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Abstract: Predicting groundwater levels is critical for ensuring sustainable use of an aquifer’s lim-
ited groundwater reserves and developing a useful groundwater abstraction management strategy. 
The purpose of this study was to assess the predictive accuracy and estimation capability of various 
models based on the Adaptive Neuro Fuzzy Inference System (ANFIS). These models included Dif-
ferential Evolution-ANFIS (DE-ANFIS), Particle Swarm Optimization-ANFIS (PSO-ANFIS), and 
traditional Hybrid Algorithm tuned ANFIS (HA-ANFIS) for the one- and multi-week forward fore-
cast of groundwater levels at three observation wells. Model-independent partial autocorrelation 
functions followed by frequentist lasso regression-based feature selection approaches were used to 
recognize appropriate input variables for the prediction models. The performances of the ANFIS 
models were evaluated using various statistical performance evaluation indexes. The results re-
vealed that the optimized ANFIS models performed equally well in predicting one-week-ahead 
groundwater levels at the observation wells when a set of various performance evaluation indexes 
were used. For improving prediction accuracy, a weighted-average ensemble of ANFIS models was 
proposed, in which weights for the individual ANFIS models were calculated using a Multiple Ob-
jective Genetic Algorithm (MOGA). The MOGA accounts for a set of benefits (higher values indicate 
better model performance) and cost (smaller values indicate better model performance) perfor-
mance indexes calculated on the test dataset. Grey relational analysis was used to select the best 
solution from a set of feasible solutions produced by a MOGA. A MOGA-based individual model 
ranking revealed the superiority of DE-ANFIS (weight = 0.827), HA-ANFIS (weight = 0.524), and 
HA-ANFIS (weight = 0.697) at observation wells GT8194046, GT8194048, and GT8194049, respec-
tively. Shannon’s entropy-based decision theory was utilized to rank the ensemble and individual 
ANFIS models using a set of performance indexes. The ranking result indicated that the ensemble 
model outperformed all individual models at all observation wells (ranking value = 0.987, 0.985, 
and 0.995 at observation wells GT8194046, GT8194048, and GT8194049, respectively). The worst 
performers were PSO-ANFIS (ranking value = 0.845), PSO-ANFIS (ranking value = 0.819), and DE-
ANFIS (ranking value = 0.900) at observation wells GT8194046, GT8194048, and GT8194049, respec-
tively. The generalization capability of the proposed ensemble modelling approach was evaluated 
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for forecasting 2-, 4-, 6-, and 8-weeks ahead groundwater levels using data from GT8194046. The 
evaluation results confirmed the useability of the ensemble modelling for forecasting groundwater 
levels at higher forecasting horizons. The study demonstrated that the ensemble approach may be 
successfully used to predict multi-week-ahead groundwater levels, utilizing previous lagged 
groundwater levels as inputs. 

Keywords: groundwater level predictions; multiple objective genetic algorithm; evolutionary algo-
rithm optimized ANFIS; ensemble prediction; entropy 
 

1. Introduction 

Groundwater aquifers are considered as vital sources of the world’s potable water 
supplies and take part in an essential role in the sustainability of irrigated agriculture; 
domestic and industrial water supplies in areas where good quality surface water is inad-
equate. Human pressure due to population growth, increasing water demand to different 
sectors, and a changing climate have created an enhanced pressure on groundwater re-
sources. As a consequence, groundwater systems are experiencing rapid degradation. Alt-
hough human intervention, such as over-pumping, is considered as the prime indicator 
of groundwater level declination, climate change, as evidenced by recent projections, has 
indicated that the situation will become even worse earlier than was anticipated [1]. Ex-
cessive abstraction of groundwater resources leads to continuous depletion and variable 
fluctuations of groundwater level, causing a variety of problems such as lowering of the 
suction heads of pumps, reduction of crop yields due to inadequate irrigation water sup-
plies, decrease in potable water supplies for domestic and industrial purposes, and deg-
radation of water quality, among others. As with many areas in the world, groundwater 
is the most important usable form of water reserves in Bangladesh, where approximately 
80% of the total population depends primarily on the groundwater reserves for their wa-
ter needs [2]. Therefore, proper management and sustainable utilization of the scanty 
groundwater reserves in the aquifer in an efficient manner are imperative to secure con-
tinuous supplies of groundwater for future generations. Accurate prediction and forecast-
ing of future groundwater level fluctuations may aid in developing such a meaningful 
groundwater management strategy. 

Numerical simulation models of groundwater flow processes have traditionally been 
applied in groundwater hydrology to better understand the underlying system processes 
while predicting the future scenarios of groundwater levels [3–5]. However, predicting 
groundwater levels using these physically-based models require a detailed understand-
ing of the aquifer properties, as well as expertise and in-depth knowledge of the modeler 
about the aquifer geometry and modelling techniques. It is often difficult to obtain rele-
vant and good quality data on aquifer properties and other appropriate prerequisites, i.e., 
model “initial and boundary conditions” required to develop physically-based models. 
Sometimes, unavailable data are substituted by assumptions made on the data based on 
the prior knowledge of the modeler regarding the model domain. These assumptions and 
estimations may lead to difficulties in the calibration and validation processes, which are 
very important in employing the developed model for prediction purposes. To overcome 
these unavoidable complexities associated with physically-based numerical modelling 
approaches, data-driven prediction modelling approaches relying on machine-learning 
and artificial intelligence have been introduced and applied in hydrology [6–12]. Data-
driven modelling does not require an explicit definition of the parameters of the physical 
systems being modelled. In data-driven modelling approaches, a direct mapping or cor-
relation between the predictors (inputs) and responses (outputs) of a model is established 
by way of an iterative learning method of a machine-learning algorithm [13]. Artificial 
Neural Networks (ANN)-based data-driven prediction models have been found to 
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perform as good as or even better than the physically-based simulation models in the field 
of prediction of nonlinear time series data, e.g., groundwater table data [14,15]. As such, 
there has been a growing appreciation that data-driven approaches can be utilized as an 
alternative modelling approach for capturing nonlinear dynamics of the aquifer responses 
quite accurately [16–19]. 

Groundwater level prediction comes into play when it is an essential task to evaluate 
the dynamics of the groundwater system, i.e., how much groundwater is being abstracted 
from the aquifer system and how much is permitted to be abstracted. Adequately precise 
short- to medium-term groundwater level prediction aids in developing a sustainable and 
flexible management strategy in areas where climate change-induced droughts or human-
induced over-pumping is a major driving force [20–22]. Thus, groundwater level predic-
tion has been an interesting topic in the hydrological research area. Numerous data-driven 
modelling methods are being increasingly used since they require less data and are easier 
to apply than conventional hydrogeological modelling methodologies [23]. Several ap-
proaches have recently been utilized in the research domain of groundwater level predic-
tions. These include machine learning-based prediction modelling [21,22,24], ANNs [25–
27], hybridized wavelet transform—machine learning methods [16,28–30], hybridized en-
semble empirical mode decomposition and machine learning-based models [31], nonlin-
ear autoregressive with exogenous inputs (NARX) neural networks [21], ARIMA-particle 
swarm optimization [32], ANN—whale algorithm [33], integrated linear polynomial and 
nonlinear system identification models [34], ANFIS [30,35–38], wavelet—ANFIS [39], Sup-
port Vector Machine (SVM) [35,40], hybrid SVM-PSO [41], Gaussian Process Regression 
[30], Genetic Programming [42], Facebook’s prophet approach of groundwater level fore-
casting [43], physics-inspired coupled space-time artificial neural networks [44]. A de-
tailed review of artificial intelligence-based approaches to groundwater level modelling 
is given in [45]. It is obvious that a variety of modelling methodologies have been used to 
anticipate groundwater level fluctuations with differing degrees of prediction accuracies. 
It is also clear that recommending a specific prediction model for a specific problem, such 
as predicting groundwater level fluctuations, is difficult, if not impossible. Therefore, 
more advanced approaches to groundwater level prediction are necessary for increasing 
the prediction accuracy of groundwater level fluctuations. 

A hybrid/coupled model or an ensemble of models is likely to perform better than an 
individual prediction model [45]. Different types of prediction models may be developed 
for groundwater level forecasting and the best-performing models may be selected to 
combine them into an ensemble to have an optimum model performance. However, it is 
often very difficult, if not impossible, to identify the best machine-learning algorithm-
based prediction models. In such cases, one of the most effective strategies for providing 
sufficiently accurate predictions has been to integrate the predictions of known best pre-
diction models. Such integration of prediction models is generally referred to as an en-
semble [46]. Ensemble predictions are believed to be more robust than a standalone pre-
diction model with respect to grabbing hold of the true relationships between the inputs 
and outputs of a given prediction problem through incorporating the best features of the 
participating prediction models. Ensemble approaches include boosting, bagging, rank-
ing, voting, and stacking [47]. In groundwater level forecasting, [28] utilized a least-square 
boosting algorithm to integrate different wavelet-neural network models. The present 
study seeks to employ a Multiple Objective Genetic Algorithm (MOGA) for integrating 
the prediction power of the evolutionary algorithm tuned ANFIS models in the frame-
work of an ensemble prediction to predict one- and multi-week ahead groundwater lev-
els. 

An ensemble of data-driven prediction models can be created utilizing a simple av-
eraging approach [48,49], in which the prediction of the selected individual models is 
combined by simply averaging the individual outputs. On the other hand, an ensemble of 
individual models can be formed by assigning weights to individual models with refer-
ence to their prediction precision [46,50]. Among them, the weighted average ensemble 
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approach has gained popularity as it assigns weights to single prediction models regard-
ing their prediction precision. Specific weights to single prediction models may be as-
signed through the utilization of the concepts of entropy [51], set pair analysis [52], or 
Dempster–Shafer evidence theory [53,54]. Another approach of assigning weights to indi-
vidual models is the utilization of a population-based optimization algorithm such as Ge-
netic Algorithm (GA) [55], which is employed to find out the optimum weights with re-
spect to either minimizing a cost index (the lower, the better) or maximizing a benefit 
index (the higher, the better). GA has previously been applied to allocate specific weights 
to standalone models based on a single performance index, e.g., MAE or RMSE [56]. How-
ever, the utilization of a single performance index in determining the weights is often not 
a suitable choice due to the conflicting nature of performance indexes. For instance, a 
model will possibly be regarded as the top performer among other models when a specific 
performance evaluation index is considered. In contrast, a different model may well be 
found as the worthiest model when another performance index is considered. This con-
flicting characteristic demands the incorporation of a set of performance indexes in deter-
mining the weights assigned to different individual prediction models for developing an 
integrated prediction model. Previous studies have successfully utilized the concepts of 
entropy weight [57] and Dempster–Shafer’s theory of evidence [58,59] for incorporating 
different performance indexes of many prediction models to compute individual model 
weights. In this study, a Multiple Objective GA (MOGA) [60] is utilized to develop a trade-
off between the benefits (the larger the values, the better will be the model predictions) 
and the cost indexes (the smaller the values, the better will be the model predictions). The 
conflicting objective functions considered are to maximize the sum of benefit indexes and 
to minimize the sum of cost indexes. The variables are the associated weights of individual 
models. The MOGA provides numerous alternate feasible solutions rather than a single 
solution. The best solution from the set of feasible solutions is selected by applying the 
concept of Grey Relational Analysis. To the best of the author’s understanding, this 
method of weight assignment in the weighted average ensemble technique has not been 
applied previously in predicting groundwater levels. 

Although long-term groundwater level prediction is desirable in many applications, 
including the development of groundwater management plans, short-term predictions 
often provide valuable insights into groundwater level fluctuations to better understand 
the underlying physical phenomena of an aquifer [15,25,61,62]. However, since the one-
step-ahead prediction is strongly conditioned by exogeneous variables containing the sto-
chastic component, the generalization capability of the proposed model needs to be inves-
tigated for multi-step ahead prediction horizons. Because groundwater flow and levels 
typically do not vary significantly over a short period [63], the present study aims at pro-
posing both short-term (one-week ahead) and medium-term (2–8-weeks ahead) ground-
water level forecasts using novel approaches. 

The key motivation and focus of this study are to (1) delve into the potential of opti-
mized ANFIS models in predicting one- and multi-step ahead groundwater level in the 
selected observation wells; (2) develop an ensemble of evolutionary algorithm optimized 
ANFIS models through weights assigned by a MOGA by incorporating a set of different 
performance indexes; and (3) provide a ranking of the ensemble and the individual ANFIS 
models through Shannon’s entropy. To the best of the authors’ understanding, this is the 
first time an ensemble of optimized ANFIS models (weighted average ensemble for which 
a MOGA determines the associated weights) has been employed to forecast one-step (one-
week) and multi-step (multiple weeks) forward groundwater level fluctuations. 

2. Methodology 
2.1. Study Area and the Data 

The study area, located between 24.46–24.73° N latitudes and between 88.40–88.65° 
E longitudes, is under the Tanore Upazila of Rajshahi district in the division of Rajshahi, 
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Bangladesh. It has an aerial extent of 295.40 km². A river named Shiba flows across the 
study area, which provides an inadequate amount of irrigation water for irrigating the 
major crops. Barind Tract constitutes a major portion (81.8%) of the geologic formation. In 
comparison, Old Gangetic Floodplain (3%) and Tista Floodplain (4.8%) cover only a small 
portion of the geology. The remaining 10.4% of the entire area is occupied by homestead 
areas, ponds, wetlands, and rivers [64]. The land formation of Tanore Upazila is composed 
mainly of clay loam (46%), loam (35%), and clay (8%) [65]. Pumped groundwater appears 
to be the prime water resource for household usage and crop irrigation. Excessive abstrac-
tion of groundwater from the aquifer has been increasing every year, resulting in the grad-
ual declination of groundwater levels. As the study area is categorized as a flood-free zone 
in Bangladesh due to its high elevation with respect to the mean sea level, monsoon rain-
fall is the only source of water that can be percolated to the water-bearing strata to re-
charge the groundwater. However, the study area’s thick and sticky clay surface is not 
favourable for the natural recharge of groundwater into the aquifer. The combined inter-
action of the low recharge potential of the land formation, inadequate rainfall, and in-
creased groundwater abstraction result in a decline in groundwater level in the Tanore 
Upazila of Rajshahi district (the study area). 

Previous data on groundwater level fluctuations were used to model future scenarios 
of groundwater table fluctuations in the selected observation wells of the study area, es-
pecially to provide a one-step-ahead forecast of groundwater levels. For this, weekly his-
torical data on groundwater level fluctuations with a period from January 1980 to Sep-
tember 2018 were collected from Bangladesh Water Development Board. Collected data 
at different observation wells were carefully checked and three observation wells, namely 
GT8194046, GT8194048, and GT8194049, were selected based on the criterion of the least 
number of missing entries. The observation well GT8194046 is positioned between 24.68° 
N latitude and 88.53° E longitude. The position of the observation well GT8194048 is be-
tween 24.57° N latitude and 88.55° E longitude, whereas the observation well GT8194049 
is situated between 24.63° N latitude and 88.58° E longitude. The study area and the posi-
tions of the observation wells inside the study area are shown in Figure 1. 

However, there were some missing values in the groundwater level datasets in the 
selected observation wells. The missing entries of weekly groundwater level data ac-
counted for 0.55% (11 missing entries out of 2021), 0.64% (13 missing entries out of 2021), 
and 0.70% (14 missing entries out of 2021) for the observation wells GT8194046, 
GT8194048, and GT8194049, respectively. These missing entries were imputed using the 
“nearest-neighbour” approach to data imputation. Missing entries in an input column 
were replaced with equivalent entries from the nearest-neighbour column by computing 
the Euclidean distance among the “nearest-neighbour” columns. [66]. Table 1 presents a 
few descriptive statistics of the datasets (after imputation of the missing entries) at the 
selected observation wells. Table 1 reveals that the mean values of groundwater level data 
ranged between 8.80 m (at GT8194049) and 11.62 m (at GT8194048), whereas the standard 
deviation values varied between 4.29 m (at GT8194049) and 4.41 m (at GT8194046). The 
data at all observation wells possessed a longer right tail than the left tail in their distri-
bution, as evidenced by the positive (right) skewness values (Table 1). On the other hand, 
the datasets showed “light-tailed” distributions because the kurtosis values are negative 
at all observation wells. 

Table 1. Measures of the statistical parameter values for the groundwater level data (m) at the ob-
servation wells. 

Obs. Wells Min Max Mean Median STD Skewness Kurtosis 
GT8194046 0.91 20.05 9.49 9.25 4.41 0.25 −0.78 
GT8194048 1.38 20.45 11.62 10.42 4.31 0.43 −0.82 
GT8194049 0.86 20.05 8.80 7.90 4.29 0.50 −0.60 
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Figure 1. Schematic representation of the study area. 

2.1.1. Missing Value Imputation 
The collected data at the observation wells have a few missing entries that were im-

puted as a data pre-processing measure. There exist several approaches to fill the missing 
entries. The authors in [67] conducted a comparison of three methods for estimating miss-
ing entries for a dataset of gene microarray: Singular Value Decomposition (SVD)-based 
method—SVD imputes, weighted K-nearest neighbours—KNN impute, and row averag-
ing method. They demonstrated the superiority of the KNN impute over the SVD impute 
and row average methods with respect to robustness and sensitivity for the estimation of 
missing entries. Therefore, this research adopted the KNN imputation method to fill the 
missing values of groundwater level data at the selected three observation wells. The al-
gorithm for the K-nearest neighbour approach to impute missing entries presented in [68] 
was adopted in this research. The weekly values of the groundwater table time series data 
after imputation of the missing entries at the three observation wells are presented in Fig-
ure 2. 
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Figure 2. Time series of the groundwater level data. 

It is observed from Figure 2 that the groundwater level data at all three observation 
wells have some noisy data, especially at the later part of the time series. This noise in the 
input data was intentionally kept to evaluate the prediction power of the suggested ma-
chine-learning algorithms on the noisy input data. As such, no data smoothing operation 
was performed on the input time series (weekly values) of the groundwater level data. 

2.1.2. Selection of Input Variables 
The most significant and pertinent aspect in creating machine-learning-based predic-

tion models should be the choice of suitable input variables from a list of candidate input 
variables that may enhance the prediction capability of models. As there exists no explicit 
approach to determining model inputs for data-driven modelling applications [69], sev-
eral methods were adopted and applied by various researchers. It is also noted that useful 
input variable selection approaches are non-unique and different techniques may result 
in different combinations of important input variables [44]. A two-step approach can be 
adopted in selecting the most useful input variables [70]: utilization of Autocorrelation 
and Partial Autocorrelation Functions (PACF) (to obtain time-lagged information), fol-
lowed by a “trial and error” approach, wherein several possible combinations of prese-
lected lags can be used as model inputs. However, evaluating each of the combinations 
using several data-driven models to select the significant input variables is undoubtedly 
a time-consuming and laborious task. As an improvement to this laborious and computa-
tionally intensive input variable selection method, the present study adopts Frequentist 
Lasso Regression (FLR) [71] performed on the preselected lags (using PACF) for deter-
mining the most significant input variables. The proposed approach, utilizing the combi-
nation of PACF and the FLR, is outlined below: 
1. Partial autocorrelations (PACF) 

The PACF approach was used to select significant inputs from the Groundwater 
Level (GL) lags. PACF functions at the selected observation wells were determined to ac-
quire time-lagged statistics from the weekly time series data of GLs. This time-lagged in-
formation was used to evaluate the temporal dependencies between GL for a current week 
(GLt) and the GLs at a certain point in an earlier period (i.e., a time lag of GLt − 1, GLt − 2, GLt 

− 3, GLt − 4, and GLt − 5, etc.). This temporal reliance in the GL time series at the observation 
wells was evaluated for 50 lags (i.e., from GLt − 1 to GLt − 50) as depicted in Figure 3. In Figure 
3, the 95% confidence band is indicated by the blue dashed lines. According to Figure 3, 
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the relevant inputs to the prediction models for the GL time series at the three observation 
wells were initially determined. 

Thus, the input variables primarily determined based on the PACF criterion for the 
observation well GT8194046 include: 
GLt, GLt − 1, GLt − 2, GLt − 3, GLt − 4, GLt − 5, GLt − 6, GLt − 7, GLt − 8, GLt − 16, GLt − 17, GLt − 18, GLt − 20, 
GLt − 21, GLt − 22, GLt − 23, GLt − 24, GLt − 25, GLt − 26, GLt − 27, GLt − 28, GLt − 29, GLt − 30, GLt − 33, GLt − 34, 
GLt − 35, GLt − 36, GLt − 37, GLt − 39, GLt − 40, GLt − 41, and GLt − 43. 
Input variables identified by PACF criterion at GT8194048 are: 
GLt, GLt − 1, GLt − 2, GLt − 3, GLt − 4, GLt − 9, GLt − 21, GLt − 25, GLt − 26, GLt − 27, GLt − 28, GLt − 29, GLt − 31, 
GLt − 32, GLt − 35, and GLt − 38. 
Input variables identified by PACF criterion at GT8194049 are: 
GLt, GLt − 1, GLt − 3, GLt − 4, GLt − 7, GLt − 8, GLt − 16, GLt − 17, GLt − 20, GLt − 21, GLt − 22, GLt − 23, GLt − 24, 
GLt − 25, GLt − 26, GLt − 27, GLt − 28, GLt − 29, GLt − 30, GLt − 33, GLt − 34, GLt − 35, GLt − 36, GLt − 39, GLt − 40, 
GLt − 41, GLt − 42, GLt − 46, and GLt − 47. 

Obviously, a substantial number of input variables were identified as potential input 
variables at the observation wells based on the PACF criterion. While using all of these 
input variables may provide better or worse (some of them being either redundant or 
misleading and may cause prediction inaccuracies) prediction accuracies, this inclusion of 
more input variables will no doubt incur an additional computational burden. On the 
other hand, evaluating various combinations of these input variables is computationally 
intensive, tedious, and time-consuming. Therefore, the present study strives to propose 
an approach named FLR to eliminate the redundant or less influential input variables 
from the pre-selected input variables. According to the conscious knowledge of the au-
thors, this methodology of significant input variable selection has not been applied previ-
ously for groundwater level forecasting. 
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Figure 3. Partial autocorrelation plots of the groundwater level time series for 50 lags (weeks) at the observation wells. 

2. Frequentist Lasso Regression (FLR) 
The second phase of input variable selection was facilitated by FLR [71], categorized 

as a member of the Bayesian lasso regression. Lasso regression is basically an approach of 
performing a linear regression that integrates regularization and selection of variables. 
The regularization part aids in preventing model overfitting by reducing the extent of the 
coefficients of regression. The FLR approach is different from other forms of regulariza-
tion methods (i.e., ridge regression) with respect to the way of assigning values to regres-
sion coefficients. In the FLR technique, the regression coefficients corresponding to the 
redundant or insignificant variables are assigned a value of exactly 0 by the frequentist 
lasso. In this study, the FLR model was fit on the pre-selected (PACF selected) input var-
iables and the one-week ahead groundwater level (GLt + 1) as the output variable for each 
of the observation wells. At GT8194046, 32 input variables based on different time lags 
were used as inputs, whereas 16 and 29 input variables were used at observation wells 
GT8194048 and GT8194049, respectively. The inputs and outputs at each observation well 
were divided into train and test datasets. On or about 80% of the entire data were used to 
train the FLR model, whereas the remaining 20% were used to test the model. The Forecast 
Mean Squared Error (FMSE) values were computed and the magnitude of regression co-
efficients (with respect to the shrinkage value) are plotted as illustrated in Figure 4. It is 
observed from Figure 4 that a model with 11 (df = 11), 5 (df = 5), and 9 (df = 9) input 
variables seemed to balance minimal FMSE and model complexity well at the observation 
wells GT8194046, GT8194048, and GT8194049, respectively. Then, the coefficients that cor-
respond to the models containing 11, 5, and 9 input variables were computed that pro-
vided minimal FMSE at each case. The FLR suggests that the input variable combinations 
outlined in Table 2 were the most useful in determining the one-week ahead groundwater 
level predictions. The variables other than those mentioned in Table 2 were either redun-
dant or insignificant. The input variables other than the above-mentioned ones had an 
exact value of 0 for the regression coefficient. This study used statistical approaches for 
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input variable selection, which can also be performed by employing an evolutionary al-
gorithm along with the parameter tuning process of the prediction models. 

To eliminate the adverse effect of the data’s dimensionality, standardization was per-
formed to scale the data to a mean of zero and a standard deviation of unity [72]. The 
standardized data hold the actual data shape features, including the skewness and kurto-
sis values. 
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Figure 4. The magnitude of the Frequentist Lasso Regression coefficients with respect to the shrinkage values at the ob-
servation wells (FMSE = forecast mean squared error). 

Table 2. Input variables determined by the df of frequentist lasso regression. 

Observation Wells Input Variables Combination 
GT8194046 GL୲, GL୲ ି ଶ, GL୲ ି ଺, GL୲ ି ଻, GL୲ ି ଵ଻, GL୲ ି ଵ଼, GL୲ ି ଶସ, GL୲ ି ଶଽ, GL୲ ି ଷଽ, GL୲ ି ସଵ, GL୲ ି ସଷ 
GT8194048 GL୲, GL୲ ି ଵ, GL୲ ି ଶ, GL୲ ି ଷ, GL୲ ି ଷ଼ 
GT8194049 GL୲, GL୲ ି ଵ, GL୲ ି ଼, GL୲ ି ଵ଻, GL୲ ି ଶ଴, GL୲ ି ଷଷ, GL୲ ି ଷ଺, GL୲ ି ସ଴, GL୲ ି ସଶ  

2.2. Prediction Model: Adaptive Neuro Fuzzy Inference System (ANFIS) 
An ANFIS is a flexible and adaptive data-driven machine-learning tool that holds the 

advantageous features of both a Fuzzy Inference System (FIS) developed from fuzzy logic 
theory and an ANN system. It incorporates fuzziness, imprecision, or nebulousness of 
input datasets in modelling complex and nonlinear mapping of input–output patterns of 
a dataset [73]. For this capability, ANFIS-based prediction models are often referred to as 
the universal approximators of a complex system [74,75]. Among various types of ANFIS 
models, a Sugeno type can provide a comparatively better prediction through superior 
learning ability despite having a rather simple model architecture [73]. For this reason, 
this research adopted a Sugeno-type ANFIS model. Sugeno-type ANFIS models are de-
veloped from an initial FIS structure, the parameters of which needed to be tuned using a 
preferable optimization algorithm. The number of tuneable or modifiable parameters 
(both linear and nonlinear) depends on the number of input variables for a specific prob-
lem. The higher the number of modifiable parameters, the more complex the ANFIS 
model will be, and consequently, the higher the computational requirements. Therefore, 
an additional step of reducing the dimensionality of the input space is generally adopted 
to develop an ANFIS model. The present study employed a Fuzzy C-Mean Clustering 
(FCM) [76] algorithm to reduce the training dataset’s dimensionality. This FCM approach 
significantly reduces the computational requirements by minimizing the number of linear 
and nonlinear modifiable parameters of an ANFIS model architecture. The modelling was 
performed by utilizing input and output Membership Functions (MFs), which were 
Gaussian and linear, respectively. The input Gaussian MF is expressed by two parameters 
(c, σ) and can be denoted by [73]: 𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛 (𝑥, 𝑐, 𝜎) = 𝑒ିଵଶቀ௫ ି ௖ఙ ቁమ  (1)

where c and σ represent the centre and width, respectively of the MFs. The building block 
of an ANFIS architecture derived from a Sugeno-type FIS is graphically shown in Figure 
5. 
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Figure 5. ANFIS structure derived from two inputs—one output first-order Sugeno FIS [77]. 

The Sugeno FIS illustrated in Figure 5 has two inputs (α and β) and one output (f), 
the fuzzy if-then rule sets for them can be written as: 𝑅𝑢𝑙𝑒 1: 𝐼𝑓 𝛼 𝑖𝑠 𝐴ଵ 𝑎𝑛𝑑 𝛽 𝑖𝑠 𝐵ଵ 𝑡ℎ𝑒𝑛 𝑓ଵ = 𝑝ଵ𝛼 + 𝑞ଵ𝛽 + 𝑟ଵ (2)𝑅𝑢𝑙𝑒 2: 𝐼𝑓 𝛼 𝑖𝑠 𝐴ଶ 𝑎𝑛𝑑 𝛽 𝑖𝑠 𝐵ଶ 𝑡ℎ𝑒𝑛 𝑓ଶ = 𝑝ଶ𝛼 + 𝑞ଶ𝛽 + 𝑟ଶ (3)

As can be seen from Figure 5, a Sugeno-type ANFIS is composed of five layers: (1) 
fuzzy layer, (2) product layer, (3) normalized layer, (4) defuzzification layer, and (5) out-
put layer. Each layer is associated with a particular task as the model development pro-
gresses. These layers are described in detail along with their functions in [77] and are not 
repeated in this study. MATLAB commands and functions were used to develop the AN-
FIS-based prediction models. 

2.3. Algorithms to Tune ANFIS Parameters 
2.3.1. Hybrid Algorithm (HA) 

One of the major issues that arise when developing fuzzy logic-based models with 
high-dimensional data is selecting the appropriate rule sets, which largely determine the 
optimal model performance. This issue can be addressed adequately by adopting a first-
order Sugeno FIS (presented in Figure 5), which is capable of learning adaptively through 
modifying the rule sets, thus providing an optimal parameter set for the FIS model. The 
basic learning rules of a flexible and modifiable (adaptive) network are made up of two 
components: gradient descent and chain rule [78]. A gradient method is usually exploited 
to tune parameters of the antecedent and consequent components of the rule base. This 
gradient approach results in slow convergence of the tuning process and is prone to be-
come trapped in local optima instead of global optima. To overcome these issues of slow 
convergence and infeasible solutions, a “hybrid learning rule” that integrates Gradient 
Descent (GD) and Least Squares Estimates (LSE) is proposed to search for optimal FIS 
parameters [77]. In a FIS rule base, the antecedent parameters are regarded as nonlinear 
in nature, whereas the consequent parameters are linear. In the hybrid algorithm pro-
posed by [77], the antecedent parameters are computed by means of the GD via error 
backpropagation, while the recursive LSE determines the consequent parameters. This 
integration of GD and LSE in parameter tuning of ANFIS models is referred to as a Hybrid 
Algorithm (HA), which employs a frontward and a rearward pass to perform the hybrid 
learning method. In this study, the HA was employed to tune the parameters of a tradi-
tional ANFIS model. 

Various hybridized ANFIS models have been widely applied to various research do-
mains for improving the performance of the traditional ANFIS models. However, the use 
of evolutionary algorithm tuned ANFIS models has not been observed in recent literature 
to predict groundwater level fluctuations (daily or multiple steps ahead prediction). As a 
pioneering effort, this research proposes the hybridized learning of ANFIS models using 
Differential Evolution (DE) and Particle Swarm Optimization (PSO) to forecast one- and 
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multi-week-ahead groundwater levels at the selected observation wells. A brief descrip-
tion of DE and PSO is provided in the following sub-sections. 

2.3.2. Differential Evolution (DE) 
The DE algorithm [79,80] is a stochastic and population-inspired optimization algo-

rithm that is ideally suited for providing solutions to numerous nonlinear optimization 
formulations. The concept of DE is simple, with a fundamental configuration of 
DE/rand/1/bin [81,82]. In DE, a preliminary set of the population is arbitrarily created fol-
lowing a uniform distribution with the specified lower and higher bounds of 𝑥௝௅ and 𝑥𝑗𝑈, 
respectively. This randomly created initial population contains NP vectors such 
that 𝑋௜, ∀௜= 1,2,3, … , NP. Following this initialization, the created individuals are evolved 
by mutation and crossover operators, resulting in the production of a trial vector. The 
resulting trial vector is compared to the associated parent to determine which vector 
should be passed on to the subsequent cohort of the population [83]. The basic steps of 
the DE algorithm consist of initialization, mutation, crossover, and selection. The details 
of these steps can be found in [83] and are not repeated here. 

2.3.3.  Particle Swarm Optimization (PSO) 
The PSO [84], a population-inspired stochastic algorithm for solving optimization 

problems, is stimulated by social and psychological principles. The PSO is derived from 
swarm intelligence principles, which simulate the societal characteristics of bird flocking 
or fish schooling predation. The algorithm has acquired popularity as a result of its nu-
merous advantageous properties, including its simple structure, robust manoeuvrability, 
and ease of implementation [85], which makes it ideal for training various intelligent mod-
els. PSO considers each particle as a possible solution inside the search domain of an op-
timization problem. On the other hand, the flight behaviour of the particles is recognized 
as an individual’s exploration phenomenon. In PSO, the dynamic update of a particle’s 
velocity is determined by the particle’s previous optimal location and the swarm popula-
tion. 

PSO considers the values of the particle’s objective function to be the corresponding 
fitness values. These fitness values are used to calculate the particles’ optimal position. 
The fitness values are also utilized to update the particles’ past most advantageous loca-
tion and the swarm population’s optimum location. Thus, the PSO algorithm’s control 
parameters determine the convergence of particles trajectories [85]. The PSO algorithm 
converges by keeping records of each particle’s best fitness values, finding the global best 
particle, and updating the locations and velocities of each particle. In the event that the 
convergence is not achieved, the iterative process continues until the optimization prob-
lem converges to its optimal solution, or until the user-defined maximum number of iter-
ations is satisfied. 

2.4. Developed ANFIS Models 
The parameters of the ANFIS model were tuned using the HA and two population-

based optimization algorithms, e.g., DE and PSO, to develop the optimized ANFIS models 
(HA-ANFIS, DE-ANFIS, and PSO-ANFIS, respectively). Performances of the tuned AN-
FIS models principally be subjected to the optimal tuning for the parameters of the algo-
rithms. These parameters were selected upon conducting several trials and the best pa-
rameters were used for the developed models. The optimum parameter sets used to train 
the hybridized ANFIS models are depicted in Table 3. 

  



Water 2021, 13, 3130 15 of 36 
 

 

Table 3. Optimal parameter values for the selected optimization algorithms. 

HA-ANFIS, DE-ANFIS and PSO-ANFIS models were developed at each observation 
well to predict one-week-ahead groundwater levels. The input variables to the models 
were the selected lagged groundwater level values and the outputs from the models were 
the one-week ahead groundwater levels. Both parameters (antecedent and consequent) of 
the initial FIS models were tuned using the HA, DE and PSO algorithms to find the ideal 
HA-ANFIS, DE-ANFIS and PSO-ANFIS models. Different combinations of antecedent 
and consequent parameters were evaluated by the HA, DE and PSO algorithm as the 
training process progressed. The Mean Squared Error (MSE) reflecting the learning error 
was employed as the cost function of the HA, DE, and PSO-based optimization approach. 
The overall goal or aim was to minimalize the MSE values between the observed (actual) 
and model-predicted groundwater levels on the training set of the data. The cost function 
(objective function) can be represented mathematically as: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝑓(𝐺𝐿ெௌா) = ∑ ൫𝐺𝐿௜,௔ − 𝐺𝐿௜,௣൯ଶ௡௜ୀଵ 𝑛  (4)

where, 𝑓(𝐺𝐿ெௌா) denotes the cost function (objective function) to be minimalized; 𝑖 =1,2,3, … , 𝑛 denotes the quantity of training dataset; 𝐺𝐿௜,௔ is the actual groundwater levels 
in the training set of the data; and 𝐺𝐿௜,௣ is the model-predicted groundwater level values 
in the training set of data. 

The properly trained optimized models were then presented with the test dataset and 
the testing errors were computed. The performances of the DE-ANFIS and PSO-ANFIS 
were weighed against those of the traditional ANFIS model (HA-ANFIS). 

2.5. Training of Optimized ANFIS Models 
The performance of a classical ANFIS model (HA-ANFIS) whose parameters were 

tuned with a HA (integration of LSE and GD) was used as a base model for settling on the 
adequate number of clusters determined via the FCM algorithm. A clustering trial was 
performed using a range of clusters between 2–10 for the HA-ANFIS models with 50% 
training data and 50% test data. Absolute differences between the training and test RMSE, 

Algorithms Optimal Parameter Values 

DE 

Maximum number of iterations: 1000 
Number of populations (colony size): 100 

Lower bound of scaling factor: 0.2 
Upper bound of scaling factor: 0.8 

Crossover probability: 0.2 

PSO 

Maximum number of iterations: 200 
Population size (Swarm size): 100 

Inertia weight: 1 
Inertia weight damping ratio: 0.99 

Personal learning coefficient: 1 
Global learning coefficient: 2 

Maximum velocity: 1 
Minimum velocity: −1 

HA 

FIS parameters 
Fuzzy partition matrix exponent: 2.0 
Maximum number of iterations: 1000 

Minimum improvement: 1 × 10−5 

ANFIS parameters 
Maximum number of Epochs: 

200 
Error goal: 0 

Initial step size: 0.01 
Step size decrease rate: 0.9 
Step size increase rate: 1.1 
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including the absolute difference between train and test R values, were used as the selec-
tion criteria for the number of clusters. Based on the trial, two clusters produced the best 
results for the HA-ANFIS models at observation wells GT8194046 and GT8194048, respec-
tively, whereas the number of clusters that have the best results at GT8194049 was three. 
The same quantity of clusters (FCM) was used for the evolutionary algorithm-tuned AN-
FIS models (DE-ANFIS and PSO-ANFIS). The resulting architectures for five inputs (as in 
the case of GT8194048) and one output HA-ANFIS models are presented in Figure 6. 

  
Two-Cluster HA-ANFIS Model Three-Cluster HA-ANFIS Model 

Figure 6. Model architectures of the developed HA-ANFIS models. 

Training and test errors (RMSE values) were calculated for each of the developed 
optimized ANFIS models, and the training time was recorded. Training and test errors 
are important criteria to ensure that the developed models are not over- or under-trained. 
Model training time is another imperative criterion that needs to be observed and consid-
ered carefully. Models requiring longer training time may sometimes be infeasible when 
dealing with complex problems with larger datasets. The training and test errors as well 
as the time of training needed for the optimized ANFIS models at different observation 
wells are presented in Table 4. 

Table 4. Training RMSE, test RMSE, and training time required for training of the hybridized ANFIS models. 

ANFIS Mod-
els 

GT8194046 GT8194048 GT8194049 
Train 

RMSE, m 
Test 

RMSE, m 
Training 

Time, min 
Train 

RMSE, m 
Test 

RMSE, m 
Training 

Time, min 
Train 

RMSE, m 
Test 

RMSE, m 
Training 

Time, min 
DE-ANFIS 0.3565 0.4877 413 0.4485 0.7610 144 0.3453 0.5026 622 

PSO-ANFIS 0.3382 0.5332 83 0.4389 0.8965 27 0.3109 0.4846 117 
HA-ANFIS 0.3382 0.5089 0.60 0.4270 0.6761 0.36 0.3123 0.4578 0.45 

The results presented in Table 4 indicate that the DE-ANFIS performed better than 
the PSO-ANFIS and the HA-ANFIS, with respect to test RMSE and the absolute difference 
between the training and test RMSEs at GT8194046. On the other hand, the HA-ANFIS 
was the best performing model followed by the DE-ANFIS and the PSO-ANFIS at the 
observation wells GT8194048 and GT8194049 when the absolute difference between the 
training and test RMSEs was considered. However, based on the test RMSE, the sequence 
of models from the best to the worst at GT8194048 was the HA-ANFIS, the DE-ANFIS, 
and the PSO-ANFIS, while this sequence at GT8194049 was the HA-ANFIS, the PSO-AN-
FIS, and the DE-ANFIS. It is also obvious from Table 4 that the training times required to 
train the HA-ANFIS models were almost negligible compared to those of the DE-ANFIS 
and PSO-ANFIS models, and that the PSO-ANFIS required less training time than DE-
ANFIS. Therefore, it can be argued that the HA-ANFIS was the best model with respect 
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to the RMSE and training time criteria. Other performance evaluation indexes were cal-
culated on test results for the comparison purpose of the developed optimized ANFIS 
models. The performance evaluation indexes employed to evaluate the prediction perfor-
mances of all standalone optimized ANFIS models, and their ensemble are given in Ap-
pendix A. 

2.6. Weight Calculation 
For developing a framework of ensemble prediction, weights of the individual pre-

diction models were calculated. Both the benefit and cost indexes were employed to com-
pute weights for the developed models, mainly to incorporate the conflicting nature of 
performances by the prediction models for different performance indexes calculated on 
the test dataset. The benefit indexes considered for the weight calculation were Coefficient 
of Determination (R2), Willmott’s Index of Agreement (IOA), and Nash–Sutcliffe Effi-
ciency Coefficient (NS), whereas the cost indexes selected were Root Mean Squared Error 
(RMSE), Maximum Absolute Error (MAE), and Median Absolute Deviation (MAD). An 
optimization approach, MOGA was applied to determine the associated weights of indi-
vidual prediction models based on their performances, with respect to the selected per-
formance indexes. For the benefit and cost indexes, the weight coefficients X1–X3 were 
assigned for the prediction models DE-ANFIS, PSO-ANFIS, and HA-ANFIS, respectively. 
Two conflicting objectives were considered: (1) maximize the sum of benefit indexes for 
each of the prediction models, and (2) minimalize the summation of the cost indexes for 
each of the prediction models. The mathematical formulation of the proposed MOGA-
based weight assignment scheme can be represented as: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒: 𝑓ଵ(𝐵𝐼) = ෍ 𝑋௜௡ே
௜ ୀ ଵ × ෍ 𝐵𝐼௞௄

௝ ୀ ଵ  (5)

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝑓ଶ(𝐶𝐼) = ෍ 𝑋௜௡ே
௜ ୀ ଵ × ෍ 𝐶𝐼௟௅

௟ ୀ ଵ  (6)

Subject to 𝐵𝐼(𝑚𝑖𝑛) ≤ 𝐵𝐼௞ ≤ 𝐵𝐼(𝑚𝑎𝑥) (7)𝐶𝐼(𝑚𝑖𝑛) ≤ 𝐶𝐼௟ ≤ 𝐶𝐼(𝑚𝑎𝑥) (8)𝑋௜௡ ≥ 0 (9)

෍ 𝑋௜௡ே
௜ ୀ ଵ = 1 (10)

where, 𝑓ଵ(𝐵𝐼) is the objective function that represents the maximization of the sum of 
benefit indexes; 𝑓ଶ(𝐶𝐼) represents the objective function that describes the minimization 
of the sum of cost indexes; 𝑋௜௡ is the 𝑖th weight coefficient of the 𝑛th model; 𝐵𝐼௞ is the 𝑘th benefit index (𝐾 = 3); 𝐶𝐼௟ is the 𝑙th cost index (𝐿 = 3); Equations (7) and (8) repre-
sent the lower and upper limits of the benefit and cost indexes, respectively; Equation (9) 
designates the non-negativity of the 𝑖th weight coefficient; Equation (10) indicates the 
sum of the 𝑖th weight coefficient equals 1; 𝑁, 𝐾, and 𝐿 stand for a total number of pre-
diction models, benefit indexes, and cost indexes, respectively. Equation (5) represents the 
maximization of the sum of benefit indexes, whereas Equation (6) represents the minimi-
zation of the sum of cost indexes. 

The MOGAs provide a set of feasible solutions represented by a Pareto optimal front 
instead of providing a single solution. Each of the solutions in the Pareto front is regarded 
as a feasible solution. The single best possible solution from the Pareto front was selected 
by applying the concept of Grey Relational Analysis (GRA), which is derived from the 
Grey System Theory [86]. In this approach, Gray Relational Coefficient (GRC) [84] is 
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computed to obtain the best feasible optimum solution from a set of feasible solutions in 
the Pareto front. The GRC approach finds the similarity between the objective values of 
the individual optimal solutions and the ideal or best reference objective value. The com-
putation of GRC was performed following the steps used in [87]. Based on the GRA con-
cept, the greater the value of 𝐺𝑅𝐶௜ is, the more dependable the optimal solution will be. 
Therefore, the largest value of 𝐺𝑅𝐶௜ was the recommended best optimal solution from 
the Pareto optimal solution. The corresponding weight coefficients for the best optimal 
solution were assigned to the standalone optimized ANFIS models to develop the ensem-
ble. 

2.7. Ensemble Prediction 
An ensemble approach of prediction modelling is generally preferred because an in-

dividual prediction model often fails to capture the associated input-output relationships 
and map the true trends of these associations within the reasonable locations of the input 
domain [88]. An ensemble prediction model improves prediction robustness by extracting 
the true trends of the input-output relationships in the data and protecting against an in-
dividual poor-performing model by minimizing the impact of poor predictions by that 
prediction model [46]. Ensemble prediction models provide better accuracy than the indi-
vidual models because the ensembles utilize the distinctive characteristics of individual 
models for capturing various patterns of the input-output relations or mappings from the 
whole decision domain. Nevertheless, individual models for an ensemble need to be suf-
ficiently diverse and sensibly precise in their prediction abilities. The optimal number of 
individual models in an ensemble is highly dependent on the trade-offs between model 
complexity, prediction accuracy, and uncertainty reduction level. An ensemble prediction 
is simply computed by: 

𝑂𝑢𝑡𝑝𝑢𝑡ாே = ෍ 𝑂𝑢𝑡𝑝𝑢𝑡௜ூெ𝑛௡
௜ ୀ ଵ  (11)

where, 𝑂𝑢𝑡𝑝𝑢𝑡ாே  is the ensemble output; 𝑂𝑢𝑡𝑝𝑢𝑡௜ூெ  represents the outputs of the 𝑖௧௛ 
single model; 𝑛 is the number of single models to be used for the ensemble formation. 

This simple ensemble modelling approach generally assigns equal weights to all in-
dividual models regardless of their prediction accuracies. A more precise ensemble for-
mation technique is the weighted average approach, which is likely to yield the best cor-
relation between the observed and model-predicted responses [46]. In this concept, more 
accurate prediction models are given higher weightage and the less accurate models re-
ceive lower weights. In contrast, the sum of weights assigned to all individual models 
must be equal to 1. The weighted average ensemble approach may be mathematically de-
noted by the following deterministic function: 

𝑌ௐ஺(𝑥) = ෍ 𝜔௜௡
௜ ୀ ଵ (𝑥) × 𝑌ூெ೔(𝑥) (12)

where, 𝑥 represents the input space; 𝑌ௐ஺ is the prediction of the weighted average en-
semble with respect to 𝑥; 𝜔௜ is the numeric value of weight allotted to 𝑖th individual 
model; 𝑌ூெ೔ is the prediction of the 𝑖th single model; 𝑛 is the number of single models 
to be used for the ensemble formation. The ensemble thus obtained is adaptive in nature 
because the weights are a function of 𝑥 [50]. This adaptive weighted average ensemble 
approach was adopted in this research wherein the assigned weights were calculated us-
ing a MOGA. 

Once the ensemble prediction was obtained, the corresponding performance indexes 
were calculated for the ensemble model for comparison purposes with the individual 
models. Then, a decision theory was applied by incorporating the same benefit and cost 
indexes as in the case of the MOGA-based weight assignment scheme. In this case, the 
ensemble model’s performance indexes were also considered to provide a ranking of all 



Water 2021, 13, 3130 19 of 36 
 

 

individual models and the ensemble. The decision theory employed in this study was the 
Shannon’s entropy [51]. The phases or steps adopted in [89] and [90] were used to calcu-
late the entropy-based weights. The calculation steps are provided in Appendix A. 

3. Results and Discussion 
The study aims at providing a comparison of the three machine-learning algorithms, 

DE-ANFIS, PSO-ANFIS, and HA-ANFIS for predicting one- and multi-week ahead 
groundwater levels using the previous lags as the input variables. A weighted-average 
ensemble of these prediction models is also developed, and precision in the prediction of 
the ensemble model is weighed against the prediction accuracy of the individual predic-
tion models. 

3.1. Prediction of Individual Models 
After satisfactory training of the proposed prediction models, results are evaluated 

with respect to various performance evaluation indexes computed on the actual and pre-
dicted test datasets. The model predictions at different observation wells are presented in 
Figures 7–9 in the form of hydrographs and scatterplots. 

It is observed from the hydrographs and scatterplots presented in Figure 7 that at 
GT8194046, the DE-ANFIS predictions have better agreement with the actual groundwa-
ter level values when compared to other models. The other models face difficulties cap-
turing the true trends in the groundwater level fluctuations, especially at the later parts of 
the time series (higher values of groundwater level fluctuations), which are underesti-
mated by the PSO-ANFIS and HA-ANFIS models. The PSO-ANFIS appears to be the 
worst performing model at this observation well. 

The hydrograph of the HA-ANFIS (Figure 8) indicates the best matching between the 
actual and predicted groundwater levels at GT8194048. The prediction results of DE-AN-
FIS, for this instance, are the second-best, followed by the prediction outcomes of the PSO-
ANFIS. PSO-ANFIS overestimates the actual groundwater level fluctuations that begin at 
the middle of the time series and continue until the end. In contrast, the DE-ANFIS slightly 
overestimates the actual values. 
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Figure 7. Actual and model predicted weekly groundwater level fluctuations and regression plots 
on the test dataset at the observation well GT8194046. 
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Figure 8. Actual and model predicted weekly groundwater level fluctuations and regression plots 
on the test dataset at the observation well GT8194048. 

At GT8194049 (Figure 9), the hydrographs indicate the similar prediction accuracies 
of the DE-ANFIS, PSO-ANFIS, and HA-ANFIS with the slightly better accomplishment of 
the HA-ANFIS model. The performance results for the one-week-ahead groundwater 
level predictions on the test dataset are provided in Table 5. 

Table 5. Performance evaluation indexes of the proposed prediction models on test data at the ob-
servation wells. 

PEI 
GT8194046 GT8194048 GT8194049 

M1 M2 M3 M1 M2 M3 M1 M2 M3 
RMSE 0.488 0.533 0.509 0.761 0.897 0.676 0.503 0.485 0.458 
rRMSE 0.038 0.041 0.039 0.050 0.059 0.045 0.041 0.039 0.038 

R2 0.976 0.976 0.977 0.950 0.953 0.955 0.981 0.981 0.982 
MAE 6.148 5.675 5.736 12072 12.178 11.966 6.323 5.794 5.861 
MAD 0.045 0.130 0.112 0.105 0.275 0.155 0.081 0.066 0.062 
IOA 0.994 0.992 0.993 0.985 0.981 0.988 0.995 0.995 0.995 
NS 0.976 0.971 0.973 0.940 0.917 0.953 0.978 0.979 0.981 

a-10 index 0.980 0.985 0.984 0.978 0.973 0.979 0.981 0.981 0.981 
PEI = Performance evaluation index, M1 = DE-ANFIS, M2 = PSO-ANFIS, M3 = HA-ANFIS. 
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Figure 9. Actual and model predicted weekly groundwater level fluctuations and regression plots 
on the test dataset at the observation well GT8194049. 

The prediction outcomes presented in Table 5 indicate that all of the proposed pre-
diction models are effective at predicting groundwater levels at week 𝑡 + 1 (𝐺𝐿௧ ା ଵ) as 
indicated by the various performance evaluation indexes. While no individual model per-
forms the best at all observation wells, individual models approximate groundwater lev-
els better than others. In general, all prediction models at the observation wells have 
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satisfactory accuracy as all models have higher values R2, IOA, NS, and a-10 index and 
lower RMSE, rRMSE, MAE, and MAD values. All models provide the worst prediction 
for the dataset at the observation well GT8194048, while the models developed using the 
datasets at the observation wells GT8194046 and GT8194049 provide better prediction ac-
curacies with the best results obtained for the models developed at GT8194046. This may 
be because groundwater level datasets at GT8194046 have the lowest skewness value 
(0.25) compared to the skewness values at GT8194048 and GT8194049. 

The prediction outcomes of the proposed prediction models are also assessed with 
reference to the Theil inequality statistics (U) and the global performance index (GPI). The 
evaluation results are presented in Table 6. 

Table 6. Components of the Theil inequality statistics and global performance index values for pre-
diction models on test data at the observation wells. 

PEI 
GT8194046 GT8194048 GT8194049 

M1 M2 M3 M1 M2 M3 M1 M2 M3 
U 0.018 0.020 0.019 0.024 0.028 0.022 0.020 0.019 0.018 
UB 0.004 0.119 0.063 0.099 0.284 0.015 0.105 0.102 0.025 
UV 0.001 0.112 0.106 0.012 0.085 0.003 0.025 0.015 0.018 
UC 0.995 0.769 0.831 0.888 0.631 0.982 0.870 0.883 0.957 

MBE 0.031 −0.184 −0.128 0.241 0.478 0.083 0.163 −0.155 −0.072 
Tstat 1.971 11.521 8.143 10.473 19.772 3.862 10.754 10.585 5.029 
U95 6.197 6.031 6.034 6.380 6.632 6.292 6.731 6.591 6.582 
GPI 0.004 −0.162 −0.074 0.622 2.667 0.061 0.112 −0.098 −0.019 

PEI = Performance evaluation index, M1 = DE-ANFIS, M2 = PSO-ANFIS, M3 = HA-ANFIS. 

The U statistics and its components contain useful information on the relative accu-
racy of each prediction model and the plausible sources of prediction imprecision. The 
first element 𝑈஻ is a measure of errors relating to the bias, the second element 𝑈௏ quan-
tifies the skill of the prediction models to replicate the degree of inconsistency or variabil-
ity, and the third (last) element 𝑈஼ enumerates the amount of chaotic error generated by 
various predictions. It is observed from Table 6 that 𝑈஼ component constitutes a major 
part of errors produced by all the prediction models and at all the observation wells. Rel-
atively lower values of 𝑈஻, 𝑈௏ and 𝑈 produced by the prediction models at the observa-
tion wells reveal that methodical error and bias is not a problem for the obtained predic-
tions for the developed models. 

To further appraise the performances of the developed models, the GPI criterion is 
employed, which evaluates the model performance skill by combining the impacts of 
MBE, RMSE, U95, t-stat, and R2 values in the prediction accuracy. The MBE index indicates 
whether the developed prediction model over- or under-estimates the groundwater level 
predictions at the observation wells. Positive values of MBE mean that the prediction 
model under-estimates the observed groundwater level data, while the negative value 
indicates an over-estimation of the observed groundwater level data. The t-stat [91] crite-
rion and the RMSE and MBE criteria measure the closeness of the actual and predicted 
groundwater level values, thus offering a relatively more complicated evaluation of 
model performance. The U95 criterion measures a models’ predictive deviations within the 
95% confidence band [92,93]. The U95 values produced by the prediction models are within 
acceptable limits, varying only slightly at all the observation wells. The t-stat values differ 
substantially among the prediction models and at the observation wells: at GT8194046, 
DE-ANFIS has the lowest value of t-stat; at GT8194048, the HA-ANFIS has the lowest 
value of t-stat; and at GT8194049, the HA-ANFIS has the lowest value of t-stat. The MBE, 
RMSE, U95, t-stat, and R2 values are used to compute the values of the GPI index. The 
reliability of a model is reversely proportionate to the absolute values of GPI (negative 
values of GPI originate from the negative MBE values), i.e., the lower the numeric value 
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of the GPI index, the higher the accuracy of the prediction model and the other way 
around. Based on the GPI index, the DE-ANFIS is the best performer among others at 
GT8194046, while the HA-ANFIS is the best prediction model at both the observation 
wells GT8194048 and GT8194049. 

It is perceived from Tables 5 and 6 that models show varying accuracies depending 
on the performance evaluation matrix computed on the actual and predicted groundwater 
level values. This means a contradiction in the prediction performance when different 
performance evaluation indexes are used. For instance, at GT8194046, one can select DE-
ANFIS as the best model when RMSE, MAD, IOA, and NS are considered (Table 5). How-
ever, the HA-ANFIS and the PSO-ANFIS perform better with respect to R2 and MAE cri-
teria, respectively. At GT8194048, the HA-ANFIS has the better performance based on the 
RMSE, R2, MAE, IOA, and NS criteria, whereas the DE-ANFIS models’ performance is the 
best when the MAD criterion is considered. The HA-ANFIS is the best model among oth-
ers at GT8194049 with reference to the RMSE, R2, and NS criteria, while the PSO-ANFIS 
can be treated as the top-performing model in terms of the MAE and IOA criteria. On the 
other hand, the DE-ANFIS is deemed to be superior when the MAD criterion is consid-
ered. It is noted that the differences in numeric values among various performance eval-
uation indexes are often very small. Nevertheless, decision making in this situation is very 
difficult if not impossible. Decision-making can be facilitated either by selecting a predic-
tion model to be the best one when most of the performance evaluation indexes are better 
for that particular model or by incorporating different performance evaluation indexes. 
The later approach is promising because it incorporates various performance indexes to 
decide on the best performing model. This is often performed by assigning weights to 
individual models and ranking them according to the numeric values of the weights. The 
present study employs a MOGA for this purpose by utilizing R2, IOA, and NS as the ben-
efit indexes and RMSE, MAE, and MAD as the cost indexes. The outcomes are shown in 
Table 7. The weights presented in Table 7 are assigned to the respective prediction models 
to develop the ensemble model. 

Table 7. Weights of the individual prediction models calculated using a Multiple Objective Genetic 
Algorithm at the observation wells. 

Models 
Weights 

GT8194046 GT8194048 GT8194049 
DE-ANFIS 0.827 0.345 0.191 

PSO-ANFIS 0.157 0.133 0.112 
HA-ANFIS 0.017 0.524 0.697 

Sum of weights 1 1 1 

3.2. Ensemble Prediction 
In this section, the outcomes are presented to show the usefulness of employing an 

ensemble of the developed models to predict one-week ahead groundwater levels. For 
this purpose, a weighted-average ensemble of three prediction models is proposed in 
which the weights computed by the MOGA are employed to provide the ensemble pre-
diction. The performance of the weighted average ensemble is compared with that of the 
individual models (DE-ANFIS, PSO-ANFIS, and HA-ANFIS) at each observation well. 
The comparison results are given in Table 8. 

It can be perceived from the results exhibited in Table 8 that the weighted average 
ensemble achieves a performance that is superior to the worst model at all instances and 
that the ensemble’s performance is superior to the best individual model for most of the 
computed performance evaluation indexes. For instance, the MAD values of the ensemble 
at all observation wells are lower than those of the individual models indicating that the 
ensemble prediction for this instance is better than any individual model. On the other 
hand, MAE values at the observation wells GT8194046 and GT8194049 are lower than the 
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DE-ANFIS but higher than both the PSO-ANFIS and HA-ANFIS. This indicates a better 
and worse performance of the ensemble compared to individual prediction models at 
these observation wells based on the MAE criterion. However, the MAD criterion indi-
cates a better performance of the ensemble model over the individual models at observa-
tion well GT8194049. Decision-making in these situations is quite difficult. In such situa-
tions, if it is known a priori that a given model performs the best for a particular dataset 
or problem, it may be the best option to employ this model for the prediction. However, 
it may be difficult to recognize the top-ranked single prediction model for most problems. 
In this situation, an ensemble of prediction models (preferably a weighted average ensem-
ble) may be proved to be useful in obtaining a robust and accurate prediction result. 

Table 8. Performance evaluation indexes of the ensemble at different observation wells. 

PEI 
GT8194046 GT8194048 GT8194049 

En 
DE-

ANFIS 
PSO-

ANFIS 
HA-

ANFIS En 
DE-

ANFIS 
PSO-

ANFIS 
HA-

ANFIS En 
DE-

ANFIS 
PSO-

ANFIS 
HA-

ANFIS 
RMSE 0.482 0.488 0.533 0.509 0.714 0.761 0.897 0.676 0.453 0.503 0.485 0.458 

rRMSE, 
% 

3.721 3.800 4.100 3.900 4.700 5.000 5.900 4.500 3.717 4.100 3.900 3.800 

R2 0.976 0.976 0.976 0.977 0.954 0.950 0.953 0.955 0.982 0.981 0.981 0.982 
MAE 6.083 6.148 5.675 5.736 11.027 12.072 12.178 11.966 5.958 6.323 5.794 5.861 
MAD 0.043 0.045 0.130 0.112 0.103 0.105 0.275 0.155 0.049 0.081 0.066 0.062 
IOA 0.994 0.994 0.992 0.993 0.954 0.985 0.981 0.988 0.995 0.995 0.995 0.995 
NS 0.994 0.976 0.971 0.973 0.948 0.940 0.917 0.953 0.982 0.978 0.979 0.981 
a-10 

index 
0.980 0.980 0.985 0.984 0.980 0.978 0.973 0.979 0.980 0.981 0.981 0.981 

U 0.018 0.018 0.020 0.019 0.023 0.024 0.028 0.022 0.018 0.020 0.019 0.018 
UB 0.0002 0.004 0.119 0.063 0.082 0.099 0.284 0.015 0.003 0.105 0.102 0.025 
UV 0.001 0.001 0.112 0.106 0.013 0.012 0.085 0.003 0.005 0.025 0.015 0.018 
UC 0.998 0.995 0.769 0.831 0.905 0.888 0.631 0.982 0.992 0.870 0.883 0.957 

MBE 0.007 0.031 −0.184 −0.128 0.205 0.241 0.478 0.083 −0.025 0.163 −0.155 −0.072 
Tstat 0.471 1.971 11.521 8.143 9.396 10.473 19.772 3.862 1.711 10.754 10.585 5.029 
U95 6.166 6.197 6.031 6.034 6.356 6.380 6.632 6.292 6.609 6.731 6.591 6.582 
GPI 0.0002 0.004 −0.162 −0.074 0.398 0.622 2.667 0.061 −0.002 0.112 −0.098 −0.020 

En = Ensemble. 

It is observed from Table 8 that when the errors produced by all the prediction mod-
els are close to each other, as is the case of RMSE, rRMSE, R2, MAE, IOA, and NS, for 
example, the prediction results of the weighted average ensemble are more accurate 
(smaller numeric values of RMSE, rRMSE, MAE and higher values of R2, IOA, and NS) 
than any of the individual prediction models. However, when few of the models are much 
more imprecise than the others, the performance of the weighted average ensemble is only 
as accurate as of the top-performing model within the ensemble (usually, the predictions 
are adequately precise to those of the top prediction model). This is especially apparent in 
the case of MAE values at the observation well GT8194046 (Table 8). Additionally, Table 
8 shows that the prediction errors of a weighted average ensemble are significantly lower 
than those of the worst prediction model, implying that an ensemble approach can avoid 
the issues associated with picking a wrong individual model for a given situation. The 
findings of this study are consistent with those of [46], who proved the potential benefit 
of an ensemble approach on a variety of test problems of varying complexity and dimen-
sions. 

The absolute errors between actual and predicted groundwater levels produced by 
each individual and the ensemble models are presented in box and violin plots (Figure 
10). Boxplots provide a comparative evaluation for the statistical distributions of the 
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absolute errors of the one-week ahead groundwater levels and aids in measuring the level 
of overall spread of the errors made by each prediction model. The horizontal lines in each 
of the boxplots designate the median of the absolute errors of prediction, while the black 
circles mark the mean (average) of the absolute errors. The error boxplots in Figure 10 
demonstrate the superiority of the ensemble and DE-ANFIS models at the observation 
well GT8194046, whereas HA-ANFIS appears to be the best model at GT8194048. Absolute 
errors produced by the DE-ANFIS, HA-ANFIS, and PSO-ANFIS are almost the same at 
the observation well GT8194049. Based on the error box plot, the ensemble appears to be 
the best performing mode at GT8194049. Figure 10 also shows the corresponding violin 
plots that incorporate a box plot with a kernel density plot (the kernel density plot shows 
the peaks in the error data). The white dot represents the median of the absolute error, the 
thick grey bar in the centre of a violin plot is the interquartile range, and the thin grey line 
denotes the rest of the distribution. The coloured region on both sides of the grey line 
represents the kernel density estimation for illustrating the distribution shaper of the ab-
solute error. A higher probability is represented by the wider sections of the violin plot, 
while the lower probability is signified by the thinner sections (Figure 10). 
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Figure 10. Box and violin plots of the absolute errors on test dataset at the observation wells GT8194046, GT8194048, and 
GT8194049. 

The performance evaluation comparison for the ensemble and the individual predic-
tion models is executed by ranking the models through a decision theory, Shannon’s en-
tropy. This decision theory is applied by utilizing the computed R2, IOA, NS, RMSE, MAE, 
and MAD values on the test dataset by ensemble and the individual prediction models 
(previously calculated). The computed R2, IOA, and NS values serve as the benefit in-
dexes, while the RMSE, MAE, and MAD values are cost indexes. The ranking scheme for 
Shannon’s entropy is associated with two major phases: first, the weights for the selected 
performance indexes are calculated, and then these weights are translated into the weights 
of models through the use of ideal values of the performance indexes. 

The ranking results are shown in Table 9. It is perceived from Table 9 that the 
weighted average ensemble receives the highest entropy weight, i.e., the ensemble pre-
diction is better than any of the individual prediction models. Therefore, it is demon-
strated that the proposed weighted average ensemble with the MOGA-based weight as-
signment scheme produces improved prediction results when weighed against the DE-
ANFIS, PSO-ANFIS, and HA-ANFIS models’ prediction outcomes. Therefore, the pro-
posed MOGA-based weighting tactic has the potential applicability in developing the en-
semble models to predict one-week ahead groundwater levels. 

Table 9. Ranking of the individual and ensemble prediction models using entropy weight-based 
decision theory at the observation wells. 

GT8194046 GT8194048 GT8194049 

Ranks Models 
Ranking 

Value Ranks Models 
Ranking 

Value Ranks Models 
Ranking 

Value 
1 Ensemble 0.989 1 Ensemble 0.985 1 Ensemble 0.995 
2 DE-ANFIS 0.975 2 DE-ANFIS 0.960 2 HA-ANFIS 0.959 
3 HA-ANFIS 0.862 3 HA-ANFIS 0.924 3 PSO-ANFIS 0.943 
4 PSO-ANFIS 0.845 4 PSO-ANFIS 0.819 4 DE-ANFIS 0.900 

Overall, the study’s findings confirmed that although the ensemble model is sug-
gested due to its better performance, the DE-ANFIS, HA-ANFIS, and PSO-ANFIS can also 
be successfully employed to predict one-week-ahead groundwater levels. If the emphasis 
is placed on the high level of prediction accuracy and the reduced prediction uncertainty, 
then the ensemble model undoubtedly is the best choice to be implemented. As far as the 
individual prediction models are concerned, depending on whether the importance is 
given to high precision or on computational efficiency but not as much of precision, the 
DE-ANFIS or the HA-ANFIS models may be employed, respectively. The results obtained 
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in this effort are entirely based on the groundwater flow lags (at a given week and the 
lagged periods) as inputs and the one-week ahead groundwater flow signals as outputs. 
The input selection is facilitated by a careful analysis of the PACF functions followed by 
the FLR approach of useful variable selection. Although long-term forecasting may be 
preferable in many water resources management problems, a short-term prediction (one-
week-ahead) is adopted in the present study because of the inherent uncertainties associ-
ated with the long-term predictions with only the historical groundwater level signals. 

Depleting groundwater levels have been a pressing concern in the drought-prone 
north-western parts of Bangladesh due to the overexploitation of the groundwater re-
sources to meet the demands for agricultural, domestic, and industrial requirements. In 
the Tanore Upazila of Rajshahi district, excessive groundwater abstraction has reduced 
the groundwater level to a considerable amount in recent years. Therefore, the develop-
ment of a precise and robust prediction tool using an ensemble of prediction models for 
the groundwater level fluctuations in this region can help develop a sustainable regional 
groundwater management strategy. Nevertheless, enhanced precision in the one-step-
ahead prediction of groundwater level signals is one of the most vital aspects of develop-
ing such a robust regional or global groundwater management policy. The results ob-
tained in this research using a weighted average ensemble of various promising machine-
learning algorithms may be of great interest to the stakeholders and policymakers. 

4. Performance Comparison of the Prediction Models for Forecasting 2-, 4-, 6-, and 8-
Week Ahead Groundwater Level Fluctuations 

The generalization capability of the proposed models and their ensemble is further 
investigated by employing the models to forecast groundwater levels for higher forecast-
ing horizons (2-, 4-, 6-, and 8-week ahead). For this purpose, the generalization capability 
of the developed models at higher forecasting horizons is analysed for observation well 
GT8134046 as an example. Six statistical performance measures including benefit (R, IOA, 
NS, a-10 index) and cost indices (rRMSE, MAD) are calculated using actual and model-
predicted groundwater level values for providing 2-, 4-, 6-, and 8-week ahead forecasting. 
The results are presented in Figures 11 and 12. Figure 11 presents a comparison of the 
performances of the individual and ensemble models based on R, IOA, NS, and a-20 index 
criteria. It is observed from Figure 11 that performances of the individual models do not 
vary substantially among the forecasting horizons indicating reliable performances of the 
proposed models at higher forecasting horizons. Although performances slightly deteri-
orate at the higher forecasting horizons, all benefit indices have values higher than 0.8 for 
all prediction horizons, which clearly demonstrate the acceptable performances of the 
models with higher accuracy even at 8-weeks ahead forecasting. It is also evident from 
Figure 11 that the proposed ensemble model shows superior performances for all in-
stances of performance indices and forecasting horizons. It is worthwhile to mention that 
the analysis presented here is based on the data obtained from observation well GT 
8134046 for demonstrating the generalization capability of the proposed ensemble mod-
elling approach. Based on this analysis, it is perceivable that the proposed model would 
provide reliable performances for higher forecasting horizons at other observation wells. 
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Figure 11. Performance comparison of the individual and ensemble models for forecasting the 1-, 2-, 4-, 6-, and 8-week 
ahead groundwater level fluctuations at GT8134046. 

Performances of the models are also evaluated using NRMSE and MAD criteria. 
Lower values of rRMSE and MAD at all considered forecasting horizons demonstrate that 
the proposed models are able to forecast groundwater level values when higher forecast-
ing horizons, e.g., 8-weeks ahead (2 months ahead) are used. Furthermore, the ensemble 
model produces lower values of rRMSE and MAD than the individual models, which in-
dicates the superior performance of the ensemble model over the standalone models. 

 

Figure 12. Performance comparison of the individual and ensemble models based on NRMSE and MAD criterion. 

Finally, ranking of the individual and ensemble models for 2-, 4-, 6-, and 8-weeks 
ahead groundwater level forecasting is performed, and is presented in Table 10. It can be 
perceived from Table 10 that the proposed ensemble model appeared to be the top-ranked 
model for all considered forecast horizons. Therefore, the proposed ensemble model can 
be applied to forecast groundwater levels at higher forecasting horizons. 
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Table 10. Ranking of models using entropy weight-based decision theory for 2-, 4-, 6-, and 8-week ahead groundwater 
level forecasting at the observation well GT8194046. 

Models 
2-Week Ahead 4-Week Ahead 6-Week Ahead 8-Week Ahead 

Ranking Value Ranks Ranking Value Ranks Ranking Value Ranks Ranking Value Ranks 
Ensemble 0.993 1 0.995 1 0.973 1 0.995 1 
DE-ANFIS 0.962 2 0.979 2 0.911 3 0.978 2 
HA-ANFIS 0.887 3 0.940 3 0.964 2 0.966 3 
PSO-ANFIS 0.865 4 0.919 4 0.881 4 0.956 4 

5. Conclusions 
Precise and robust prediction of groundwater levels can be effectively employed in 

providing a short- and medium-term prediction modelling approach for groundwater 
level fluctuations. This study provides a robust prediction tool for one- and multi-week 
ahead groundwater level fluctuations through a weighted average ensemble of three op-
timization algorithm tuned ANFIS models (DE-ANFIS, PSO-ANFIS, and HA-ANFIS). The 
suitable weekly lag times of groundwater levels are used as inputs to the prediction mod-
els, while the output from the models is the one- and multi-week ahead groundwater lev-
els. The optimal combination of inputs for the models is executed by carefully examining 
the PACF functions followed by performing the FLR approach. The performance compar-
ison of the proposed models is performed by adopting a set of performance evaluation 
indexes. Results demonstrate that the optimized ANFIS models have sufficiently accurate 
predictions as indicated by the higher values of R2, IOA, and NS as well as lower values 
of RMSE, MAE, and MAD. A weighted average ensemble of the optimized ANFIS models 
is proposed to achieve more reliable and accurate predictions. The weights of the individ-
ual prediction models computed by a Multiple Objective Genetic Algorithm (MOGA) are 
used to construct the ensemble of the optimized ANFIS models. The performance evalu-
ation indexes for the ensemble prediction are computed and compared with those of the 
individual models. The performance comparison is performed using a ranking scheme of 
a well-known decision theory, Shannon’s entropy. The results of this ranking scheme re-
veal the superiority of the ensemble models over all the individual models. 

The most important finding of this study is that employing a weighted-average en-
semble of data-driven prediction models can improve predictions’ robustness by mini-
mizing the influence of a worse-performing prediction model. This is especially important 
because it is difficult, if not impossible, to select the best prediction model for a particular 
problem due to a vast number of alternatives and that the best prediction model can be 
changed with the changes in the dataset. Therefore, it can be concluded that the proposed 
weighted average ensemble approach can be considered as a robust approximation 
method for predicting one-week-ahead groundwater level fluctuations for the selected 
observation wells. Furthermore, groundwater level forecasts conducted for 2-, 4-, 6-, and 
8-weeks in advance using data from the observation well GT8194046 reveal the potential 
applicability of the ensemble approach proposed in this effort. Future research may be 
directed towards applying the proposed approach in predicting multi-step-ahead 
groundwater level fluctuations at other locations. 
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Appendix A 
A.1. Performance Evaluation Indexes 

The performance evaluation indexes employed to evaluate the performance of all 
standalone optimized ANFIS models, as well as their ensemble, are given below. 

Correlation Coefficient, R 

𝑅 = ∑ ൫𝐺𝐿௜,௔ − 𝐺𝐿௔തതതതത൯൫𝐺𝐿௜,௔ − 𝐺𝐿௣തതതതത൯௡௜ୀଵට∑ ൫𝐺𝐿௜,௔ − 𝐺𝐿௔തതതതത൯ଶ௡௜ୀଵ ට∑ ൫𝐺𝐿௜,௣ − 𝐺𝐿௣തതതതത൯ଶ௡௜ୀଵ  (A1)

Relative RMSE, rRMSE 

𝑟𝑅𝑀𝑆𝐸 = ோெௌாீ௅ೌതതതതതത = ටభ೙ ∑ ൫ீ௅೔,ೌିீ௅೔,೛൯మ೙೔సభ ீ௅ೌതതതതതത   (A2)

The rRMSE is often referred to as the Scatter Index (SI), which provides a qualitative 
comparison of model performances (excellent, good, fair, and poor). The SI index classifies 
a model as acceptable or unacceptable according to the following criteria 𝑆𝐼 < 0.1 𝐸𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡0.1 < 𝑆𝐼 < 0.2 𝐺𝑜𝑜𝑑0.2 < 𝑆𝐼 < 0.3 𝐹𝑎𝑖𝑟𝑆𝐼 > 0.3 𝑃𝑜𝑜𝑟  (A3)

Maximum Absolute Error, MAE 𝑀𝐴𝐸 = 𝑚𝑎𝑥  ൣห𝐺𝐿௜,௔ − 𝐺𝐿௜,௣ห൧ (A4)

Median Absolute Deviation, MAD 𝐴𝐷൫𝐺𝐿௔, 𝐺𝐿௣൯ = 𝑚𝑒𝑑𝑖𝑎𝑛൫ห𝐺𝐿ଵ,௔ − 𝐺𝐿ଵ,௣ห, ห𝐺𝐿ଶ,௔ − 𝐺𝐿ଶ,௣ห, … , ห𝐺𝐿௡,௔ − 𝐺𝐿௡,௣ห൯ 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛 (A5)

Mean Bias Error, MBE 

𝑀𝐵𝐸 = 1𝑛 ෍൫𝐺𝐿௜,௔ − 𝐺𝐿௜,௣൯௡
௜ୀଵ  (A6)

T-statistic test, 𝑇௦௧௔௧ [91] 

𝑇௦௧௔௧ = ඨ (𝑛 − 1) ∗ 𝑀𝐵𝐸ଶ𝑅𝑀𝑆𝐸ଶ − 𝑀𝐵𝐸ଶ (A7)

Uncertainty with 95% confidence level, 𝑈ଽହ 𝑈ଽହ = 1.96 × ඥ𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛ଶ − 𝑅𝑀𝑆𝐸ଶ (A8)

Global Performance Index, GPI 𝐺𝑃𝐼 = 𝑀𝐵𝐸 ∗ 𝑅𝑀𝑆𝐸 ∗ 𝑈ଽହ ∗ 𝑇௦௧௔௧ ∗ (1 − 𝑅ଶ) (A9)

Nash–Sutcliffe Efficiency Coefficient, NS 
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𝑁𝑆 = 1 − ∑ ൫𝐺𝐿௜,௔ − 𝐺𝐿௜,௣൯ଶ௡௜ୀଵ∑ ൫𝐺𝐿௜,௔ − 𝐺𝐿௔തതതതത൯ଶ௡௜ୀଵ  (A10)

Theil inequality statistics, U 

𝑈 = ට1𝑛 ∑൫𝐺𝐿௜,௣ − 𝐺𝐿௜,௔൯ଶ
ට1𝑛 ∑൫𝐺𝐿௜,௣൯ଶ + ට1𝑛 ∑൫𝐺𝐿௜,௔൯ଶ (A11)

Bias proportion of Theil inequality statistics, 𝑈஻ 

𝑈஻ = ൫ 𝐺𝐿௣തതതതത − 𝐺𝐿௔തതതതത൯ଶ(1 𝑇⁄ ) ∑൫𝐺𝐿௜,௣ − 𝐺𝐿௜,௔൯ଶ (A12)

Variance proportion of Theil inequality statistics, 𝑈௏ 

𝑈௏ = ൫ 𝜎௣ − 𝜎௔൯ଶ(1 𝑇⁄ ) ∑൫𝐺𝐿௜,௣ − 𝐺𝐿௜,௔൯ଶ (A13)

Covariance proportion of Theil inequality statistics, 𝑈஼ 

𝑈஼ = 2(1 − 𝑅)𝜎௣𝜎௔(1 𝑇⁄ ) ∑൫𝐺𝐿௜,௣ − 𝐺𝐿௜,௔൯ଶ (A14)

where 𝐺𝐿௜,௔ and 𝐺𝐿௜,௣ represent actual (obtained) and model predicted 𝐺𝐿 values at the 𝑖௧௛ step, respectively; 𝐺𝐿௔തതതതത is the mean value of the actual 𝐺𝐿 values; 𝜎௔ indicates stand-
ard deviation value of the actual 𝐺𝐿, 𝜎௣ denotes standard deviation of the predicted 𝐺𝐿 
values, 𝑛 represents the numeral of data points, 𝐸𝐷 is the Euclidian distance of any data 
points from their ideal values, ∝ is relative variability in the predicted and actual 𝐺𝐿 val-
ues, and 𝛽 is the ratio between the mean (average) predicted and mean (average) actual 𝐺𝐿 data demonstrating the bias. 

In addition, according to a recently proposed engineering index, 𝑎ଶ଴ − 𝑖𝑛𝑑𝑒𝑥, we cal-
culated an 𝑎ଵ଴ − 𝑖𝑛𝑑𝑒𝑥 to assess the reliability of the developed prediction models. 𝑎ଵ଴ − 𝑖𝑛𝑑𝑒𝑥 = 𝑚ଵ଴𝑀  (A15)

where, 𝑀 denotes the quantity of test datasets and 𝑚ଵ଴ is the numeral of test samples 
that have a 𝐴𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒⁄  ranging between 0.90–1.10. For an impeccable 
data-driven prediction modelling approach, the numeric value of 𝑎ଵ଴ − 𝑖𝑛𝑑𝑒𝑥 is antici-
pated to have a value of unity (i.e., 1). The values of 𝑎ଵ଴ − 𝑖𝑛𝑑𝑒𝑥 has physical engineering 
significance: it states that the number of samples that comply with forecasted values 
within a range of variation of ± 10% weighed against the actual values. 

A.2. Ranking of the Prediction Models Using Shannon’s Entropy 
The following steps are used to calculate Shannon’s entropy: 

Step 1: Formation of a decision matrix of prediction models (individual models and the 
ensemble) and performance evaluation indexes. It is assumed that there be 𝑚 prediction 
models and 𝑛 performance evaluation indexes. Then, the resulting decision matrix is 
given by: 

𝐺𝐿௜௝ = ൦𝐺𝐿ଵଵ𝐺𝐿ଵଶ⋮𝐺𝐿ଵ௡
𝐺𝐿ଶଵ𝐺𝐿ଶଶ⋮𝐺𝐿ଶ௡

⋯⋯⋮⋯
𝐺𝐿௠ଵ𝐺𝐿௠ଶ⋮𝐺𝐿௠௡൪ (A16)
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Step 2: Standardization of the decision matrix for minimizing the impacts of index dimen-
sionality. The performance index values are standardized between 0–1 (𝑆௜௝ ∈ ሾ0,1ሿ, 𝑖 =1,2, … , 𝑚; 𝑗 = 1,2, … , 𝑛). The values of 𝑆௜௝ are computed as: 

𝑆௜௝ = ⎩⎪⎨
⎪⎧ 𝐺𝐿௜௝𝑚𝑎𝑥(𝐺𝐿௜ଵ, 𝐺𝐿௜ଶ, … , 𝐺𝐿௜௡) , 𝑓𝑜𝑟 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑖𝑛𝑑𝑒𝑥𝑒𝑠𝐺𝐿௜௝𝑚𝑖𝑛(𝐺𝐿௜ଵ, 𝐺𝐿௜ଶ, … , 𝐺𝐿௜௡) , 𝑓𝑜𝑟 𝑐𝑜𝑠𝑡 𝑖𝑛𝑑𝑒𝑥𝑒𝑠  (A17)

Step 3: Computation of each index’s entropy via utilizing the concepts of Shannon’s en-
tropy. The entropy value of the 𝑗௧௛ index was calculated as: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦௝ = −𝑘 ෍ 𝑓௜௝௠
௜ୀଵ 𝑙𝑛 𝑓௜௝ (A18)

where, 𝑓௜௝ = 𝑆௜௝ ∑ 𝑆௜௝௠௜ୀଵ⁄   (A19)𝑘 = 1 𝑙𝑛 𝑚⁄  (A20)

Step 4: Calculation of each index’s entropy weight value. The 𝑗௧௛ index’s entropy weight 
was calculated as: 𝑤(𝑒𝑛𝑡𝑟𝑜𝑝𝑦)௝ = 1 − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦௝𝑛 − ∑ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦௝௡௝ୀଵ  (A21)

This entropy-based weight designates the prominence of any particular performance 
index in the phases of the entire decision-making. The larger the numeric value of the 
entropy weight, the greater information the specific index conveys, and the more signifi-
cant this performance index will become in the decision-making process. 

Step 5: Calculation of each model’s rank weight is carried out by summing up the multi-
plication of every index’s entropy weight and the normalized value of that particular in-
dex. This step is mathematically represented by: 

𝑤(𝑒𝑛𝑡𝑟𝑜𝑝𝑦)௜ = ෍ 𝑆௜௝ × 𝑤(𝑒𝑛𝑡𝑟𝑜𝑝𝑦)௝௡
௝ୀଵ  (A22)

Step 6: Determination of model ranking 𝑚𝑎𝑥 ሾ𝑤(𝑒𝑛𝑡𝑟𝑜𝑝𝑦)௜ሿ, … . , 𝑚𝑖𝑛ሾ𝑤(𝑒𝑛𝑡𝑟𝑜𝑝𝑦)௜ሿ ; 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑚 (A23)
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