept, risk assessment can be performed
for NPS pollutants from each grid to the receiving waterbodies in the watershed scale by
determining the risk grade according to the water criteria of different water environmental
function zones. Although some scholars have also conducted similar studies through
point monitoring (based on the coefficient of NPSs into the river), their results cannot be
extended to the watershed scale. In particular, the pollutants generated and accumulated
in watersheds are derived, transmitted, and intercepted by precipitation, slope, and other
surface and terrain factors, expressed as a scaling factor, which is obtained by dividing the
part of the pollutant load transferred to waterbodies by the total pollutant load.

Currently, there are approximately three types of estimation methods for calculating
the path-through rate of watershed agricultural NPS pollutants: field monitoring, the
traditional empirical model, and physical-based models [9]. Field monitoring has several
advantages such as high accuracy and the ability to monitor the entire migration process
of NPS pollutants. However, owing to its high cost and time requirement [10], it is more
applicable to small-scale watersheds or fields rather than to large-scale watersheds on a
national scale.

The traditional empirical model involves the export coefficient mode (ECM), hydro-
logic curve partitioning, the soil conservation service curve number (SCN-CN), and so
on. [11]. This model integrates the transport process as a “black box” or “gray box” model,
completely ignoring the migration mechanism and the transformation of NPS pollutants at
the watershed scale [12]. In addition, the export coefficients are inherently highly variable
and reflect particular site conditions for each study. Physical-based models include SWAT,
HSPF, and AnnAGNPS, which are integrated with a large number of parameters and func-
tional formulas for simulating the whole process of NPS pollutant transfer from sources
to sinks and are more commonly applied for mesoscale watersheds. However, there are
uncertainties with regard to their practical application because of differences in input data,
insufficient localization of parameters, and lack of operator experience [13].

To overcome these weaknesses and to fully leverage the advantages of the existing
physical-based and empirical models, two hypotheses were proposed. First, it is possible
to generalize the major process of transfer of pollutants from sources to sinks, and sec-
ond, the generalized process can be integrated into a new model on the watershed and
administrative scales. In this study, a novel path-through rate model of NPS pollutants
is developed using five major factors, namely the precipitation index (α), terrain index
(β), runoff index (LI), subsurface runoff index (TI), and buffer strip retention index (RI).
Hereafter, the model is referred to as the path-through rate five-factor model (or PTRFFM).
The technical framework of the PTRFFM is illustrated in Figure 1. To check the reliability of
the PTRFFM, a case study is conducted in a headwater watershed of a prominent drinking
water supply in the Beijing-Tianjin-Hebei region. Overall, the objective of this study is to
establish the PTRFFM to predict the path-through rate of NPS pollutants jointly on the
watershed and administrative scales and estimate the resources, load, and distribution of
agricultural NPS pollutants. The study also aims to verify the reliability of the PTRFFM
through the assessment of the pollution load, critical source areas, and spatial distribution.
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Figure 1. Technical framework of the PTRFFM.

2. Methods and Materials
2.1. Study Area

The Miyun Reservoir is the most important source of drinking water in the Beijing-
Tianjin-Hebei region (Figure 2). The Chaohe watershed is the upper watershed of the
Miyun Reservoir, and it covers a drainage area of 4888 km2, consisting of 16 rainfall
stations and 3 hydrology stations. The average annual precipitation is between 350 mm
and 630 mm, where approximately 70% of the precipitation occurs from June to September,
during which the region frequently receives heavy rainfalls.

Figure 2. Map of the study area.

The watershed governs 24 towns, which are mainly composed of agricultural popula-
tions (~390,000). Livestock, poultry farming, and agriculture are more developed in the
area compared with other industries, and the main crops are wheat, corn, and soybean.
In the recent two decades, agricultural NPS pollution has become the dominant factor
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affecting the water quality of the Miyun Reservoir, where nitrogen and phosphorus pre-
dominantly limit the eutrophication of water bodies. Consequently, forecasting the critical
source areas of the upper watershed is highly significant for ensuring the safety of the
water environments and promoting sustainable development in this area.

2.2. Construction of the PTRFFM
2.2.1. Conceptualization of Five Major Parameters

Considering the effects of precipitation, terrain, runoff, surface runoff, and buffer strip
retention on NPS pollution, the five-factor model is described by Equation (1).

λi = f (α, β, TI, LI, RI) (1)

where λi is the path-through rate, α is the precipitation index, β is the terrain index, TI is
the surface index (mm), LI is the subsurface runoff index (mm), and RI is the buffer strip
retention index. These five indices are correlated with the spatial unit (grid cell), which
was set to be 30 m × 30 m based on the digital elevation model (DEM), precipitation, slope,
land use, and vegetation coverage map using ArcGIS 10.2.

Precipitation index. The precipitation index (α) is determined by multiplying the
impact factors of the spatial and temporal changes in annual precipitation, denoted by αs
and αt, respectively. In this paper, the spatial changes in precipitation are obtained from the
rainfall data of 16 stations based on the inverse distance weighting interpolate method. The
NPS pollution load delivered to a river is positively correlated with precipitation; therefore,
the NPS pollutant loss can be identified as a function of rainfall [14].

L = f (r) (2)

α = αs × αt =
f (r)
f (r)

×
Rj

R
(3)

where L is the annual loss of NPS pollutants that drain into rivers with runoff (kg), which
can be obtained by observing the outlets, and r is the annual rainfall in the entire study
watershed for a given year (mm). According to hydrology and water quality data, mon-
itored by 16 hydrological stations near the Chaohe River watershed from 1991 to 2018,
the correlation equation between the watershed annual rainfall and the load of the NPS
pollutants discharged into rivers can be realized as follows:

LN = 0.0402r2 − 27.81r + 530.14 R2 = 0.8631 (4)

LP = 0.0007r2 − 0.4538r + 77.939 R2 = 0.7374 (5)

In addition, the spatial variation impact factor αs, is obtained as, where Rj is the
annual rainfall in a grid cell for a given year (mm) and R is the average rainfall of the entire
watershed for a given year (mm).

Terrain index. The terrain index (β) is used to describe the terrain heterogeneity effect
on NPS pollutant loads. Many studies have demonstrated that the slope has a profound
impact on parameters such as runoff flux and velocity. Since runoff is the primary carrier of
nutrients, nutrient loss is also greatly impacted by the slope [15]. The relationship between
the runoff and slope can be established as shown below [16]:

β =
θj

d

θ
d (6)

where θj is the slope for grid j (30 m × 30 m), and θ is the average slope of the entire study
watershed. The temporal variation of the terrain is not remarkable in short time periods;
therefore, the β value varies for different grid cells. In a specific grid cell, the β value does
not change over the year.
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The runoff index (TI) was used for the calculation of the runoff index using the Soil
Conservation Services Curve Number method (Soil conservation service curve number,
SCS-CN) [17].

S =

(
25, 400

CN

)
− 254 (7)

TI =
(P − 0.3S)2

p + 0.7s
(8)

where TI is the runoff depth (mm); CN is the curve number, which is a function of land
use, soil, management, and hydrologic condition; P is the rainfall of the watershed (mm/a);
S is the potential maximum retention (mm/a). In SCS models, soils are defined by groups
based on their runoff potential-low, moderately low, moderately high, and high.

Subsurface flow index. In China, NPS pollution by nitrate leaching is not exclusively
limited to intensively used agricultural ecosystems, but it has also been reported for forest
ecosystems exposed to high loads of atmospheric N deposition. LI is a widespread method
for evaluating the soil water infiltration capacity with regard to the impact on the losses
of nitrogen and phosphorus, through which hydrological soil groups are based on the
soil type, land use, and previous soil moisture condition. LI is determined by multiplying
the rainfall spatial distribution index (PI) and seasonal distribution index (SI), where
the PI represents the maximum theoretical rainfall that can be used for the infiltration
of watershed units and SI represents the effect of seasonal rainfall changes on the soil
moisture infiltration [18,19]. The specific calculation formula is as follows:

LI = PI × SI =
(prec − 0.4 × S)
prce + 0.6 × S

2
× 3

√
2 × prec(ls)

prec
(9)

where prec is the annual precipitation (mm/a), S is the annual potential maximum retention
(mm/a), and prec(ls) is the total precipitation in non-flood seasons (November to May of
the following year).

Buffer strip retention. Runoff rates have spatial patterns controlled by loading and
filtering along with the flow paths from the upslope contributing area and downslope
dispersal area [20]. RI values are a relative estimate of high to low buffering, and they
represent a relative buffering likelihood. RI can be expressed as follows:

RI = ln

(
∑N

DA=1 TDAi

tanBDAi

)
(10)

where ∑ TDAi is the cumulative trapping efficiency within a dispersal area, and BDAi is the
average slope of a dispersal area.

Soil erosion index. Phosphorus is lost in the form of particles in water reservoirs
owing to soil erosion. The universal soil loss equation is applied to evaluate the path-
through rate of total phosphorus in this study [21].

A = R × K × L × S × C × P (11)

where A is the estimated average soil loss in tons per acre per year, R is the rainfall-runoff
erosivity factor, K is the soil erodibility factor, L is the slope length factor, S is the slope
steepness factor, C is the cover management factor, and P is the support practice factor.

2.2.2. Data Standardization of the PTRFFM

The five-factor raster data are standardized to unify the calculation unit. After the
normality test, the standardization of the normal and skewed distribution data is calculated
as follows:

Normal distribution X =
Xi − min(x)

max(x)− min(x)
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Skewed distribution NX =
ΦXi
Xi

ΦXi < Xi

NX =
Xi

ΦXi
ΦXi > Xi

where X and NX are standardization factors, Xi is the value of each factor for grid i, min(x)
is the minimum grid value for each factor, max(x) is the maximum grid value for each
factor, Xi is the maximum value for factor i, and ΦXi is the median for factor i.

The precipitation and terrain indices are both dimensionless quantities; therefore, α
and β do not need to be standardized. TI, LI, RI, and A have dimensions to ensure that the
NPS pollutant load to water bodies is less than the pollutant source load; therefore, they
need to be standardized, and then a spatial overlay operation needs to be performed for
each of the standardized results. The standardization method of total nitrogen (TN) and
total phosphorus (TP) is as follows:

λTN = α × β × NormTI × NormLI × NormRI (12)

λTP = α × β × Norm(A + TI)× NormRI × NormRI (13)

2.3. Data Source

The input data include a DEM, land use, soil type, vegetation map, weather data,
hydrological data, and socioeconomic data of the study area (Table 1). The land-use types
are classified into five types: farmland, grassland, forest, residential land, and unused land.
The NPS of the study watershed is categorized into three types: rural living, livestock, and
land use.

Table 1. Source and description of basic data.

Type Scale Resolution Description Source

DEM 1:1,000,000 30 × 30 m Elevation, overland and
channel slopes and lengths

National Geomatics Center
of China

Land use 1:50,000 30 × 30 m Land use classifications
Institute of Geographical and

Natural Resources
Research, Chinese

Livestock _ Village Breeding number of cow,
pig, sheep, and poultry

National pollution
source census

Soil type 1:1,000,000 30 × 30 m Soil type classifications Institute of Soil Science,
Chinese Academy of Sciences

Administrative
division 1:1,000,000 1 × 1 km Towns and municipalities

of the study area
National Geomatics Center

of China
Vegetation coverage 1 × 1 km

Precipitation 2001–2014 Daily step 16 stations in the
study area

China Meteorological
Administration

Hydrological data 2001–2014 Monthly step Calibration and validation
of the five-factor model

China Meteorological
Administration

Water quality data 2001–2014 Monthly step Calibration and validation
of the five-factor model

Miyun Reservoir Management
Office Xiahui Hydrological

Station

Social economics 24 towns Township level
Population, livestock

rearing, fertilizer
application

Field investigation; Statistics
year-book

Export coefficient Different sources Losses of various
nutrient sources

Statistical data and
field monitoring
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2.4. Estimation of the Agricultural NPS Pollutant Loads

The ECM is used to estimate the NPS loads when the path-through rate is obtained
using the PTRFFM. The calculation method is as follows:

L =
n

∑
i=1

PEi[Ai(Ii)] (14)

where L is the loss of nutrients (kg), Ei is the export coefficient of the nutrient source i
(kg·ca−1·a−1 or kg·km−2·a−1) (see Table 2 for details), Ai is the area of the watershed
occupied by the land use type i (km2), or the number of livestock type I, or of people, Ii is
the nutrient input to the source i (kg), and p is the path-through rate of each grid.

Table 2. Export coefficients for different pollution sources.

Pollution Source TN TP

Land use (kg·ha−1·a−1)

Farm land 2.97 0.041
Forest 0.24 0.0071

Grassland 1.57 0.013
Unused land 5.00 0.008

Residential land 2.00 0.003

Rural living (kg·ca−1·a−1) rural resident 2.83 0.89

Livestock

Big livestock 7.36 0.31
Pig 0.41 0.15

Sheep 1.4 0.045
Poultry 0.071 0.004

3. Results and Discussion
3.1. Major Parameters of the Spatial Distribution from the PTRFFM

The results show that αTN and αTP were 1.28–8.18 and 0.29–7.42, respectively. β, LI,
and TI were the same for TN and TP, that is, 0–2.57, 301.99–663.32 mm, and 182.49–483.12 mm,
respectively. In addition, RITN and RITP were 0.21–17.5 and 0–17.81, respectively, and ATP
was 0.00166–852.63 (t/(hm2·a)).

A comprehensive analysis of the spatial distribution of the five factors (Figures 3 and 4),
TN, TP, α, LI, and TI was performed; the results show a high similarity of the spatial
distribution characteristics with the rainfall map. Specifically, the areas with high rainfall
(upstream Wudaoying, Tuchengzi, Dage, Anchungoumen, and downstream Tuchengzi)
also had high α, LI, and TI because these three indices were mainly calculated on the basis
of rainfall. The terrain index β is proportional to the watershed slope, showing a high
trend in some parts northwest and a low trend in the cultivated land in the valley. From the
perspective of the impact degree of the land use, the cultivated land area was characterized
by high LI and TI and low β and RI. The likely reason for this trend is that the CN value of
the cultivated land was larger than those of other types of land use, which promoted the
generation of surface and subsurface runoffs. In addition, β of the cultivated land in the
valley was lowest because of the gentle slope in the area. Low RI is possibly because of
interception by forest grass and the water surface buffer system. Thus, cultivated land has
no intercepting effect on NPS pollution.
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Figure 3. Spatial distribution of the five factors of NPS with respect to TN.

3.2. Spatial Distribution Characteristics of the Path-through Rate

For a field of scale (Figure 5), the path-through rate of TN was mainly distributed in the
farmland of the towns of Wudaoying, Dage, Tuchengzi, Anchungoumen, and Huodoushan;
this is similar to the spatial distribution characteristics for TP.

For the town scale (Figure 5), the primary spatial distribution of the path-through rate
of TN was in towns such as the upper reaches of Wudaoying, Dage, and Tuchengzi and
the lower reaches of Anchungou Gate and Huodoushan; the rates ranged from 0.17 to 0.26.
However, the upper reaches of the basin and the west side of the middle reaches, including
Wudaoying, Kulongshan, Dage, and Tuchengzi, were the primary distribution areas for
the path–through rate of TP, with the rates ranging from 0.012 to 0.019.
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Figure 4. Spatial distribution of the five factors of NPS with respect to TP.

3.3. NPS Pollution Load and Source Analysis

The TN and TP loads of the research area in 2014 were obtained according to the ECM
and coefficient models. The simulation results indicate that the TN load was 13.87 times
that of the TP load, which were 7505.0 t and 540.95 t, respectively.

As shown in Table 3, for different pollution sources, the pollution loads of TN were
1118.2 t, 2815.3 t, and 3616.5 t, for rural living, livestock, and land use, correspondingly
accounting for 15%, 37.4%, and 47.6% of the TN loads, respectively. Among all the pol-
lution sources, farmland was the major contributor (2258.9 t·a−1.), mainly owing to the
unreasonable fertilizer rate and long-term conventional tillage [22]. Among the four types
of livestock, big livestock was the primary contributor (1404.9 t), followed by poultry
(1187.7 t), because of the improper management of animal feed and livestock manure.
The major TP pollution sources differed from the major TN pollution sources. The main
contributors of TP loads were rural living (351.65 t·a−1), followed by livestock (156.6 t·a−1)
and land use (32.7 t·a−1), which account for 65%, 28.95%, and 6.05% of the TP loads, re-
spectively. In recent years, the urbanization level in most parts of the studied watershed
gradually increased, and the living standards of people continued to increase, resulting in
rural living becoming the major contributor to the TP load.
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Figure 5. Spatial distribution of path-through rate for the NPS pollution of field and town scales.

Table 3. NPS pollution load from various sources in 2014.

Pollution Source

Total NPS Pollution Load of 2014

TN (t/a) Percent Total TP
(t/a) Percent Total

Rural living 1118.2 15.0 15.0 351.65 65.00 65.00

Livestock

Big stock 1404.9 18.7

37.4

59.17 10.94

28.95
Pig 70.0 0.9 25.61 4.73

Sheep 152.7 2.0 4.91 0.09

Poultry 1187.7 15.8 66.91 12.37

Land use

Farmland 2258.9 30.1

47.6

22 4.07

6.05

Forest 412.8 5.5 3.1 0.57

Grassland 878.1 11.7 6.4 1.18

Unused land 43.3 0.6 0.7 0.13

Residential land 23.4 0.03 0.5 0.09

Total 7505.0 100% 100% 540.95 100% 100%
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3.4. Validation of the Results from the PTRFFM

Comparison with the monitoring data. The water quality monthly data of TN and
TP, C (mg/L), as well as the monthly average runoff data, Q (mg/l), monitored by the
Xiahui hydrological station at the watershed outlet, were utilized to estimate the TN and TP
fluxes of the watershed Lo. The pollutant flux data obtained from the Xiahui hydrological
station were calibrated and validated by multiplying with water quality and runoff, based
on the following calculation formula: Lo = ∑12

i=1 10−6 × Ci × Qi. The relative error Re was
analyzed by comparing the simulated value L with the monitored value Lo to assess the
accuracy of the PTRFFM.

Re =
L − Lo

Lo
× 100% (15)

The results demonstrated the effectiveness of the five-factor model based on the
mechanism of the transport pathways of agricultural NPS pollutants (Table 4). In 2014,
the fluxes of the TN and TP of the studied watershed were 570.86 t and 2.54 t, and the
simulated values were 705.11 t and 3.16 t, respectively. The relative errors were less than
25%, 19.62% and 24.45%. The simulated values for TN and TP were both overestimated,
probably because the interception, retardation, and attenuation effects of the pollutants
after entering the watercourse were not considered in the PTRFFM.

Table 4. Validation results of the five-factor model.

NPS Pollutants Simulated
Value L (t) Measured Value Lo(t) Re %

TN 705.11 570.86 19.62
TP 2.54 3.16 24.45

Comparison with other relevant studies. To further verify the reliability of the model
simulation results, some typical results from the literature on the NPS pollution path-
through rate of China were reviewed (Table 5). For instance, according to Zhou et al.,
the path-through rates of N and P in the Haihe watershed were 0.2 and 0.1, respectively.
A field monitoring evaluation conducted in the Xinanjiang River Basin showed that the
point source path-through rate was approximately 2–3 times that of the NPS path-through
rate; the TN and TP path-through rates were 0.2 and 0.21, respectively [23]. Deng et al.
studied the path-through rates of different NPS pollution sources in the Changle River
Basin using the SWAT model and demonstrated that the atmospheric deposition of the
NPS path-through rate of TN was 0.17, followed by nitrogen fertilizers (0.15), rural living
(0.12), and livestock (0.03) [24]. Ma et al. utilized the pollutant load estimation method
in the Laizhou Bay of the Yellow River Basin and discovered that the NPS path-through
rate of TN for rural living was 0.17, followed by farmland (0.1) and livestock (0.07) [25].
Based on the analyses mentioned above, the results of the NPS path-through rate of TN
in this study are similar to those of other studies. The NPS path-through rate of TP is
lower compared with those of the other studies. This is probably because the studied
watershed is in the North of China, which is characterized by inadequate annual rainfall.
Moreover, phosphorus is mainly lost in the particulate form by soil erosion, and in the
North of China, scarce rainfall leads to less soil erosion compared with other research areas
with abundant rainfall.



Water 2021, 13, 3156 12 of 14

Table 5. Results of the other studies on the path-through rate of NPS pollutants in China.

Watershed Study Area Scale Method λTN λTP Reference

Haihe Basin Chaohe River
watershed Mesoscale PTRFFM 0.17–0.26 0.012–0.019 This study

Haihe Basin Haihe Basin Large scale ECM 0.20 0.10 Zhou et al., 2004
Yangtze River

Basin
Xinanjiang River

Basin Large scale Investigation and
monitoring 0.20 0.21 Yang et al., 2006

Songhua River
Basin

Harbin Section of
Songhua River Middle scale

Pollutant load
estimation

method
0.10 _ Fu et al., 2010

Yangtze River
Basin

Changle River
Basin Middle scale SWAT

0.17 (Atmospheric
deposition) _

Deng et al., 20120.12 (Rural living) _
0.03 (Livestock) _
0.15 (nitrogen

fertilizer) _

Yellow River
Basin

Laizhou Bay Large scale
Pollutant load

estimation
method

0.1 (Farmland) 0.1 (Farmland)
Ma et al., 20120.25 (Rural living) 0.25 (Rural living)

0.07 (Livestock) 0.07 (Livestock)

3.5. Identification of the Critical Source Area of NPS Pollution

A comprehensive analysis of the distribution of the NPS pollution load and the path-
through rate was performed, and the critical source areas (CSA) with high risks of NPS
pollution and high path-through rates were identified (Figure 6). The results demonstrated
that Dage, Wudaoying, and Tuchengzi were critical TN source areas with path-through load
intensities of 4.31 kg/ha, 4.23 kg/ha, and 2.95 kg/ha, respectively. From the perspective
of the path-through pollutant load, Dage, Wudaoying, and Tuchengzi only accounted
for 22.09% of the studied area. Nevertheless, they contributed 57.16% of the TN amount
discharged into water bodies.

Figure 6. Spatial distribution characteristics of the path-through rate load of NPS pollutants.

The upper and middle reaches of the studied watershed, namely Dage, Wudaoying,
Heishanzui, and Tuchengzi, were CSAs of TP, where the path-through load intensity was
0.03–0.008 kg/ha. These four towns contributed 1.37 t, 0.24 t, 0.25 t, and 0.28 t in 2014,
accounting for 67.69% of the path-through pollutant load of TP.

In summary, Dage, Wudaoying, and Tuchengzi should be considered for the place-
ment of conservation practices for the effective and efficient implementation of
watershed management.
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4. Conclusions

(1) The simulation accuracy of the PTRFFM model was acceptable. On the water-
shed scale, the TN and TP NPS pollutant loads from agriculture were 705.11 t and 3.16 t,
respectively, in 2014. Meanwhile, the relative errors of the simulations were 19.62% and
24.45%, respectively. From the spatial distribution of the agricultural NPS, the TN and TP
resource loads were mainly distributed among the upper reach towns of Dage, and lower
reaches of Taishitun, Bakshiying, and Gaoling. The major source of TN load was farmland,
which accounted for 47.6% of the TN load, followed by livestock (37.4%). As for the TP load,
rural living was the primary source (65%). The path-through rate of the agricultural NPS
pollutants was primarily distributed in Wudaoying, Dage, Tuchengzi, Anchungoumen,
and Huodoushan, where the path-through rate of TN ranged from 0.17 to 0.26. However,
the priority areas for the path-through rate of TP were distributed among Wudaoying,
Kulongshan, Dage, and Tuchengzi, ranging from 0.012 to 0.019. A comprehensive analysis
of the distribution of the NPS pollution load and the path-through rate was performed.
The results indicated that Dage, Wudaoying, and Tuchengzi were the CSA of agricultural
NPS pollution; therefore, they should be considered for effective watershed management.

(2) The spatial distribution characteristics of the path-through rate in the field scale
could be obtained. Compared with other methods of estimating the path-through rate
for NPS pollutants, such as field monitoring, the ECM, and the physical-based model,
the PTRFFM could assess the path-through rates of NPS pollutants in the whole field,
watershed, or sub-watershed. It was also able to accurately estimate the watershed path-
through rate per unit area of spatial coordinates in the field scale.

(3) The results can be scaled to watersheds with larger scales. Unlike the “black
box” or “gray box” models, which facilitate the increase or decrease of the measurement
parameters to reflect regional differences when applied to different regions, the five-factor
model regards the transport pathways of NPS pollutants by obtaining a functional rela-
tionship between the corresponding typical, natural, and geographic parameters of the
locations. Thus, the results of the five-factor model can be scaled to obtain the path-through
rates for larger watersheds.

In this study, the PTRFFM was developed by considering the pollutant production,
surface runoff generation, leaching potential of soil moisture, and landscape interception
in the given watershed. The model can be used as an effective tool to identify critical
paths for NPS contamination transportation. In the future, to expand this method further,
supplementary field monitoring should be performed. For example, the saturated water
holding capacity of different soil types should be monitored to decrease the uncertainty of
soil infiltration capacity differences among different areas.

Future research is also required to establish new criteria and more efficient optimiza-
tion techniques to identify the key parameters of NPS pollutants, such as the time lag
index [26], and incorporate them into the PTRFFM to realize a better representation of the
whole process of NPS pollutant transfer.
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