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Abstract: Although ground-penetrating radar (GPR) is effective to detect shallow-buried objects, it
still needs more effort for the application to investigate a buried water utility infrastructure. Edge
detection is a well-known image processing technique that may improve the resolution of GPR
images. In this study, we briefly review the theory of edge detection and discuss several popular
edge detectors as examples, and then apply an enhanced edge detecting method to GPR data
processing. This method integrates the multidimensional ensemble empirical mode decomposition
(MDEEMD) algorithm into standard edge detecting filters. MDEEMD is implemented mainly
for data reconstruction to increase the signal-to-noise ratio before edge detecting. A quantitative
marginal spectrum analysis is employed to support the data reconstruction and facilitate the final
data interpretation. The results of the numerical model study followed by a field example suggest
that the MDEEMD edge detector is a competent method for processing and interpreting GPR data of
a buried hot spring well, which cannot be efficiently handled by conventional techniques. Moreover,
the proposed method should be readily considered a vital tool for processing other kinds of buried
water utility infrastructures.

Keywords: GPR; edge detection; near-surface imaging; spectrogram; multidimensional EMD; water
management; utility maintenance

1. Introduction

The maintenance of buried water utility infrastructure is a major issue for water
companies. Due to the material deterioration over time and occasional accidents, a routine
inspection of buried assets is required. This task requires the aid of nondestructive and
noninvasive techniques, and ground-penetrating radar (GPR) is one of the methods of this
kind [1]. It is common knowledge that detecting accuracy is vital to the investigation of a
buried water infrastructure. A variety of data processing techniques have been proposed
to improve the accuracy of GPR imaging [2–6]. Edge detection is a technique formerly
used by computer engineers in the analysis of images to outline the essential information
of the data [7–9]. In the years since the edge detection technique was proposed in the
1970s [10,11], it was once considered only an alternative image segmentation technique,
but now it has become a major field of study within image processing. In the geophysics
community, a former edge detection approach, the analytic signal technique, can be traced
back to Nabighian (1972) [12]. This method and its modifications have been favored by
geophysicists as signal enhancement techniques in potential field data processing [13–17].
Over the last few decades, a variety of edge detection operators (edge detectors) have been
introduced to geophysicists. Most of them are based on the concepts of derivatives [18–21],
gradients [22,23], Laplacian (finding the zero crossings) [24–26], and the like. Different
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from the above standard methods, some alternative edge detectors developed from other
approaches are equally effective as the standard methods and are also useful for evaluating
new edge detectors. These alternative detectors are in conjunction with tilt angle [27],
wavelet transformation [28–30], and image reconstruction [31,32], among others.

While so many edge detectors are available, no single method can provide all of the
needs for the image analysis, and specific flaws are noted in each of the algorithms. Well-
known cases are as follows: the curvature gravity gradient tensor technique [23] has trouble
with both positive and negative anomalies [33] and has the problem of simultaneously
displaying large and small amplitude edges [34]; the vertical derivative, total horizontal
derivative, and the combination of the two methods are difficult to clearly display the edges
of deeper anomalies [35]. Other detectors, such as the analytic signal and local wavenumber
techniques, are sensitive to gridding and noise [36]. Despite the fact that some limitations
exist, edge detection is still an emerging approach for geophysicists to sketch subsurface
structures from field data. It is commonly believed that edge detection would clearly reveal
the complicated target boundary and improve the delineation of geological structures if
the methodology is modified and performed appropriately [16,17,19,21,25,36]. Therefore,
the improvement of the edge detection approach has drawn the attention of geophysi-
cists reviewing how the detecting procedure and algorithms are not as efficient as they
expected in some situations. With this motivation, the suggested research topics involve
the suppression of noise, the speed of computation, the accuracy of edge determination,
and the auxiliary methods on data reconstruction. Although various new methods and
modifications are proposed in processing geophysical data, most techniques are for the
potential field data [33,36–38]. In recent years, some efforts have been made to extend
edge detection to other subjects in geophysics, particularly in reflection methods. For
example, Manzi et al. [39] applied an attribute extraction edge detector to define fault
architectures in 3D seismic data; Ashraf et al. [40] used the famous edge detecting Sobel
filter to 3D seismic data processing. Similar to the seismic method, Zheng et al. [41] used
singular value decomposition with the cross-correlation edge detector to analyze GPR data.
The above contributions indicate that with appropriate modifications, edge detectors are
applicable to areas other than the potential field, and the performance should be promising.
However, more endeavors are still required for its application to reflection data because
it has been pointed out that the reflection data, GPR in particular, are orientation depen-
dent, which are less than ideal when dealing with ordinary algorithms, and novel efficient
methodologies [42–44] are required. To this end, we propose a data processing scheme
that integrates multidimensional ensemble empirical mode decomposition (MDEEMD)
into the edge detector for GPR data processing and interpretation. Because the analysis
of MDEEMD is based on the local characteristic time scale of the data [45], its application
to GPR data should be pertinent. In this study, MDEEMD acts as a pre-detecting filter
for noise suppression, and the subsequent data reconstruction with quantitative marginal
spectrum analysis is an auxiliary method for data interpretation. In addition to the theoret-
ical investigation, numerical model studies are performed to test the logical process of our
analysis. Finally, we present a successful case study of detecting a buried hot spring well to
show the robustness of the proposed methodology in the investigation of the buried water
utility infrastructure.

2. Materials and Methods

The brief review of the existing popular edge detectors for image processing and
geophysical data analysis in the introduction section indicates the possible improvements
and integration of the current algorithms. Our proposed approach is mainly to incorporate
the MDEEMD technique into the edge detectors to upgrade the performance of derivative
detectors which include the first-order derivative (gradient), second-order derivative
(Laplacian), and Canny (gradient with Gaussian filter). Before introducing the MDEEMD
detectors, we first examine the derivative detectors that are categorized as conventional
edge detectors.
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2.1. Conventional Edge Detectors

There are various algorithms in each one of the conventional edge detectors, some of
which are based on a similar idea, although different kernel functions are used to improve
the efficiency of the algorithm. In the following section, we introduce edge detectors
using different kernel functions to implement the gradient or Laplacian. For an image
to be processed, the gradient method finds the image edges by searching for the local
maximum and minimum of first derivatives along horizontal and vertical pixels in an
image. In contrast to the gradient, the Laplacian method spots the local zero crossings of
second derivatives.

2.1.1. Roberts Detector

In common algorithms, the gradient estimates horizontal and vertical components
of the gradient vector, as well as the magnitude and direction. Roberts [46] proposed an
efficient way to obtain a reasonable 3D description of solid objects from the edge infor-
mation in a photograph. It is one of the first edge detectors which does so by computing
the diagonal edge gradients and is therefore called a “cross operator”. The Roberts kernel
functions X and Y used to convolve with the image are

X =

[
1 0
0 −1

]
and Y =

[
0 1
−1 0

]
(1)

Each of the two kernel functions can be applied separately to the input image in two
perpendicular orientations. For a pixel at the point (i, j) in an image, where i, j indicate
coordinates, the Roberts gradient operator will give emphasis to changes of the image
intensity in a diagonal direction by calculating the differences at the interpolated point
(i + 1/2, j + 1/2) rather than the point (i, j) where a pixel is located in the image. This
method is simple and fast in computation, but the result could be fluctuating.

2.1.2. Sobel Detector

To improve the Roberts method, an isotropic 3 × 3 Sobel operator is proposed [47].
The operator uses two 3 × 3 kernels, X and Y, indicated below to convolve with the original
image to calculate approximations of the derivatives:

X =

 −1 0 +1
−2 0 +2
−1 0 +1

 and Y =

 −1 −2 −1
0 0 0
+1 +2 +1

 (2)

In practice, if X is for horizontal derivatives and Y for vertical derivatives, then the
gradient will be calculated exactly on the pixel position of the image. The Sobel operator
also gives more weight to the neighboring pixels, which will smooth the data (Gaussian
smoothing). An interesting attribute of the Sobel operator is the separability, for example: −1 0 +1

−2 0 +2
−1 0 +1

 =

 −1
−2
−1

 ×
[

1 0 −1
]

or =

 1
2
1

 ×
[
−1 0 +1

]
(3)

therefore, it reduces the computation cost. However, by giving more weight to the neigh-
boring pixels, the Sobel operator may yield a fragmentary image if the signal-to-noise ratio
(SNR) of the data is low.
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2.1.3. Prewitt Detector

If the Sobel operator is modified to not place more weight on the pixels that are
adjacent to the center point of the operator, it is called the Prewitt operator [48]:

X =

 −1 0 +1
−1 0 +1
−1 0 +1

 and Y =

 −1 −1 −1
0 0 0
+1 +1 +1

 (4)

Like the Sobel operator, the Prewitt operator can be separated into two one-dimensio-
nal operators  −1 0 +1

−1 0 +1
−1 0 +1

 =

 1
1
1

 ×
[
−1 0 +1

]
(5)

Note that the column vector is a unit vector; it reduces the computation cost further
than the Sobel operator, but the result could be rather coarse.

2.1.4. Canny Detector (Central Difference and Intermediate Difference)

Noise is one major factor that could affect the edge detection results. The Canny
detector [49] is an essential achievement to remove the noise and to avoid a spurious
response. In this approach, several elongated Sobel operators are used at each pixel to
smooth the image in the first step. The size of the operator will affect the performance of
noise removing and edge localization, usually a 5 × 5 Sobel operator is acceptable. The
next step is to find the magnitude and direction of the gradient at each pixel. To get
rid of spurious responses, the pixels that do not lie in significant edges are eliminated
(nonmaximum suppression) in the third step. The fourth step is to refine the edges after
the nonmaximum suppression. The Canny detector uses the double threshold algorithm
to determine the possible edge points which are not significant. The principle of double
threshold is to set two threshold values empirically. If the gradient value is higher than
the high threshold, the edge pixel is a strong edge pixel. If the gradient value is between
the high threshold and the low threshold, it is a weak edge pixel. The edge pixel will be
eliminated if the gradient value is below the low threshold. The last step is to further refine
the edges by hysteresis analysis to remove the weak edge pixels which are not connected
to strong edge pixels [49–51].

When computing the gradient magnitude and orientation, the approximation of
derivatives can usually be obtained by using three finite-difference forms, i.e., the forward
difference scheme, central difference scheme, and backward difference (intermediate dif-
ference) scheme. The default finite-difference form in the Canny detector is the forward
difference scheme.

2.1.5. Laplacian (Zero-Crossing) Detector

The above edge detectors are gradient based. Another popular approach is using
the Laplacian operator. To find the edge of the target, we first perform the derivative to
find the gradient of the image, where zero-crossings on the gradient curve indicate edges.
However, zero-crossings may not easily be determined on the gradient curve. Therefore, a
second derivative is followed to enhance edge signals by converting zero-crossings into
more pronounced peaks. The edges are then determined by comparing second derivative
peaks with a preset threshold. The Laplacian operator is a second derivative in practice, so
the second derivative edge detecting method is alternatively called the Laplacian detector
or the zero-crossing detector.

2.1.6. Laplacian of Gaussian Detector

The Laplacian operator finds the divergence of the gradient on the image to sharpen
the edges further, but it also enhances noise. To suppress the noise, a Gaussian smoothing
filter is used before applying the Laplacian to the image. The combination of Gaussian
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functions and the Laplacian is called the Laplacian of Gaussian (LoG) [52,53]. A common
equation briefly describing the LoG algorithm is

LoG(x, y) = − 1
πσ4

[
1 − x2 + y2

2σ2

]
e−

x2+ y2

2σ2 (6)

The approximate discrete Laplacian kernel functions used to convolve with the im-
age are  0 ±1 0

±1 ±4 ±1
0 ±1 0


Note that the reverse signs are used between the operator’s center point and its

neighboring points. It is called the negative Laplacian when the center point is negative,
and the positive Laplacian when it is positive.

2.2. MDEEMD Edge Detector

The success of conventional edge detectors usually depends on the SNR, particularly
the derivative-based detectors [38,54]. In image edge detection, a pre-detecting filter is use-
ful for finding a better detection result. The standard operation is to apply a noise-removing
filter to convolve with the image. This procedure is carried out in the Canny edge detector,
in which the Gaussian filter is performed to smooth the image [49] for suppressing the noise
before the gradient calculation. Despite this strategy being effective when applied to many
cases, it may have difficulties in obtaining high accuracy in detecting complicated edges
because of the computation cost [25]. Furthermore, one major problem that has not been
widely discussed in the literature is the artifacts generated by the convolution. The fidelity
of conventional linear filters is limited by the uncertainty principle and needs negative
frequencies and spurious harmonics to express nonlinear signal deformations [45,55], all of
which may cause artifacts in the output. We therefore propose to incorporate MDEEMD, a
nonlinear filter, into the edge detection operator to cope with the aforementioned problem,
increase the accuracy of edge detection, and result in less fragmentary edge maps.

2.2.1. MDEEMD Filter

MDEEMD is a geophysical version [56] of the original multidimensional ensemble
empirical mode decomposition (MEEMD) method, which is a multidimensional data-
driven nonlinear data decomposition technique proposed by Wu et al. [57]. MDEEMD has
been successfully applied to process two-dimensional (2D) geophysical data [56]; however,
for reflection data, such as seismic or GPR sections, MDEEMD is insufficient because those
data are not real 2D grid data. The reflection section is usually irregular in record length
and sample interval, which indicate the sample numbers along the time and distance axes
are unequal, and therefore this situation hinders the multidimensional decomposition.
Moreover, a reflection section is an ensemble of independent traces, and the variables along
the time and distance axes of a section are incomparable [58]; therefore, the decomposition
results may not support the final 2D combination even if the sample numbers along the
time and distance axes are the same. To deal with these problems, Chen and Jeng [45]
modified the MDEEMD algorithm to make it possible for the GPR data processing and
successfully applied it to a GPR survey in a difficult terrain [59]. Compared with other
GPR data processing techniques, this novel approach is not Fourier based, so there are no
artifacts produced in the decomposition and filtering [60]. In addition, the decomposition
is also multiscale adaptive, therefore it is not necessary to assume the comparability of
scales in different directions of operation, which makes the scale- and local-dependent
geometrical information (descriptors) more accurate and easier to access [45]. To illustrate
the approach, we briefly describe the development of MDEEMD from the fundamental
one-dimensional empirical mode decomposition (EMD) method [55] as follows.
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Based on the common perception of a signal, the EMD method assumes that any data
sensed by human beings are composed of a finite number of amplitude and frequency
modulated oscillatory mode functions called intrinsic mode functions (IMFs) and a residue
(background variation). Subsequent studies indicate that EMD has an effect as a dyadic
filter bank [61,62]. Therefore, the IMFs and residue are oscillatory functions of different
scales (modes) constrained by the EMD dyadic filter bank through a systematic way
of extraction called “sifting” [55]. The procedure begins with a cubic spline method to
generate the upper and lower envelopes encompassing all of the data to be analyzed. The
first component h1, not an IMF usually, is the difference between the data and m1, the
mean of the two envelopes. If h1 is not an IMF, the sifting process continues until the first
IMF is obtained. The residue of the first IMF is saved to generate the next IMF. Apparently,
the number of IMFs depends on the stoppage criteria of sifting, which is by carrying out a
Cauchy type of convergence test [55,57] conventionally. The more stringent the stoppage
criterion that is applied; the greater the number of IMFs generated. In practice, the stoppage
criteria and the number of IMFs are determined experimentally to avoid the resulting IMFs
approaching harmonic functions lacking physical meaning [45]. The original EMD sifting
algorithm is workable but has the mode mixing problem, i.e., an IMF may contain signals
of different scales or a signal exists in different IMFs [63]. To alleviate this difficulty, a
newer method, ensemble empirical mode decomposition (EEMD), was proposed by Wu
and Huang [62]. EEMD is a noise-assisted method which repeatedly adds different white
noises to the data before sifting in order to provide reference scales uniformly in the whole
time–frequency domain. Each level’s IMF of the data is then obtained by taking the mean
of the corresponding white noise-added IMFs ensemble. In principle, if the number of the
ensemble members is sufficiently large, the noise effect of the added noises will be canceled
out by each other, and the result is only to bring in a relatively uniform reference scale
distribution for EMD to ease the mode mixing problem. The EEMD technique is crucial in
pre-edge detection filtering because the physical meaning of each obtained IMFs will be
strengthened [64] and the reconstructed data will be more accurate.

The method described above is one-dimensional. Since we are dealing with the edge
detection of 2D data, a multidimensional decomposition technique, MDEEMD, is required.
To simplify the description of the algorithm, we assume a regularized m × n dataset D(t) to
be processed where m is the scale of vertical data and n is that of horizontal data. In other
words, the dataset is an ensemble of n data strings (traces) and each string has m samples
(data points). If we call the dataset D(t) a profile, the realization of MDEEMD in this 2D
dataset can be summarized as the following procedure:

(a) Vertical decomposition: Decompose each data string of D(t) by performing EEMD
to generate i first-order IMFs, then collect IMFs of the same level from each data
string to constitute a profile of that level. This step will yield i first-order IMF profiles
∑i

i=1 IMF i(t) of different levels and a residue profile IMF(i + 1), i.e.,

D = ∑i
i=1 IMF i(t) + IMF(i + 1)(t) (7)

for a regularized decomposition, the number of the first-order IMF profiles is regular-
ized to i, then the residual profile IMF (i + 1)(t) is deleted or integrated into the last
IMF profile.

(b) Horizontal decomposition: Decompose each first-order IMF profile obtained in (a)
horizontally and regularize to j second-order IMF profiles, i.e.,

IMF i(t) = ∑j
j=1 Pi,j (8)

then j × i second-order IMF profiles Pi,j are obtained:

D = ∑i
i=1 IMF i(t) = ∑i

i=1

j

∑
j=1

Pi, j (9)
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Here, “second-order” indicates performing EEMD twice.
(c) 2D combination of modes: Perform the comparable minimal scale combination prin-

ciple, which combines the second-order IMF profiles having comparable minimal
scales to yield a single 2D IMF profile GN representing the true feature of the data in
that level, i.e.,

GN = ∑i
i=N Pi, N + ∑j

j=N+1 PN, j (10)

Details of the comparable minimal scale combination principle can be found in
Wu et al. [57] and Chen and Jeng [45,56]. In brief, this strategy is to collect the second-order
IMF profiles of the same scale or with minimal scale difference and combine those to give
a true 2D IMF profile. For example, the first row and the first column in the 2D presenta-
tion of j × i second-order IMF profiles are the comparable minimal scale components to
be combined.

The above discussion can be understood better by comparing it with the wavelet
decomposition. Although MDEEMD is mathematically different from the wavelet analysis,
the dyadic IMF profiles decomposed from the original data (image) constitute a hierarchical
configuration which is akin to the structure of multiresolution analysis (MRA) in wavelet
decomposition for image compression and noise removal [30,65]. From this point of view,
MDEEMD may suggest a new idea of assisting edge detection with advantages at least
similar to those obtained in wavelet methods.

2.2.2. MDEEMD Data Reconstruction

There are different aims of data reconstruction, such as reducing the processing
redundancy, recovering the missing data, or decreasing visible artifacts [66–68]. Because
MDEEMD acts as a pre-detecting filter to improve the SNR of the data, the reconstructed
profile should demonstrate a better target signal for the subsequent edge detection. As
noted earlier, our data may be irregular in record length and sample interval; therefore,
we adopt the technique (demonstrated by Chen and Jeng [45]) which regulates the IMFs’
numbers in each direction of decomposition at the beginning and results in a manageable
number of multidimensional IMF profiles. To minimize the computation cost and prevent
the decomposed IMFs from approaching harmonic functions that are short of practical
physical meaning, the number of IMF components for the field data is usually regularized
to an acceptable value empirically. For example, the most expected IMFs number of a
standard geophysical data string is between 9 and 12, which is approximately the logarithm
of the data number N to the base 2 [55,62]. Based on the most significant components
regulation technique proposed by Chen and Jeng [45], the number of IMF components
is regularized to 7 due to the practical computation. As a result, a set of 7 × 7 detailed
profiles obtained from MDEEMD is enough for performing the comparable minimal scale
combination to attain true 2D IMF profiles for data reconstruction.

Conventionally, the selection of the most informative IMFs for data reconstruction
relies on visual inspection [69]. To improve the selection method, we employ the Hilbert–
Huang spectrogram as a tool for quantitative analysis. Furthermore, the negative frequency
and spurious harmonics are not required to imitate waveform deformations in this method;
therefore, the data feature can be captured better in the Hilbert–Huang spectrogram than
those with conventional analysis methods [60,70,71]. To emphasize the data feature in
the spectrogram, the Hilbert–Huang spectrogram is further compressed into the marginal
spectrum m(ω) that signifies the total energy contribution of each frequencyω over the
entire time span T [55],

m(ω) =
∫ T

0
H(ω, t) dt (11)

where H(ω, t) indicates the Hilbert amplitude spectrum. For reflection data, the marginal
spectrum of a profile M(ω) with N traces can be expressed as

M(ω) = ∑N
n=1

∫ T

0
H(ω, t) dt (12)
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where n is the trace number [59].
With the aid of the marginal spectrum, the most informative IMFs for data reconstruc-

tion are determined by examining the marginal spectrum of each of the IMFs. The IMFs
with physical meaning and their marginal spectrum showing energy concentrated around
the center frequency of the GPR system will be selected for data reconstruction.

The following synthetic modeling and field data processing to corroborate the pro-
posed method are primarily implemented with the aid of the computing software Matlab
(a product of the MathWorks, Inc., Natick, MA, USA). Therefore, a few edge detectors
are renamed in the figures in order to be more specific and consistent with the software
calculating details. Explanations are also provided in the figure captions to avoid confusion.

3. Modeling and Field Data

Before applying the proposed methodology to the field data, we present two sim-
ulation models to test its efficacy. The results of edge detecting with and without the
MDEEMD processing are compared.

3.1. Hypothetical Model

Figure 1 shows a hypothetical model used for simulating the GPR reflection profile
over a subsurface thrust fault structure.

Figure 1. Hypothetical model of a thrust fault for the synthetic model study.

We first simulate an original GPR reflection profile of the thrust fault model in the
t-x domain (Figure 2a). This profile is constructed by imitating a common-offset GPR
reflection section of a 50 MHz central frequency GPR system. The simulated survey line
is 100 m in length with a penetrating depth of about 35 m as indicated in the model
(Figure 1). The source pulse simulated is a single zero-phase Ricker wavelet, which is a
typical wavelet adopted to produce the synthetic GPR section or seismogram [72]. To
circumvent redundant trace editing, the total trace number of the profile is set to 1000 with
each trace comprising 1024 samples. Two kinds of noises, namely, the white Gaussian noise
(Figure 2b) and harmonic noise (Figure 2c), are used to interfere with the original GPR
profile to simulate a noise-corrupted GPR section. Figure 2d demonstrates the combination
of the two noises to be added to the original profile. Figure 2e is the outcome of adding
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the noises shown in Figure 2d to the original profile. As it has been found in previous
studies [72,73], the natural logarithmic transform (NLT) is useful in solving the problem of
dynamic range in an image; we therefore apply this technique in this study to examine the
NLT effect on edge detection. Figure 2f shows the NLT conversion of Figure 2e.

Figure 2. Synthetic hypothetical model profile, interfering noises, and noise-corrupted profiles. (a) GPR reflection profile
of the proposed model. (b) White Gaussian noise. (c) Harmonic noise. (d) Combination of the white Gaussian noise and
harmonic noise. (e) GPR reflection profile corrupted by the white Gaussian noise and harmonic noise. (f) NLT conversion of
the noise-corrupted reflection profile. The model signal is invisible after noises are added.

Note that the SNR used for the simulation is 1:3 in amplitude, or –10 dB on the
logarithmic dB scale. Obviously, the reflection signal is completely masked by the two
added noises.

3.1.1. MDEEMD Processing

Once the noise-corrupted profile is obtained, we carry out the MDEEMD process with
the standard deviation set to 0.3 for the sifting and 30 for the number of the ensemble
members when taking the ensemble mean. Here, only the NLT converted profile (Figure 2f)
is used for demonstration because there is no significant difference between the results
with and without NLT conversion in this model study. Since the model data are relatively
simpler than ordinary GPR reflection data, the IMF profiles are regularized to 5 when
employing the most significant components regulation.

Figure 3a demonstrates the MDEEMD result where components C1 to C4 are mainly
noise while component C5 contains a significant reflection signal with residues. In other
words, component C5 may stand for the combination of the signal and several tail com-
ponents because the decomposition could be performed further to gain six or even more
components. In reality, increasing the number of IMF components without a constraint
may be meaningless because it would boost the computation cost considerably, but the
improvement of SNR is limited. Figure 3b shows marginal spectra of the noise-corrupted
profile and each IMF component for comparison. Obviously, the energy of the marginal
spectrum of component C5 is concentrated around 50 MHz with a bandwidth between
25 and 75 MHz, which matches the signal spectrum of the 50 MHz GPR system [59].
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Figure 3. MDEEMD components and marginal spectra of the hypothetical model. (a) Decomposed components of the
noise-corrupted profile shown in Figure 2f. (b) Marginal spectra for comparison.

3.1.2. Edge Detecting

The next step is to try the edge detector on the noise-corrupted profile and compare
the results with and without the MDEEMD data reconstruction. Figure 4 shows the
outcomes of applying five different edge detectors to the noise-corrupted profile without



Water 2021, 13, 3148 11 of 24

the MDEEMD processing; there is no useful information outlined by each edge detector. In
contrast, the thrust structure is highlighted by each edge detector (Figure 5) as we applied
MDEEMD to reconstruct the data before carrying out the edge detection.

Figure 4. Two-dimensional edge maps of the hypothetical model study using various edge detectors without MDEEMD.
Note that in this figure and the following, the central difference and intermediate difference indicate the Canny detector
using a finite-difference scheme of central difference scheme and backward difference scheme, respectively.

Figure 5. Two-dimensional edge maps of the hypothetical model study with MDEEMD. Various edge detectors are applied
to the noise-corrupted profile after the MDEEMD processing, where component C5 with NLT, shown in Figure 3a, is used
as the reconstructed profile for performing edge detection.
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The edge detectors implemented in the modeling are two-dimensional algorithms
which compute the image derivative with respect to the x-axis and y-axis. The gradient
magnitude and direction are then obtained from these two vectorized orthogonal compo-
nents. The direction of this resultant vector is defined as the directional gradient, indicating
the direction where the most rapid change occurred. In addition, the magnitude of this
resultant vector is called the rapidity of the image in the most rapid changing direction.
Here, we use the Sobel detector as an example to illustrate the algorithm. Simply speaking,
we calculate approximations of the horizontal and vertical derivatives of the original image
by using the x-direction Sobel mask (filter) and y-direction Sobel mask (filter), respectively,
then find the gradient of each point in the image by taking the square-root of the sum of the
two derivatives. Of course, some researchers may prefer to show the horizontal derivative
and the vertical derivatives separately to highlight specific features of the image.

A parallel detecting algorithm is employed to find edges in the intensity of the image
and returns a binary edge map constituted by ones where edges are found and zeros
elsewhere. This binary edge algorithm searches for places in the image where the intensity
changes rapidly, but the most rapid change is not necessary. Depending on the derivative
estimator applied, the user may specify the sensitive direction (horizontal, vertical, or
both) of the derivatives when determining edges in an image. Since we have no preferred
direction, both horizontal and vertical directions are considered in the binary edge algo-
rithm. The two-dimensional algorithm and the binary edge algorithm, each one has its
own advantages and disadvantages. The two-dimensional algorithm yields the map of
the most rapid change, which enhances the edges but may miss trivial edges. On the other
hand, the binary edge map is easier to implement and shows more edges; however, it may
look muddled visually and may present fake edges. We make a comparison of these two
algorithms in the later field example.

3.2. Realistic Model

A realistic model is provided along with the simple hypothetical model for compari-
son. Because the process is the same as in the simple model, we just show the sketch of
the realistic model (Figure 6) with the final processed results (Figures 7 and 8). The stan-
dard physical parameters (the dielectric permittivity, magnetic permeability, and electrical
conductivity) of sediments, argillite, shale, etc. were applied to the realistic model.

In the finite-difference (FD) model simulation, we set an exponential absorbing range
for the model boundaries, the Ricker wavelet for the signal type, and 50 MHz for the
GPR frequency. The GPR (electromagnetic) simulation is based on the solution of the
Maxwell equations. By doing so, it is assumed that the physical parameters are frequency
independent and that the physical parameters are constant in y (the depth) direction.
The velocities are derived from the standard physical parameters of the geological layers
constructed in the model. The spherical spreading factor is already embedded in the raster
increments. To solve the problem of the reflections from the boundaries, we adopted an
exponential absorbing range for the model boundaries.

3.3. Field Data

To evaluate the feasibility and efficacy of the proposed methodology on a practical
application, the processing scheme and techniques demonstrated above are applied to field
data for edge detection. A MALA ProEx unshielded bistatic GPR system with 200 MHz
antennas of 0.6 m transmitter-to-receiver offset was employed in the field for the data
acquisition. The survey site is situated in the range of Taiwan’s southeastern central
geological province. The outcrops are majorly argillite intercalated with lensoidal sandstone
bodies. The casings of the hot spring wells in this area are constructed with concrete walls
around and on top of the hot spring pumps. The area of the well roof is about 2 m× 2 m
with a metal lid of 0.6 m × 0.6 m covering the manhole. Most of the wells were buried
by pebbles, sand, and mud coming from a devastating debris flow caused by Typhoon
Morakot in 2009 and subsequent river floodings. The survey was conducted on a site with
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a suspected buried hot spring well (Figure 9). Standard common mid-point (CMP) data
were acquired from 16 survey lines deployed on the site by setting 1026 samples per trace
with 0.47 ns vertical sample interval and 0.05 m horizontal trace spacing. The field line
length of each GPR section was about 64.2 m containing 1288 traces. To make the data
processing effective, the redundant data were removed from field line sections through
data editing.

Figure 6. Realistic model.

Figure 7. Realistic model synthetic profile, interfering noises, and noise-corrupted profiles. (a) GPR reflection profile of the
proposed model. (b) White Gaussian noise. (c) Harmonic noise. (d) Combination of the white Gaussian noise and harmonic
noise. (e) GPR reflection profile corrupted by the white Gaussian noise and harmonic noise. (f) NLT conversion of the
noise-corrupted reflection profile.
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Figure 8. Two-dimensional edge maps of the realistic model study with MDEEMD. Various edge detectors, subplots (b–f),
are applied to the noise-corrupted profile after the MDEEMD processing, where component C4 + C5 + C6 with NLT (subplot
(a)) is used as the reconstructed profile for performing edge detection.

Figure 9. Landscape of the GPR survey site inundated by debris flow earlier. There were 16 survey lines deployed on the
debris flow-covered surface. The thick red line indicates the location of the survey line selected for this study.

The final datasets ready for processing were trimmed down to less than 30 m in spatial
length and about 300 ns in time depth, but the vertical sample intervals and horizontal
trace spacing remain the same. The adjustment of time zero and topographic correction
of the data are not required because all of the weeds were cleaned up and the uneven
ground surface was flattened before the survey. In this example, we pick out one field
line section from the aforementioned 16 survey lines as a representative GPR reflection
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profile. The spatial length was trimmed down further to 18 m and the time depth was
about 150 ns to highlight the possible target. The original (or raw) field section (Figure 10)
was processed by using simple data editing and amplitude compensation only; no other
techniques have been applied. This field section shows strong periodic horizontal events
from approximately 20 ns to 40 ns, which are mostly the lateral waves, system noises,
and antenna effects [74,75]. Besides, an interesting strong hyperbolic event with littering
diffractions across the entire profile between 40 ns and 80 ns (Figure 10) is confusing.
Through the velocity analysis and migration test, we learn that the strong hyperbolic event
exhibiting an apparent velocity close to the speed of radar waves travelling through air
is a result of scattering by adjacent surface objects on the ground or above the survey
line [76,77], and the littering diffractions are generated by the scattering objects within the
covered debris [59]. By a simple geometric analysis, we also find that the surface scattering
object is a tree near the survey line (Figure 9).

Because the site was disturbed badly when drilling and constructing the hot spring
well, the shallow geological structure is fractured and fragmentary. The disturbed land-
scape and surface scattering result in poor data quality, such that the raw profile does not
show distinct layer reflections due to the structural complexity. A more rigorous challenge
for the GPR data processing in this case is that the noises arising from rock fragments may
degrade the performance of the processing algorithms and the credibility of interpretation.

In order to make an objective comparison, only standard edge detectors (without
MDEEMD) were applied to the data at the beginning of the evaluation, as shown in
Figure 10, with both binary edge maps (Figure 10a) and two-dimensional edge maps
(Figure 10b). At this stage, standard edge detectors are seemingly successful in distin-
guishing the surface scatterings from reflection events, and those counterfeit events are
not highlighted; however, the entire data set is still jumbled. As a result, the complete
interpretation of determining the buried object would be difficult under this condition.

The previous model study suggests that if the cluttering of the data was due to
low SNR, an improved profile is accessible by integrating the MDEEMD method with
edge detection. We therefore tried to carry out the MDEEMD data reconstruction before
performing the edge detection. As it has been demonstrated in the model study, the field
data were first decomposed by MDEEMD to determine the optimal IMF profiles. With
the aid of a marginal spectrum analysis and the physical meaning presented in each IMF
profile, we examined the combinations of components 2 and 3, components 2 and 4, and
components 3 and 4 for data reconstruction. This trial suggested that the combination of
components 3 and 4 was the best. The realization of MDEEMD edge detection is shown
in Figure 8. The effect of the MDEEMD approach on spatial resolution can be observed
by comparing the profiles shown in Figures 10 and 11. The edge diffractions and cavity
ringing of the buried well become more visible as the data were MDEEMD reconstructed
(Figure 11). In contrast to Figure 10, the outcomes of edge detecting are greatly improved.
To quantitatively verify the results, we provide the marginal spectra, as shown in Figure 12.
The frequency range of the GPR system using 200 MHz center frequency antennas is set
to between 100 MHz and 300 MHz by the manufacturer. Without the MDEEMD data
reconstruction, the dominant frequency band of the acquired GPR data is out of the range
even if edge detectors are applied (Figure 12a,b). However, the energy distribution shown
in every marginal spectrum of the edge detecting outcomes is greatly improved when
using MDEEMD edge detectors (Figure 12c,d).
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Figure 10. Original GPR reflection profile and the results processed by using various edge detectors without MDEEMD.
(a) Binary edge maps. (b) Two-dimensional edge maps. The data were acquired over the site shown in Figure 9, where a hot
spring well was buried. The symmetric hyperbolic diffraction event shown at 50 ns to 80 ns across the entire profile indicates
the surface scattering from a nearby tree. The black and white color palette is selected to increase the visual resolution in (a).
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Figure 11. Results of MDEEMD edge detecting. The data were reconstructed by using the MDEEMD technique before edge
detecting. The inferred response of the buried hot spring well is within the marked rectangular box shown in the MDEEMD
reconstructed profile. (a) Binary edge maps. (b) Two-dimensional edge maps.
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Figure 12. Cont.
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Figure 12. Marginal spectra of field data before and after processing. (a) Marginal spectra of the original profile and those of its binary
edge maps derived from various edge detectors. (b) Marginal spectra of the original profile and those of its two-dimensional edge
maps derived from various edge detectors. (c) Marginal spectra of MDEEMD reconstructed profile and those of its binary edge maps
derived from various edge detectors. (d) Marginal spectra of MDEEMD reconstructed profile and those of its two-dimensional edge
maps derived from various edge detectors.

We also notice that there are no significant signals in the lower half of the time window,
however, we still present it to show that the depth factor indeed affects the results even
when we have applied the NLT to compensate for the attenuation.

In this case, both the binary and two-dimensional edge maps are presented for compar-
ison. Although the energy concentration in the marginal spectrum of the binary edge maps
is not as distinct as that in the two-dimensional edge maps, the improvement is still evident.
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In fact, the different results of these two algorithms are just a matter of presenting the
changes at the boundaries. The binary maps show the places where the intensity changes
rapidly, rather than the most rapid change similar to the two-dimensional edge maps.
Therefore, the binary edge maps look muddle when compared with the two-dimensional
edge maps, and their marginal spectra tend to disperse in a wider range.

The onsite excavation recovered the buried hot spring well (Figure 13); its reflection
signal is indicated within the thick rectangular line box shown in Figure 11. Comparing
Figure 11a with Figure 11b, we notice that the boundary of the hot spring well is more
visible on the two-dimensional edge maps than the binary edge maps.

Figure 13. Recovered hot spring well which is located on the site shown in Figure 9.

4. Discussion

As mentioned previously in this paper, noise suppression is essential in edge detection.
Some advanced edge detectors are implemented by using Fourier-based filters, a Gaussian
filter, for instance, to convolve with the data for noise suppression before applying the edge
detection. The Fourier method is commonly used in digital signal processing, but special
attention should be drawn to its adverse effects because the convolution in the filtering
procedure may generate unwanted artifacts if spurious signals exist. In contrast, the
MDEEMD edge detection is a data-driven multiscale adaptive approach that is not limited
by the uncertainty principle and does not need spurious harmonics and negative frequency
in analyzing the data; the difficulties caused by Fourier-based filters can be circumvented
as a result. However, it could be an interesting argument regarding the sophisticated
techniques involved in the MDEEMD edge detection. Chen and Jeng [45] investigated
a nearby survey line of longer length and shallower depth range, processed by using
only the MDEEMD algorithm with different reconstruction strategies. The achievement
of their primitive method was encouraging, but the target boundaries were still an issue.
Jeng et al. [78] proposed a brief idea of the GPR MDEEMD edge detection in a conference
abstract lacking a quantitative analysis and processing details. In this study, we assimilate
all of the renovating techniques and exploit the marginal spectrum analysis to quantify the
data reconstruction such that we can make a more accurate interpretation. We understand
that the complexity of the MDEEMD edge detectors could be a hurdle that prohibits their
widespread use. Some investigators may prefer a compact scheme in GPR data processing;
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however, an advanced methodology is still necessary when processing low SNR data.
Conversely, high-quality data may not need the proposed technique, but considerable
labor and better GPR instrumentation in the field data acquisition are the tradeoffs. The
integration of MDEEMD and edge detectors into GPR data processing indicates that the
target signal within a complicated dataset can be retrieved more efficiently than using
either one method alone. Thus, a practical compromise should be worked out between the
survey endeavor and data processing complexity.

As noted in the literature, the edge detecting output of an image is not a real image any
longer because the amount of data representing the original image may be reduced greatly
and the features that are regarded as less relevant are discarded [37,79]. Consequently,
only the important components determined by the algorithm remain. The advantages of
applying edge detectors are enhancing the target boundaries, avoiding the subsequent
complicated data processing, and simplifying the image interpretation. Although the GPR
profile is similar to an image, and we did process it as an image, the GPR profile is not a
real image, actually. Therefore, the image-like appearance is not important. What we are
interested in is to compactly map the target within the acquired reflection data. Thus, the
use of simple one-dimensional boundary lines and curves to indicate the image information
should be desirable.

In the field example, there are no drill data available, so we just present the timescale
which is more objective. In fact, we could estimate the root-mean-squared (RMS) velocity
function by examining diffraction hyperbolas or common mid-point (CMP) data, but the
results were doubtful due to the interference from the troublesome top debris layer.

It must also be mentioned that the proposed technique may not be ready for the color
edge detection algorithm, which is one of the major topics in edge detection; however, the
multidimensional decomposition and data reconstruction of the MDEEMD approach will
at least shed some light on the color edge detection algorithm [80].

5. Conclusions

We have shown that the use of the MDEEMD data reconstruction technique can greatly
improve the result of edge detecting in the target mapping of GPR data of a buried hot
spring well survey. MDEEMD is a data-driven nonlinear and nonstationary multidimen-
sional data processing method that has been successfully applied to various fields of study
before we applied it to the investigation of a buried water utility infrastructure. For data ac-
quired from complicated sites, MDEEMD can improve edge detection in delineating target
structures. If the performance of the edge detection is degraded by noises, MDEEMD pro-
vides a solution to boost the SNR, and thus the fake response can be minimized. Although
numerous data procession methods are available for SNR enhancement, the MDEEMD
algorithm offers a better solution by circumventing the difficulties originating from the
Fourier theory which is widely assumed in most data processing methods.

Although this study is focused on applying the MDEEMD edge detection to GPR data
of a buried hot spring well, we believe that this novel technique should not be limited to
this case. It could be extended to process other kinds of water resources and management
data, seismic reflection data in particular, because the seismic data format is similar to GPR
in general. Besides, since we treat each data point of the GPR profile as an image pixel, the
proposed method is applicable to common image processing with limited modification.
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