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Abstract: Wind speed (u) is a significant constraint in the evapotranspiration modeling over the
highly heterogeneous regional surface due to its high temporal-spatial variation. In this study,
a satellite-based Wind Speed Avoiding Priestley–Taylor (WAPT) algorithm was proposed to estimate
the regional actual evapotranspiration by employing a u-independent theoretical trapezoidal space
to determine the pixel Priestley–Taylor (PT) parameter Φ. The WAPT model was comprehensively
evaluated with hydro-meteorological observations in the arid Heihe River Basin in northwestern
China. The results show that the WAPT model can provide reliable latent heat flux estimations
with the root-mean-square error (RMSE) of 46.0 W/m2 across 2013–2018 for 5 long-term obser-
vation stations and the RMSE of 49.6 W/m2 in the growing season in 2012 for 21 stations with
intensive observations. The estimation by WAPT has a higher precision in the vegetation growing
season than in the non-growing season. The estimation by WAPT has a closer agreement with the
ground observations for vegetation-covered surfaces (e.g., corn and wetland) than that for dry sites
(e.g., Gobi, desert, and desert steppe).

Keywords: evapotranspiration; remote sensing; trapezoidal space; wind speed; Priestley–Taylor equation

1. Introduction

Terrestrial latent heat flux (LE) is an important component of the land surface water
cycle and land surface–atmosphere energy exchange [1–4]. Accurate estimates of actual
LE are of great significance for drought monitoring, climate change detection, and wa-
ter resource management, especially in arid and semi-arid areas where water scarcity is
the main factor restricting sustainable economic development [5,6]. Remote sensing is
regarded as the most effective means to efficiently capture regional or global surface evap-
otranspiration due to its characteristics of fast and large-area observation. Many remote
sensing models have been proposed to simulate terrestrial LE based on constraints on
water vapor transport and energy balance constraints [2–4,7], such as SEBAL [8], SEBS [9],
METRIC [10], TSEB model [11], Gc-TSEB [12], MOD16 [2], feature space methods [13–17].
Those models have been proven successful for certain weather conditions, underlying
surfaces, etc. [3,4,18–20].

Above all, the feature space model, which employs the triangle or trapezoidal rela-
tionship between land surface temperature (TL) and vegetation index (VI) to represent
the constraints of soil available water on LE, is widely accepted. The feature space to
estimate LE was introduced by Jiang et al. [21,22] with the scatter diagram of TL and
vegetation index containing a full range of soil water content and fractional vegetation
cover to linear fitting the triangle space with the advantages of no auxiliary atmospheric
or ground data. Later, researchers found that dry and wet edges in the empirical trian-
gle space may not be exactly determined if the study area does not include a full range
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of vegetation coverage. Thus, theoretical trapezoidal methods are proposed, such as
Moran et al., who proposed a surface temperature and air temperature difference (TL − Ta)
vs. the soil-adjusted VI trapezoid employing the energy balance theory and latter to esti-
mate LE by means of Penman–Monteith equation [23]. Wang et al. simplified the idea of
TL − Ta/VI trapezoid to TL/VI trapezoid, and proposed an iterative algorithm for quan-
tifying the shape of the TL/VI trapezoid [24]. Long and Singh developed a two-source
trapezoidal model (TTME) for LE estimates, which determined the theoretical dry bound-
ary of the trapezoid with the surface energy balance theory and simplified the theoretical
wet boundary with air temperature [25]. Sun proposed a Two-source Model for estimating
the Evaporative Fraction (TMEF) model based on a theoretical trapezoid method coupling
with Priestly–Taylor formula [17]. Yang and Shang proposed a hybrid dual-source scheme
and trapezoid framework-based ET model (HTEM) based on the theoretical trapezoidal
space, which produced better sensible and latent flux estimates than other models [16].
Later on, a trapezoid framework with a simple atmospheric boundary layer model (ABL)
without ancillary air temperature observations is used to improve LE estimations in HTEM
model [26]. Theoretical trapezoidal methods can circumvent the dependence on under-
lying surface characteristics and can be expected to be applicable in a wider range, such
as extremely arid or wet areas with a small variation range of soil wetness and fractional
vegetation coverage [3,24,27].

Unfortunately, those theoretical methods rely on meteorological inputs when calculat-
ing theoretical dry and wet edges of the trapezoidal space [15–17,24,28–30], while some
variables, especially the wind speed (u), is highly spatio-temporally variable. It is pointed
out that a 10% perturbation of u can cause a 5% to 10% difference in LE estimates [16,25,29].
However, high-quality grid u data are difficult to obtain [28,30–32]. As such, the quality
of LE models based on theoretical trapezoidal space may be worse over heterogeneous
surfaces. To overcome this weakness, it is important to develop the actual LE models with
u-independent trapezoidal space [30].

The Priestley–Taylor (PT) formula [33] has been proven to be an efficient and accurate
method for estimating potential evapotranspiration [34–36]. Li et al. evaluated six poten-
tial evapotranspiration models for estimating crop potential evapotranspiration in arid
northwest China [37], which indicated that the PT model has the highest accuracy in simu-
lating crop potential evapotranspiration among the models. Compared with other models,
the PT formula is based on the energy balance principle, and its physical parameters (such
as net radiation flux and soil heat flux) can be easily obtained by remote sensing methods.
Furthermore, to transform potential LE into actual LE, the PT coefficient Φ determined
by remote sensing methods is very suitable to use as a medium [22,35,38,39]. However,
the satellite-based PT method that combines Φ with theoretical trapezoidal space requires
the estimation of the aerodynamic resistance (calculated based on wind speed). To the
authors’ knowledge, there is no satellite-based PT model considering the u-independent
theoretical trapezoidal space. Meanwhile, it is not clear about the effectiveness of the
u-avoiding model for highly heterogeneous underlying surfaces in different seasons.

The objective of this paper is to develop a robust physical satellite-based Wind Avoid-
ing Priestley–Taylor algorithm (WAPT) based on a u-independent theoretical TL— fractional
vegetation cover (fc) trapezoidal to improve the applicability to the complex underlying
surface and validate the WAPT model performance with in situ fluxes on the complex
underlying surface in all seasons. Section 2 describes the study area and data used in the
present study. Section 3 presents the theoretical background and detailed descriptions
of WAPT model. The results and discussions of the comparison between the WATP and
observation data are given in Sections 4 and 5. Summaries and conclusions are presented
in Section 6.
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2. Study Area and Data
2.1. Study Area

The study area is located in a desert-oasis area in the middle reaches of the Heihe
River Basin (HRB) in northwestern China, as shown in Figure 1. The area has a dry
continental climate with an average annual air temperature of 8.5 ◦C (the temperature of
21.1 ◦C during June to August, the temperature of −6.8 ◦C during December to February)
and mean annual precipitation of 100–250 mm (with a large portion concentrated in
summer) during the period of 2012–2018. The altitude in this area ranges between 1360 and
2400 m, and the annual potential evaporation of the study area varies between 1200 mm
and 1800 mm. The land cover is complex in the area, with the central part covered by
croplands, wetlands and residential areas, and the marginal area covered by the Gobi,
desert steppe and sandy deserts.
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Figure 1. The distribution of 21 observation sites and the land use classifications over two nested experimental areas along
the middle reaches of Heihe River Basin (HRB) in northwestern China. The 30 × 30 km experimental area is bounded by
black lines, and the 5.5 × 5.5 km kernel experimental area is bounded by purple lines. The site names and descriptions are
provided in Table 1.

The Heihe integrated observatory network was established in the study area in
2012 [40,41], and it includes short-term intensive observations and long-term regular
observations. The intensive observations were conducted at 21 sites during the Multi-
Scale Observation Experiment on Evapotranspiration over Heterogeneous Land Surfaces
(HiWATER-MUSOEXE), and long-term observations were conducted continuously at
5 sites which consist the hydro-meteorological observation network (shown in Figure 1).

2.2. Field Measurements

The Heihe integrated observatory network, which is referred to as the Heihe Wa-
tershed Allied Telemetry Experimental Research (HiWATER, website: http://hiwater.
westgis.ac.cn/, accessed on 22 February 2020), is consisted of two nested test matrices,
i.e., one large experimental area (30 × 30 km) and one kernel experimental area (5.5 × 5.5 km),
as shown in Figure 1. In this study, the intensive observations from 21 eddy-covariance
(EC)/automatic weather stations (AWS) (S1–S17, Daman, Wetland, Huazhaizi, Shenshawo,
Bajitan) in the growing season (from May 2012 to September 2012) and the long-term
continuous observations from 5 stations (Daman, Wetland, Huazhaizi, Shenshawo, Bajitan)
in growing and non-growing seasons (from May 2012 to December 2018) were applied
(Table 1). The 21 AWS/EC stations were located in eight types of land covers (i.e., veg-
etable, orchard, wetland, corn, residential, desert, desert steppe, Gobi). S1, S4, and S17 are
located in vegetable fields, residential areas and orchards, respectively. The land covers of

http://hiwater.westgis.ac.cn/
http://hiwater.westgis.ac.cn/
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Shenshawo, Huazhaizi, Bajitan, and Zhangye are Gobi, desert steppe, desert, and wetland,
respectively. The remaining sites (Daman, S2, S3, S5–16) are located in the cornfield.

Table 1. Information about the stations in the middle reaches of HRB.

Site Elevation (m) Land Cover Time Period (Year/Month/Day) Long-Term
Observations

Underlying
Surface

S1 1552.8 vegetable 2012/6/10–2012/9/17 without vegetation
S2 1559.1 corn 2012/5/3–2012/9/21 without vegetation
S3 1543.1 corn 2012/6/3–2012/9/18 without vegetation
S4 1561.9 residential 2012/5/10–2012/9/17 without ——
S5 1567.7 corn 2012/6/4–2012/9/18 without vegetation
S6 1563.0 corn 2012/5/9–2012/9/21 without vegetation
S7 1556.4 corn 2012/5/28–2012/9/18 without vegetation
S8 1550.1 corn 2012/5/14–2012/9/21 without vegetation
S9 1543.3 corn 2012/6/4–2012/9/17 without vegetation
S10 1534.7 corn 2012/6/1–2012/9/17 without vegetation
S11 1575.7 corn 2012/6/2–2012/9/18 without vegetation
S12 1559.3 corn 2012/5/10–2012/9/21 without vegetation
S13 1550.7 corn 2012/5/6–2012/9/20 without vegetation
S14 1570.2 corn 2012/5/6–2012/9/21 without vegetation
S16 1564.3 corn 2012/6/1–2012/9/17 without vegetation
S17 1559.6 orchard 2012/5/12–2012/9/17 without vegetation

Daman 1556.1 corn 2012/5/10–2018/12/31 with vegetation
Shenshawo 1594.0 desert 2012/6/1–2018/12/31 with non-vegetation
Huazhaizi 1731.0 desert steppe 2012/6/2–2018/12/31 with non-vegetation

Bajitan 1562.0 Gobi desert 2012/5/13–2018/12/31 with non-vegetation
Zhangye 1460.0 wetland 2012/6/25–2018/12/31 with vegetation

Note: Without represents the observation experiment of the site belonging to intensive observational experiments (HiWATER-MUSOEXE).
With represents the observation experiment of the site belonging to intensive observational experiments and long-term observational
experiments. Vegetation represents the underlying surface of the site belonging to vegetable, orchard, wetland, or corn. Non-vegetation
represents the underlying surface of the site belonging to Gobi, desert steppe, or desert. —— represents the underlying surface of the site
not belonging to vegetation or non-vegetation underlying surfaces.

Several atmospheric observation data were used in this study, including air pressure,
air temperature (Ta), relative humidity (RH), precipitation, soil temperature, soil moisture,
upward and downward longwave radiation, upward and downward shortwave radiation,
net radiation (Rn), soil heat flux from heat-plates. These variables were measured every
10 min. In order to obtain gridded spatial data of 30 m by 30 m resolution, Ta, RH,
and air pressure (from meteorological station) were interpolated through the Inverse
Distance Weighted (IDW) method [42]. Soil heat flux (G) was calculated by the Plate Cal
method [43], which required the heat-plates flux and the change in heat storage. Soil
temperatures (depth of 2 cm and 4 cm), soil moisture (depth of 2 cm and 4 cm), and the
porosity were used for calculating the change of heat storage. Due to the lack of soil texture
data in Zhangye, Huazhaizi, and S4 stations, the change of heat storage was not calculated
in these stations.

The originally measured latent heat flux data were processed by Eddypro software
with an interval of 30 min. The data processing included the elimination of outlier, lay
time correction, frequency response correction, ultrasonic virtual temperature correction,
coordinate rotation, and density fluctuation correction. All the originally measured latent
heat flux data have been dealt with Bowen Ratio-Energy Balance (BREB) method [44].
Note that both the latent heat flux data and meteorological data used in present study are
observed at 12 AM so as to match the satellite overpassing time.

2.3. Satellite Data

Eight ASTER and forty LANDSAT-8 OLI images without cloud contamination were
used (Table 2). The overpassing time of ASTER and LANDSAT-8 OLI are between 12:10
and 12:20 (local time) and between 11:55 and 12:00 (local time), respectively. The spatial
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resolutions of ASTER L1B product and LANDSAT-8 OLI product (level 1 and level 2)
are 90 m and 30 m, respectively. The LANDSAT images were obtained along path 133 and
row 33, and the ASTER and LANDSAT data were downloaded from the United States
Geological Survey (USGS) Earth Resources Observation and Science Center (website:
http://glovis.usgs.gov/, accessed on 2 September 2020).

Table 2. Nearly cloud-free Aster and LANDSAT scene imagery used in this study.

Satellite Year Month/Day

Aster 2012 2012/6/15 2012/6/24 2012/7/10 2012/8/2 2012/8/11 2012/8/18 2012/8/27 2012/9/3

LANDSAT

2013 2013/4/16 2013/7/21 2013/10/9 2013/11/10 2013/12/12 2013/12/28
2014 2014/1/13 2014/2/14 2014/3/2 2014/3/18 2014/7/24 2014/8/9 2014/9/26
2015 2015/4/22 2015/8/28 2015/9/13 2015/9/29 2015/10/15 2015/12/2
2016 2016/3/7 2016/4/24 2016/6/27 2016/7/29 2016/9/15 2016/10/1 2016/10/17 2016/11/2 2016/12/4
2017 2017/1/5 2017/3/26 2017/7/16 2017/11/5 2017/11/21 2017/12/7
2018 2018/1/8 2018/2/25 2018/9/21 2018/10/7 2018/10/23 2018/11/24

For LANDSAT8 satellite, we calculated Normalized Difference Vegetation Index
(NDVI) with band 4 and band 5. Albedo (α) was computed using the algorithm of
Liang [45]. Land surface emissivity (ε) was calculated with the algorithm of Sobrino [46].
EVI was calculated with the algorithm of Liu [47]. TL was calculated using a single-channel
(TIRS10) algorithm (JM-SC) [48]. The atmospheric water vapor content (the key parame-
ter in JM-SC) was obtained through the NASA website (https://atmcorr.gsfc.nasa.gov/,
accessed on 11 September 2020).

For the Aster satellite, we calculated NDVI with band 2 and band 3. EVI was calculated
with the two-band method proposed by Jiang [49]. TL and ε were estimated using the
temperature–emissivity separation algorithm [50]. Albedo (α) was computed using the
algorithm of Liang [45].

3. Methods
3.1. WAPT Framework

The Wind-Avoiding Priestley-Taylor algorithm (WAPT) estimates evapotranspiration
based on the Priestley-Taylor formula given by [33]:

LE = Φ
(

∆
∆ + γ

)
(Rn − G) (1)

where LE is the latent heat flux (W/m2); Rn is the surface net radiation (W/m2), calculated
with Allen’s method [10]; G is the soil heat flux (W/m2), calculated as a fraction of Rn with
Bastiaanssen’s method [51]; γ is the psychrometric constant (kPa/◦C); ∆ is the slope of
saturated vapor pressure versus air temperature (kPa/◦C); Φ is the Priestley and Taylor
coefficient, which is primarily regulated by the available soil water. Note that the Φ varies
from 0 to 1.26, indicating the variation of the actual LE according to the water content of
the underlying surface. In this paper, we employed a wind-avoiding trapezoidal space
(Figure 2) to simulate the Φ value for any pixel with a given fc value based on a two-stage
linear interpolation method as the following equation [52].

Φ =
(TL,max − TL)

(TL,max − TL,min)
(Φmax − Φmin) + Φmin (2)

TL,max and TL,min are the maximum and minimum land surface temperatures on the
dry and wet edges with the fractional vegetation cover (fc), respectively. Φmax was set to
be 1.26 at the wet edge [13,33]. Φ at point D was set to 0, and Φ at point B was set to 0.1,
as the epidermal cuticle transpiration still exists under extreme drought conditions [52,53].
Φmin can be linearly interpolated between Φ value at point B and D.

http://glovis.usgs.gov/
http://glovis.usgs.gov/
https://atmcorr.gsfc.nasa.gov/
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Figure 2. ABCD represents trapezoidal space framework. Colored circles represent pixels from
satellite images with varying fc and TL. Points A and C represent conditions without water stress in
full vegetation and bare soil, respectively. Points B and D represent conditions with extreme water
stress in full vegetation and bare soil, respectively. Line AC and BD are the wet and dry edges in
trapezoidal space, respectively.

3.2. Calculating the Pixel-by-Pixel Φ Value

Wang et al. proposed a robust method to calculate the physically extreme TL based on
energy balance and radiation budget [30,54].

TL,A =
[rac,ARnc,A/ρCP]γ(1 + rcm /rac,A)− VPD

∆ + γ(1 + rcm /rac,A)
+ Ta (3)

TL,B =
[rac,BRnc,B/ρCP]γ(1 + rcx /rac,B)− VPD

∆ + γ(1 + rcx /rac,B)
+ Ta (4)

TL,C =

[
ras,CRns,C

(
1 − G f ,C

)
/ρCP

]
γ− VPD

∆ + γ
+ Ta (5)

TL,D = ras,DRns,D

(
1 − G f ,D

)
/ρCP + Ta (6)

where subscripts c and s represent the vegetation and soil components hereafter, respec-
tively; subscripts A, B, C, and D represent the values at the four vertices plotted in Figure 2;
Gf denotes the ratios of G to Rn; G f ,C and G f ,D were set to 0.25 and 0.3, respectively; rcm
and rcx were the minimum and maximum canopy resistances (set to 12.5 s/m and 625 s/m,
respectively); rac,A, rac,B, ras,C, and ras,D are the aerodynamic resistances (s/m) at points
A, B, C and D, respectively; ∆ is the slope of saturated vapor pressure to air temperature
(kPa/◦C); γ is the psychrometric constant (kPa/◦C); VPD is the vapor pressure deficit of
the air (kPa); ρ is the air density (kg/m3); CP is the air specific heat at constant pressure
(1004 J/K/kg).

Here, we further modified the calculation of the extreme temperatures to u-avoiding
by employing an assumption of no turbulent heat exchange occurring in the vertical
direction at the well-watered edge under given meteorological conditions, i.e., the neutral
atmospheric conditions of well-watered edge on the basis of the Monin–Obukhov Similarity
theory [55]. We can deduce that TL,A = TL,C = Ta from the assumption. Then we can calculate
the rac,B, and ras,D from neutral atmospheric conditions (i.e., rac0 and ras0) according to
Equations (7) and (8) without employing u as input when the TL,A and TL,C are known.
In practice, we employed the averaged Ta of well-watered landscapes as TL,A and TL,C,
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rac,A (or ras,C) was estimated by rac0 (or ras0) with u independent function f (ϕmc, ϕhc)
(or f (ϕms, ϕhs)). 

rac,B = rac0 × f (ϕmc,B,ϕhc,B)

f (ϕmc,B,ϕhc,B) =

(
1 − ϕmc,B

z−d
zomc,B

)(
1 − ϕhc,B

z−d
zohc,B

)
(7)


ras,D = ras0 × f (ϕms,D,ϕhs,D)

f (ϕms,D,ϕhs,D) =

(
1 − ϕms,D

z−d
zoms,D

)(
1 − ϕhs,D

z−d
zohs,D

)
(8)

where ϕhc,B and ϕhs,D are the stability functions for heat at point B and D, it was calculated
with Paulson’s method [56], respectively; ϕmc,B and ϕms,D are the stability functions for
momentum at point B and D, it was calculated with Webb’s method [57], respectively; z is
meteorological observation height (set to 2 m); d is the zero-displacement height (m) (equal
to 2/3 h), and h is the vegetation height (m); zomc,B and zoms,D are the roughness length for
momentum transfer at point B and D, zomc,B is set to 1/8 h and zoms,D is set to 0.005 m [10];
zohc,B and zohs,D are the roughness length for heat transfer at point B and D.

The procedure for calculating TL,B and TL,D on a pixel basis is divided into six
major steps:

(1) calculate the initial rac,B and ras,D by assuming f (ϕmc,B, ϕhc,B) = 0 and f (ϕms,D,
ϕhs,D) = 0, i.e., the rac0 and ras0 by means of Equations (9) and (10), respectively.

rac0 =
VPDρCP
γRnc,A

− rcm (9)

ras0 =
VPDρCP
γRns,C

(10)

where Rnc,A and Rns,C can be calculated by:

Rnc,A = (1 − αc,A)Rd + εεaσT4
a − εσT4

c,A (11)

Rns,C = (1 − αs,C)Rd + εεaσT4
a − εσT4

s,C (12)

where αc,A and αs,C represent albedos (dimensionless) of vegetation and bare soil, respec-
tively; αc,A is fixed as 0.2, as the corn area makes more than half of the total study area and
the albedo of corn is 0.2 [58]; αs,C = (α − αc,A fc)/(1 − fc); Rd is the downward shortwave
radiation (W/m2), calculated with Allen’s method [10]; ε is the land surface emissivity
(dimensionless) [46]; εa is the atmospheric emissivity (dimensionless) and is calculated by
the method from Brutsaert [59]; and σ is the Boltzmann constant.

(2) calculate sensible heat flux Hc,B (=0.9Rnc,B) and Hs,D (=Rns,D(1 − Gf,D));
(3) calculate Monin-Obukhov length Lc,B and Ls,D. Lc,B and Ls,D define the stability

conditions of the atmosphere for vegetation and bare soil, respectively, i.e., when Lc,B < 0,
the atmospheric condition for vegetable is unstable, and when Lc,B > 0, the atmospheric
condition for vegetable is stable. Lc,B and Ls,D are given by Choudhury’s method [60] as:

Lc,B =
−ρCPU∗

c,B
3Ta

kgHc,B
(13)

Ls,D =
−ρCPU∗

s,D
3Ta

kgHs,D
(14)
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where g = 9.8 m/s2; U∗
c,B and U∗

s,D are the friction wind speed of the canopy surface and
soil surface, which can be calculated by:

U∗
c,B =

Hc,B

ρCp
(Tr,B−Ta)k

ln
(

z−d
zohc,B

)
−ϕhc,B

(
z−d
Lc,B

)
+ϕhc,B

(
zohc,B
Lc,B

) (15)

U∗
s,D =

Hs,D

ρCp
(Tr,D−Ta)k

ln
(

z−d
zohs,D

)
−ϕhs,D

(
z−d
Ls,D

) (16)

(4) calculate zohc,B (=zomc,B/exp(kB−1
c,B)) and zohs,D (=zoms,D/exp(kB−1

s,D)) with kB−1
c,B and

kB−1
s,D given by the Brutsaert’s method [59] and Massman’s method [61] as:

kB−1
c,B =

kCd

4
(
1 − e−n/2

)
UxCt

(17)

kB−1
s,D = 2.46(Re)1/4 − 2 (18)

where Cd is the drag coefficient of the foliage elements, set to 0.2 [9]; Ct is the heat transfer
coefficient of the leaf, and Ux is a function of non-dimensional drag area density; Re is
the roughness Reynolds number (=zoms,D U∗

s,D/v, with v being the kinematic viscosity of
the air).

(5) calculate ϕmc,B, ϕms,D, ϕhc,B and ϕhs,D;
For stable atmospheric conditions at vegetable (Lc,B > 0):{

ϕmc,B = −5(z − zomc,B)/Lmc,B
ϕhc,B = −5(z − zohc,B)/Lmc,B

(19)

For stable atmospheric conditions at bare soil (Ls,D > 0):{
ϕms,D = −5(z − zoms,D)/Lms,D
ϕhs,D = −5(z − zohs,D)/Lms,D

(20)

For instable atmospheric conditions at vegetable (Lc,B < 0): ϕmc,B = 2 ln
(

1+xc,B
2

)
+ ln

(
1+xc,B

2

2

)
− 2tan−1(xc,B) + π/2

ϕhc,B = 2 ln
(

1+xc,B
2

) (21)

For instable atmospheric conditions at bare soil (Ls,D < 0): ϕms,D = 2 ln
(

1+xs,D
2

)
+ ln

(
1+xs,D

2

2

)
− 2tan−1(xs,D) + π/2

ϕhs,D = 2 ln
(

1+xs,D
2

) (22)

where xc,B =
[
1 − 16(z−d)

Lc,B

]1/4
and xs,D =

[
1 − 16(z−d)

Ls,D

]1/4
.

(6) iteratively calculate TL,B and TL,D in Equations (4) and (6), Rnc,B and Rns,D in
Equations (11) and (12), Hc,B and Hs,D in step (2), Lc,B and Ls,D in Equations (13) and (14),
U∗

c,B and U∗
s,D in Equations (15) and (16), kB−1

c,B and kB−1
s,D in Equations (17) and (18),

ϕmc,B, ϕms,D, ϕhc,B and ϕhs,D in Equations (19)–(22), f (ϕhc,B, ϕmc,B) and f (ϕhs,D, ϕms,D)
in Equations (7) and (8), rac,B and ras,D in Equations (7) and (8), until the rac,B and ras,D
are stable, i.e., the difference between two adjacent iterations are less than five percent.
Normally, the stability can be satisfied within 10 iterations.
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4. Results
4.1. WAPT Model Performance in Four Seasons

The performance of the WAPT model was evaluated with three indicators in this
study, i.e., the mean bias error (MBE), root-mean-square error (RMSE), and correlation
coefficient (r2) [62]. We first evaluated input variables (Rn and G) during the long-term
observation period from 2013 to 2018 using LANDSAT images from 40 dates against the
five land covers tower observations. The results are shown in Table 3 and Figure 3.

Table 3. Performance of Rn, G, and LE from the WAPT model during long-term observation periods from 2013 to 2018.

Rn G LE

LUCC

Observed
Aver-
age

(W/m2)

Estimated
Aver-
age

(W/m2)

r2 RMSE
(W/m2)

MBE
(W/m2)

Observed
Aver-
age

(W/m2)

Estimated
Aver-
age

(W/m2)

r2 RMSE
(W/m2)

MBE
(W/m2)

Observed
Aver-
age

(W/m2)

Estimated
Aver-
age

(W/M2)
r2 RMSE

(W/m2)
MBE

(W/m2)

Wetland 435.4 443.8 0.97 31.8 14.0 —— —— —— —— —— 277.1 300.7 0.96 49.6 24.2
Corn 371.3 378.6 0.97 33.0 15.7 41.3 42.1 0.27 31.6 15.8 196.1 236.9 0.95 49.8 7.0

Desert
steppe 359.2 332.4 0.96 33.5 −25.7 56.3 53.6 0.62 27.0 −7.5 57.7 71.4 0.53 31.7 −6.3
Gobi 334.9 318.8 0.99 14.1 −6.6 57.1 51.8 0.87 21.2 −5.6 65.8 84.3 0.76 43.8 22.8

Desert 345.6 355.9 0.97 27.2 14.2 58.3 58.0 0.89 20.4 −0.5 49.1 66.0 0.77 53.9 41.7
Overall 380.1 365.5 0.96 30.8 3.4 51.2 51.7 0.54 26.7 1.3 150.6 153.8 0.95 46.0 14.0
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(Huazhaizi), Gobi (Bajitan), Desert (Shenshawo)) during long-term observation periods from 2013 to 2018. (a) Rn; (b) G;
(c) LE from the WAPT model.

The Rn calculated with WAPT obtained reliable overall accuracy, and it was consistent
with the observation (r2 of 0.96, Figure 3 and Table 3). The overall RMSE and MBE were
30.8 W/m2 and 3.4 W/m2, respectively. Simultaneously, its performance varied with
landscapes where the Rn was overestimated at wetland, corn, and desert sites (MBE of
14.0 W/m2, 15.7 W/m2, and 14.2 W/m2, respectively). Compared with others, Rn estima-
tion at desert steppe had a larger error with MBE of –25.7 W/m2 and RMSE of 33.5 W/m2

(Table 3).
There was a relatively large difference between estimated G and observed values

(Figure 3). Due to lack of soil porosity measurement, the accuracy of estimated G was only
evaluated at sites with corn, desert, desert steppe, and Gobi. The accuracy of G had an
overall MBE of 1.3 W/m2, RMSE of 26.7 W/m2, and r2 of 0.54 (Table 3).

The LE estimates with WAPT model have an overall accuracy with r2 of 0.95, RMSE of
46.0 W/m2, and MBE of 14.0 W/m2 during the long-term observation period. The accuracy
presented significant seasonal variation. It had the highest precision in summer (from June
to August) and the lowest precision in winter (from December to February). In summer,
the WAPT model had r2 of 0.96 and RMSE of 45.9 W/m2 (Table 4). The WAPT model
had underestimated LE values (MBE of −20.2 W/m2) in winter (Figure 4 and Table 4).
The WAPT model overestimated the LE in autumn and spring, with MBE of 29.4 and
16.9 W/m2, respectively (Figure 4 and Table 4), and had similar RMSE values in autumn
and spring, with 49.5 and 44.2 W/m2, respectively.
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Table 4. Statistics of the modeling LE accuracies in four seasons during 2013–2018, with summer
from June to August, autumn from September to November, winter from December to February,
and spring from March to May.

Model Precision Index Winter Spring Summer Autumn

WAPT
r2 0.36 0.50 0.96 0.91

MBE −20.2 16.9 9.7 29.4
RMSE 37.9 44.2 45.9 49.5
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Figure 4. Variations of estimated LE with the WAPT model over different landcovers compared with
observed data: (a) corn (Daman); (b) wetland (Zhangye); (c) Desert (Shenshawo); (d) Gobi (Bajitan),
and (e) Desert steppe (Huazhaizi). The blue points represent estimated LE from the WAPT model.
The black lines are the observed LE during 2013–2018.

Figure 5 shows the spatial distribution of LE estimates with the WAPT model and
their relative frequency distributions in four seasons (averaging over the period 2013–2018).
The LE values in four seasons varied greatly. All the underlying surfaces had the highest
LE value in summer and the lowest LE value in winter, but the seasonal difference in
LE value was larger in vegetated underlying surfaces (e.g., cropland) than non-vegetable
underlying surfaces (e.g., desert, desert steppe).
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Figure 5. Spatial distributions of LE estimates from the WAPT model in four seasons. The results were averaged over
the years 2013–2018. The left panels are the maps of LE estimates, respectively, for spring (from March to May) (a),
summer (from June to August) (c), autumn (from September to November) (e), and winter (from December to February) (g).
The right panels are the corresponding pixel distributions of LE estimates, spring (b), summer (d), autumn (f), and winter
(h), respectively. Spatial minimum (min), maximum (max), mean, and standard deviation (std) of the LE estimates are given.

In summer, although the precipitation was sparse, irrigation water was relatively
abundant for the cropland during the growing season. Therefore, the cropland (e.g., corn
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land cover type) had a high LE value ranging from 400 to 500 W/m2. For the desert and
Gobi, LE was typically around 150 W/m2. The relative frequency of LE estimates in the
WAPT model explicitly showed the spatial mean value of 348.0 W/m2. With the crop
harvested, the LE in cropland sharply declined nearly 200 W/m2. The LE value in the arid
underlying surface, such as desert, was approximately 100 W/m2 (Figure 5e,f). Vegetation
and non-vegetation underlying surfaces are difficult to be distinguished in the spatial map
of spring and winter (Figure 5a,g). The mean spatial LE value was 103.1 W/m2 in spring
(Figure 5a,b). The mean spatial LE value was much lower in winter than that in spring
(56.5 versus 103.1 W/m2), as the temperature rises, and the snow stored in the previous
winter melts in spring (more available water for LE consumption) [6].

The LE values on all underlying surfaces had a seasonal variation due to the seasonal
change in radiation and different air temperature. It is worth noting that the difference
between summer and winter LE values in farmland was larger (more than 400 W/m2) than
the arid underlying surface (less than 200 W/m2), which can be attributed to the water
supply difference between vegetation and non-vegetation underlying surfaces, such as soil
moisture has a higher value in farmland than the desert station in the growing season due
to irrigation [63].

4.2. WAPT Model Performance over High Heterogeneous Land Surfaces

The LE from WAPT was further compared with HiWATER-MUSOEXE-12 observa-
tions from May to September in 2012. The comparison between the estimates of LE and
flux tower measurements is shown in Table 5. The accuracy of LE estimates with the
WAPT model varied greatly for different underlying surfaces. Overall, the WAPT model
behaved better for the land surface with vegetation coverage (i.e., wetland, corn, vegetable,
and orchard) than for non-vegetation surfaces (i.e., desert, desert steppe and Gobi).

Table 5. Statistics of the modeling LE accuracies during months 6–9 in 2012.

LUCC
Observed

Average (W/m2)

WAPT

Estimated
Average (W/m2) r2 RMSE

(W/m2) MBE (W/m2)

Residential 233.8 250.8 0.18 53.0 17.0
Desert 106.1 94.8 0.56 53.4 −6.9

Desert steppe 131.8 122.5 0.56 61.6 −2.8
Gobi 87.3 127.3 0.39 54.9 33.1

Vegetable 443.8 391.6 0.84 51.7 −43.9
Orchard 511.3 479.7 0.48 56.1 8.7
Wetland 480.6 504.9 0.75 25.1 0.9

Corn 489.4 479.8 0.73 48.3 −12.2
Overall 418.5 413.8 0.90 49.6 −9.4

For sites of vegetation underlying surfaces, the WAPT model agreed well with cor-
responding ground observations (Table 5 and Figure 6). The RMSE of WAPT model was
25.1 and 48.3 W/m2 for wetland and corn sites, respectively. However, the WAPT had a
slightly worse precision for vegetable and orchard sites than for wetland and corn sites,
with the higher RMSE (51.7 and 56.1 W/m2) value. It may be attributed to a lower land
surface temperature precision for vegetable and orchard sites. Furthermore, the WAPT
model captured the trends of LE variations for wetland, corn, and vegetable sites through
8 days in 2012 during the whole growing season (Figure 6a,c,d).
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Figure 6. Performance of the WAPT model in 8 days (DOY167, DOY176, DOY192, DOY215, DOY224,
DOY231, DOY240, DOY247) during months 6–9 in 2012 for vegetable (a), orchard (b), wetland (c),
corn (d), residential (e), desert (f), desert steppe (g) and Gobi (h), respectively. The observations and
the WAPT model results are presented with black and red lines, respectively.

For non-vegetation sites (desert, desert steppe, and Gobi), the WAPT model had a
lower precision than for vegetation sites, with higher RMSE (53.4, 61.6, and 54.9 W/m2 for
desert, desert steppe, and Gobi, respectively) and MBE (−26.9, −12.8, and 33.1 W/m2 for
desert, desert steppe, and Gobi, respectively). Observed LE values for non-vegetation sites
(unaffected by human activities, such as irrigations) had a significant fluctuation during
months 6–9 in 2012 (Figure 6f–h), as a result of the effective precipitation two days before
DOY 231. The proposed WAPT model can simulate the temporal fluctuation of LE for these
three non-vegetation sites (desert, desert steppe, and Gobi).

We further compared the accuracy among several remote sensing evapotranspiration
models for different underlying surfaces in the literature, and the results are summarized
in Table 6. The comparison shows that the WAPT model provide acceptable accuracy
compared with other models. The RMSE of LE for crop and wetland underlying sur-
faces with different methods was between 42.4 and 89.8 W/m2, and the median was
64.2 W/m2. Wherein, u-independent models included TD-TSEB [31], OSML [28], WiT-
SEB [54], and RSLE [64], which provided the RMSE between 45.0 and 89.8 W/m2.
The WAPT model had a lower RMSE for cropland and wetland (48.3 and 25.1 W/m2,
respectively). The RMSE of LE for orchard and vegetable surfaces via different methods
varied largely between 13.9 and 239.6 W/m2; it may be attributed to the different assump-
tions in their models. The WAPT model showed a relatively lower RMSE for orchard and
vegetable sites than other u-independent models. The RMSE of LE for non-vegetation sur-
faces with different methods varied largely between 18.2 and 118.7 W/m2, with a median
of 49.2 W/m2. Wherein, WiTSEB [54] and RSLE [64] provided the RMSE varying between
66.7 and 118.7 W/m2. The WAPT model had a lower RMSE varying between 53.4 and
61.6 W/m2 (for desert, desert steppe, and Gobi).

4.3. Sensitivity Analysis

The inputs of WAPT model include the following parameters: (1) measured mete-
orological data at the stations: Ta, RH; (2) remote sensing data: TL, albedo, land surface
emissivity, and EVI; (3) momentum rough length of soil (zoms,D) and vegetation (zomc,B).
Because zomc,B is set as 1/8 h in this paper, and h is mostly insensitive to LE estimations
in trapezoid framework based models (e.g., TTME, HTEM and TMEF), so this paper only
investigates parameter zoms,D. The sensitivity (S) of LE to a parameter (i) is defined as:

Si =
LE± − LE0

LE0
× 100% (23)
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where LE0 is the averaged LE estimated by actual input parameters, LE± is the average
LE of LANDSAT and ASTER images in the study area estimated by the input parameter i,
where LE+ or LE− means the LE estimates is increased or decreased with respect to the
actual inputs. The perturbations of TL and Ta are specified as [−4 K, 4 K], with a variation
step of 0.5 K. Perturbations of the other variables were specified as [−20%, 20%], with a
variation step of 5%.

Table 6. Comparison of LE (W/m2) estimation accuracies with different models for different surfaces in the midstream
of HRB.

References Model/Method Images (Dates)
Model Performance (RMSE W/m2)

Vegetation Underlying
(Cropland, Wetland
Vegetable, Orchard)

Non-Vegetation
(Desert Steppe,
Gobi, Desert)

Whole Precision
(All Surfaces)

[31] TD-TSEB n Landsat (June–September
2012) cropland: 89.8 89.8

[28] OSML n ASTER (July–August
2012) cropland: 45.0 67.0

[54] WiTSEB n ASTER (June–September
2012)

cropland: 56.4
wetland: 76.6

vegetable: 115.1
orchard: 35.6

desert steppe: 118.7
Gobi: 66.7

desert: 95.0
68.6

[64] RSLE n MODIS and ASTER
(Jun–September 2012)

cropland: 73.6
wetland: 79.8

vegetable: 73.6
orchard: 239.6

Gobi: 68.0 desert:
105.6 144.2

[65] SEBS u ASTER (May–September
2012)

cropland: 54.0 b

wetland: 72.0 b

vegetable: 98.0 b

orchard: 25.0 b

desert steppe: 55.0 b

Gobi: 58.0 b

desert: 39.0 b
64.0

[36]
ATI-PT u

MODIS (Jun–September
2012)

cropland: 51.1
vegetable: 13.9

Gobi: 40.4
desert: 43.4 37.2 m

SM-PT u cropland: 42.4
vegetable: 23.6

Gobi: 28.5
desert: 18.2 28.2 m

VPD-PT u cropland: 44.5
vegetable: 19.1

Gobi: 38.2
desert: 43.1 36.2 m

[66] Shuttleworth–Wallace +
Bayesian u cropland: 80.7 80.7

Note: Superscripts u and n represent the u-dependent and u-independent models, respectively. Superscript b indicated that the observed
LE is corrected via the Bowen ratio method. Superscript m indicates that the RMSE value presented here is a mean value for different
underlying surfaces.

The WAPT model was the most sensitive to Ta and TL, which were positively and
negatively correlated with LE values, respectively (Figure 7a). A 4 K decrease (increase)
in Ta led to a 46.2% decrease (51.2% increase) in LE estimates. A 4 K decrease in TL
resulted in a 40.0% increase in LE estimates, whereas the equal increase (4 K) caused a
34.0% decrease.
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RH and zoms,D were negatively and positively correlated with WAPT LE results, re-
spectively (Figure 7b). The perturbation of LE was nearly 5% when the RH changed by
20%. The perturbation of LE was very small (0.2%) when a 20% change was applied to the
zoms,D in the WAPT model. It suggests that the effect of zoms,D on the WAPT LE values can
be overlooked.

For the WAPT model, the LE value had a negative correlation with the albedo and
EVI but had a positive correlation with the land surface emissivity (Figure 7c). A relative
change of −20% (20%) perturbation in albedo and EVI caused perturbations of 2.6% (−2.6%)
and −3.3% (3.3%) of LE, respectively. The land surface emissivity had a larger influence on
LE results, with a −8.3% decrease or 8.7% increase in LE estimates (when the land surface
emissivity increased or decreased 20%, respectively).

5. Discussions
5.1. Comparison of WAPT Model and Other u-Independent Models over Seasons

The triangle model [22] is a u-independent model which has been widely used in
previous studies [38,67–71]. In this section, the WAPT is compared with the triangle model
over growing seasons (May to October) and non-growing seasons (November to April)
during 2013–2018.

The WAPT performed well in the growing season but underestimated LE in the non-
growing season, while the triangle model had a contrasting performance (overestimated
LE in the non-growing season). For the WAPT model, the estimated LE values over the
growing season were closer to the observed data in comparison with those in the non-
growing season (Figure 8). Similarly, the performance of WAPT model in the growing
season was better. Some other studies [72,73] also show that models behave better in the
growing season.
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The difference between implementing WAPT and the triangle model was the pro-
cedure of constructing the feature space. Therefore, it is necessary to assess the feature
space (TL,max and TL,min) constructed by two models. The spatial mean results of TL,max and
TL,min from satellite images in 40 days are presented in Figure 9. Both values of TL,max and
TL,min from the two models were high in the growing season and low in the non-growing
season, but a larger fluctuation was found in TL,max (ranges from 265 to 340 K) compared
with TL,min (ranges from 260 to 300 K). The TL,min difference between the two models was
smaller than the TL,max. The TL,max of WAPT model was larger than the triangle model
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(4.4 K larger on average in 40 days) in the growing season, but it was smaller than the
triangle model (3.7 K lower on average in 40 days) in the non-growing season (Figure 9).
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For the triangle model, the TL,max and TL,min values are determined empirically based
on satellite images [21]. Therefore, the triangle model cannot capture the actual TL,max
and TL,min values accurately due to dry/wet pixels (dry pixels are located in desert, desert
steppe and Gobi landcovers in the image, wet pixels are located in wetland, corn, vegetable,
orchard landcovers in the image) ratios and vegetation coverage [3,18]. A small percentage
of arid underlying surfaces was in the image while vegetation underlying surfaces occupied
a vast majority area in summer (such as dates 27 June, 10 July, 17 July, and 9 August). Thus,
the TL,max may be underestimated due to lacking a sufficient amount of dry pixels from
the image. In winter, a small vegetation fraction range was found from the images due
to the crop harvest (such as dates 5 January, 10 November, and 2 December). It caused a
relatively high TL,max value estimated from the triangle model.

For the WAPT model, the TL,max and TL,min values on the dry and wet edges can be
determined on a pixel basis, and it is not affected by the ratio of wet/dry pixels in the image
which is required with the triangle method. However, the WAPT model was very sensitive
to TL (Figure 7a). TL was calculated from the J-M algorithm using LANDSAT-8 satellite
data. In this paper, the WAPT model underestimated LE in winter. It can be attributed to
the overestimated TL in winter. This phenomenon was also found in some studies using
the J-M algorithm in cold environments (air temperature lower than −5 ◦C) [74–76].

5.2. WAPT Model Performance over Vegetation and Non-Vegetation Surfaces

WAPT performed better on vegetation surfaces than non-vegetation surfaces during
the growing season in 2012, as shown in Figure 10a,b. This phenomenon is consistent
with other u-independent models (e.g., WiTSEB [54], RSLE [64]). The primary reason is
the difference in the accuracy of net radiation estimations between vegetation and non-
vegetation surfaces (Figure 10c,d). Furthermore, the WAPT LE precision between these
two types of underlying surfaces was also affected by setting air temperature as wet edge
and using BREB method to verify originally measured latent heat flux data.
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(a,c) and non-vegetation (desert, desert steppe, Gobi) (b,d) surfaces during June to September in 2012.

The air temperature in different surfaces differed, with the higher Ta in arid un-
derlying surfaces. For the wet area, it is common to use air temperature as the wet
edge (TL,min) [16,17,25]. For the arid surfaces, some researchers pointed out that it is not
appropriate to set the air temperature for the wet edge as Ta in arid area, which may
overestimate LE value [16,19]. With the higher air temperature in the arid area, the larger
wet edge is generated, causing a relatively higher Φ (and LE value) for the arid area.
In this study, air temperature Ta acts as the wet edge in the WAPT model, MBE of the LE
with WAPT in the non-vegetation surface was 6.7 W/m2, which means a slight overestima-
tion from the WAPT model.

The originally measured data was dealt with BREB method, however, the energy
closure was different over vegetation and non-vegetation underlying surfaces, it will
involve different uncertainty and error to the observed data that directly compared with
WAPT model. In this paper, through the boxplot of energy closure on vegetation and non-
vegetation underlying surfaces (Figure 11), we can find that the medians of energy closure
in the vegetation and non-vegetation underlying surfaces were 0.8 and 0.67, respectively.
The observed data through BREB method in the non-vegetation surface had a higher
uncertainty and error. Then, it may be attributed to the lower LE accuracy in the non-
vegetation surface for the WAPT model compared with the observed data.
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5.3. Advantages and Disadvantages of WAPT Model

There are several merits of the WAPT model. Firstly, information on u is not required
in the WAPT model. The data requirement of WAPT can readily be met by involving
other routinely observed meteorological variables (Ta, RH, and air pressure) and remotely
sensed parameters (TL, ε, NDVI and Albedo). In most one-source and two-source models,
e.g., SEBAL [51], SEBS [9], and TSEB [11], u is an indispensable model input. Compared
with these models, the WAPT model avoiding u would make it more suitable for the
operability of mapping field latent fluxes and real-time. Secondly, the WAPT model adopts
theoretical trapezoidal feature space, with its dry/wet edges determined on grid basis
theoretically, so the precision of LE estimates is not affected by the satellite image size or
cloud contamination.

The WAPT model also has limitations. The region along the middle reaches of the HRB
is a composition of oasis and desert ecosystem, where well-irrigated farmlands are strongly
affected by heat advection from the surrounding arid area. However, most one-source
and two-source models, e.g., SEBAL, TTME, and TMEF, do not consider advection, either
the WAPT model. In addition, the LE estimates in the WAPT are sensitive to Ta and TL,
and the errors in either Ta or TL can reduce the accuracy of LE estimation.

6. Conclusions

To reduce the dependence on wind speed due to its high temporal and spatial varia-
tion, a Wind Avoiding Priestley–Taylor (WAPT) algorithm was proposed by employing a
u-independent TL − fc trapezoid space. The WAPT was applied to the arid area in the mid-
stream of HRB during a long-term temporal period (2013–2018). Overall, the performance
of WAPT is comparable to other published studies. Temporally, the long-term comparison
indicates that the precision of WAPT has a seasonal variation. WAPT had a higher r2 value
in the growing season (0.96) than in the non-growing season (0.46). Spatially, WAPT had
a higher precision in the vegetation surface (r2 = 0.69) than the non-vegetation surface
(r2 = 0.40). The sensitivity analysis suggests that the WAPT model is most sensitive to Ta
and TL but insensitive to other parameters (such as RH, zoms,D, albedo and EVI).

This study suggests that the WAPT is promising and can be used to estimate regional
surface latent flux over heterogeneous surfaces in arid area. In the future work, we will
validated the WAPT model in various ecosystems, and some parameters (such as αc,A)
in WAPT model would be calibrated in different physiographic conditions to furtherly
improve the model performance.
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