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Abstract: This paper aims to develop a stochastic model (SM_EID_IOT) for estimating the 

inundation depths and associated 95% confidence intervals at the specific locations of the roadside 

water-level gauges, i.e., Internet of Things (IoT) sensors under the observed water levels/rainfalls 

and the precipitation forecasts given. The proposed SM_EID_IOT model is an ANN-derived one, a 

modified artificial neural network model (i.e., the ANN_GA-SA_MTF) in which the associated ANN 

weights are calibrated via a modified genetic algorithm with a variety of transfer functions 

considered. To enhance the reliability and accuracy of the proposed SM_EID_IOT model in the 

estimations of the inundation depths at the IoT sensors, a great number of the rainfall induced flood 

events as the training and validation datasets are simulated by the 2D hydraulic dynamic (SOBEK) 

model with the simulated rain fields via the stochastic generation model for the short-term gridded 

rainstorms. According to the results of model demonstration, Nankon catchment, located in 

northern Taiwan, the proposed SM_EID_IOT model can estimate the inundation depths at the 

various lead times with high reliability in capturing the validation datasets. Moreover, through the 

integrated real-time error correction method integrated with the proposed SM_EID_IOT model, the 

resulting corrected inundation-depth estimates exhibit a good agreement with the validated ones 

in time under an acceptable bias. 

Keywords: ANN; roadside IoT sensors; simulations of the gridded rainstorms; 2D inundation 

simulation and real-time error correction 

 

1. Introduction 

Owing to climate change and the occurrence of extreme rainstorm events, rainfall-

induced flood frequently takes place, causing severe damage to people’s lives and 

properties. Hence, flood early warning operation plays an important role in the 

prevention and mitigation of flood-induced hazards. Recently, with the establishment of 

the dike system, flooding is triggered merely as a result of overtopping from the 

embankments; in contrast, inundation frequently occurs in the urban and drainage zone 

owing to the failure of draining the runoff through the sewer systems [1]. In the past, the 

flood early warning operation was executed based on specific thresholds (e.g., rainfall or 

inundation depth) in accordance with real-time measurements; however, the real-time 

practical inundation depths, especially in urban areas, are hardly measured owing to the 

limitation of measurement equipment or hindrance in data acquisition, processing, and 

analysis [1–3]. 
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To achieve the goal of immediately capturing and transferring the temporal changes 

in the inundation depths on the roads, the IoT is commonly utilized to set up the roadside 

sensors in order to measure the flooding/inundation depths, especially on the roads where 

the water levels result from the rainstorms of which the corresponding strength is perhaps 

greater than the draining capability with respect to the sewers. Moreover, to achieve the 

goals of flood early warning and flood-induced hazard mitigation, receiving and 

estimating the inundation information is an essential task. Among the flooding 

information, the potential inundation region and associated area are supposed to be 

known in advance. In spite of the difficulty in obtaining real-time measured observations 

(e.g., water level), they could be established through the hydraulic numerical models 

under consideration of the design rainfall events regarding the various return periods [4–

6]. For example, Chen et al. [4] established a potential inundation-map database by means 

of the hydraulic numerical model (HEC_RAS) with the design rainfall events of the 

various return periods. In referring to the above inundation-map database, the possible 

flooding area under conditions of rainfall characteristics could be quantified for the flood 

warning systems and emergency. In addition to the hydraulic/hydrological numerical 

modeling with the given precipitations, another commonly used data-derived method is 

to roughly and rapidly perform the flooding mapping in accordance with the at-site 

observations [7], such as the water-level gauges [8] or the observed inundation depths 

recorded at the roadside IoT sensors [9,10]. Furthermore, the observations related to the 

water levels/inundation depths can be generally incorporated with a GIS model with the 

digital elevation map (DEM) to estimate the area of the floodplain [11,12]. For illustration, 

Shastry and Durand [12] proposed the two-step algorithm for effectively regulating the 

more accurate floodplain topography by combining the results from the flood model 

associated with the DEM and inundation-related observations. In conclusion, the at-site 

inundation-depth estimates/forecasts should be advantageous to flooding prevention and 

mitigation. 

Generally speaking, the well-known flood simulation models applied in the 

inundation simulation can be classified into two types: deterministic models (i.e., 

physical-based models) and statistical-related models (i.e., data-driven models) [13,14]. 

Deterministic-based flooding simulation models have been proposed to forecast the water 

levels/inundation depths within the specific zone under the given precipitation of high 

resolution in time and space, leading to a possible problem where a long computation 

time might affect the effectiveness and performance [15–18] attributed to the uncertainties 

in the complicated model structure and insufficient direct measurements regarding 

physical signification [18–20]. Recently, artificial intelligent (AI) modeling has been 

comprehensively applied in the prediction of the flood-related hydrological variates (e.g., 

precipitation, discharge, and water level) [18,21–26]. Of the relevant AI models, the ANN-

based model can be more efficiently applied in modeling difficult and complicated 

phenomena described in terms of nonlinear mathematic relationships by constructing the 

linear multi-layer network using all possible predictor variables through the multiple 

training algorithm, especially for hydrological forecasts, such as the precipitation, 

discharge, and water level [9,10,27,28]. For example, Campolo et al. [10] utilized the 

logistic function as the transfer function, namely, the activation function, to train an ANN 

model that describes the spatial relationship between rainfall and water levels to issue 

forecasting information on the distributed water levels. Shamseldin [27] proposed an 

ANN-derived rainfall-runoff model based on the structure of the multi-layer perceptron 

with a specific transfer function (i.e., the logistic/sigmoid function) to provide the river-

runoff forecasts using the weighted average of rainfall and expectation of the rainfall 

index as well as the observed discharge as model inputs. Furthermore, Tamiru and Dinka 

[28] combine the results from the ANN model and the hydraulic numerical model (HEC-

RAS) to carry out the flood-triggered inundation simulation; in detail, the inundation 

simulation is implemented by the HEC-RAS model under the boundary condition of 

runoff hydrographs at the up-stream and lateral branches estimated by the ANN model. 
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However, the performance of the resulting forecasts from the ANN models is possibly 

impacted by uncertainties in the network structure, as well as selection of the transfer 

functions and associated parameters (i.e., connection weights between different layers, 

ANN weights). Thus, Wu et al. [18] presented a modified ANN (called ANN_GA-

SA_MTF) model by adopting a variety of transfer functions in which the ANN weights 

are calibrated using the genetic algorithm based on the parameter sensitivity (GA-SA) 

[29]. Particularly, within the ANN_GA-SA_MTF model, a real-time error correction model 

for the water-level forecasts derived using the time series and Kalman filtering approach 

RTEC_TS&KF [30] are combined in order to boost the accuracy of the estimates. 

Therefore, this study intends to develop a stochastic model for estimating the 

inundation depths at the roadside water-level IoT sensors by training an ANN-derived 

models, named the SM_EID_IOT model. With training the proposed SM_EID_IOT model, 

to enhance the reliability of its results, a great number of rainfall-induced inundation 

simulations are adopted as the training dataset; in particular, the relevant concepts 

regarding the real-time error correction technique on the basis of the different estimations 

and observations at the previous times during the rainfall-induced flood event are applied 

in the development of the proposed SM_EID_IOT model in order to obtain more accurate 

model outputs. It is expected that the proposed SM_EID_IOT can not only provide the 

inundation depths at the roadside IoT sensors with high accuracy, but also quantify their 

corresponding reliability, which is advantageous to the decision-making regarding early 

flood warning operation and infrastructure-planning of a water-proofing system as a 

reference. 

2. Methodology 

2.1. Model Concept 

As mentioned in Section 1, an ANN-based inundation-depth estimation model at the 

IoT sensors of interest, called the SM_EID_IOT model, is developed herein; the framework 

of the model development can be generally classified into the three parts: (1) generation 

of the gridded rainstorm events in the study area; (2) 2D inundation simulations by means 

of the well-known hydraulic dynamic numerical modeling; and (3) establishment of an 

ANN-derived model for estimating inundation depths at the IoT sites. 

At first, to facilitate the accuracy and reliability of the results from the proposed 

SM_FIDEP_IOT, a great number of the regional rainfall events are simulated via the 

stochastic modeling for generating the gridded short-term rainstorms (i.e., SM_GSTR 

model) [31]. Afterwards, they are used in the two-dimensional (2D) inundation simulation 

by the hydraulic dynamic numerical model (i.e., SOBEK) [32] to reproduce the big data 

involving the rainfall-induced inundation simulations, including the gridded inundations 

and corresponding floodplain area treated as the training datasets. Within the 

development of the proposed SM_EID_IOT model, this study adopts the ANN-based 

model, ANN_GA-SA_MTF, proposed by Wu et al. [18] for describing the relationship 

between the at-site inundation depths and the related rainfall and water levels. The 

associated connection weights of the neurons at various layers are calibrated through the 

genetic algorithm based on the sensitivities of model parameters (named the SA-GA 

method) [29] under consideration of the multiple transfer functions. 

Unlike the well-known ANN-based models, in order to reduce the effect of 

uncertainties in the observations and model parameters, the resulting inundation-depth 

estimates from the proposed SM_EID_IOT model need to be immediately corrected in 

accordance with the difference between the observed inundation depths and forecasted 

ones at the forward time steps through the real-time error correction method, 

RTEC_TS&KF [30]. The aforementioned relevant methods and concepts are addressed 

below. 

2.2. Generation of Gridded Rainstorm Events 
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It is well-known that a large training dataset is desired for training the ANN model. 

Therefore, in this study, the stochastic modeling of gridded short-term rainstorms 

developed by Wu et al. (2021) (named the SM_GSTR model) is employed to simulate a 

great number of rainstorms at all grids within the study area. Within the SM_GSTR model, 

the event-based rainstorm is basically grouped into three rainfall characteristics, including 

the event-based rainfall duration, gridded rainfall depths, and gridded storm depths 

composed of the dimensionless rainfalls at the various dimensionless times; with respect 

to the gridded storm pattern, it can be grouped into two components, the areal average of 

the dimensionless rainfalls (i.e., the storm pattern) and the associated deviations at the 

various dimensionless times. Of these, the gridded rainfall characteristics, gridded rainfall 

depths, and deviations regarding the areal average of the storm patterns are treated as the 

spatially correlated variates and the areal average storm patterns are regarded as the 

temporally correlated variates [31]. Figure 1 shows the process of characterizing the 

gridded rainstorms into five features (i.e., the gridded rainfall characteristics). 

 

Figure 1. Graphical process of extracting the gridded rainfall characteristics from observed hyetographs of rainstorm 

events [31]). 

Upon obtaining the gridded rainfall characteristic, within the SM_GSTR model, the 

non-normal correlated multivariate Monte Carlo simulation approach (Chang et al., 1996) 

based on the correlation structures of gridded rainfall characteristics in time and space is 

adopted to generate a desired number of event-based rainfall events through the 

transform algorithms. The transform algorithms could be employed via the Nataf 

bivariate distribution model [32], including the transformation to standard normal space, 

orthogonal transform, and inverse transformation, based on the following correlation 

relationship: 
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𝜌𝑖𝑗 = ∫ ∫ ⌊
𝑥𝑖−𝜇𝑖

𝜎𝑖
⌋ ⌊

𝑥𝑗−𝜇𝑗

𝜎𝑗
⌋ ∅𝑖𝑗(⟨𝑧𝑖 , 𝑧𝑗|𝜌𝑖𝑗

∗ ⟩)
∞

−∞

∞

−∞
dz𝑖dz𝑗  (1) 

𝑧𝑖 =
𝑥𝑖−𝜇𝑖

𝜎𝑖
; 𝑧𝑗 =

𝑥𝑗−𝜇𝑗

𝜎𝑗
 (2) 

where Xi and Xj are the correlated variables at the points i and j, respectively, with the 

means 𝜇𝑖  and 𝜇𝑗 , the standard deviations 𝜎𝑖  and 𝜎𝑗 , and correlation coefficient 𝜌𝑖𝑗 , 

respectively; i and Zj are bivariate standard normal variables corresponding to the 

variables Xi and Xj, with the correlation coefficient 


ij  and the joint standard normal 

density function ∅ij(∙). To generate a number of variables with high correlation 𝜌𝑖𝑗 , a set 

of semi-empirical formulae [33] was derived to modify 𝜌𝑖𝑗  in the original space to ρ𝑖𝑗
∗  in 

the normal space through a transformation factor Tij, depending on the marginal 

distributions and correlation of Xi and Xj, as follows: 

𝜌𝑖𝑗
∗ = 𝑇𝑖𝑗 × 𝜌𝑖𝑗 (3) 

Eventually, the simulated gridded rainstorms can be achieved in accordance with the 

process of combining the generated gridded rainfall characteristics, as shown Figure 2 

[31]. 

 

Figure 2. Graphical process of combining the simulated gridded rainfall characteristics as the gridded rainstorms [31]. 

2.3. 2D Inundation Simulation Modeling 

Using the estimated runoff hydrograph from the observed and predicted 
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equation (NSE), named the Saint-Venant shallow water equations. Several numerical 
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the above inundation-simulation models can be classified into numerical, statistical, and 

flood inundation mapping models. The hydraulic numerical SOBEK model is a 
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used to simulate and tackle problems in river management, flood protection, design of 

canals, irrigation systems, water quality, navigation, and dredging. Therefore, this study 

uses the SOBEK model to carry out the inundation simulation with a large number of 

generated grid-based rainstorms. 

2.4. Artificial Neural Network Model Associated with Multiply Transfer Functions 

It is well-known that the related artificial neural network (ANN) models are 

frequently adopted in the forecast/estimation regarding flood-rated variates. In spite of 

the prediction of the hydrological variates being effectively carried out by the ANN-based 

models, their reliability and accuracy should be influenced by the uncertainties in the 

transfer function (i.e., activation functions) and selected and associated neuron weights 

between two layers (i.e., ANN weights) attributed to the variation in the observations 

[18,38,39]. Moreover, although the back-propagation (BP) algorithm with the gradient 

descent method is commonly utilized in training the ANN model, the formula of adjusting 

the connection weights regarding the neurons is difficult to derive under constraint with 

the transfer functions (or activation function) used. By doing so, the training performance 

fails to achieve the local optimal values with high likelihood, contributing to the given 

inappropriate initial values and leaning rate, which leads to the problem with oscillation, 

thereby reducing the convergence speed [18,22]. 

Furthermore, the numbers of neurons at hidden layers are significantly increased 

owing to the performance of training the ANN model. Thus, if few neurons are 

considered, the corresponding network structure does not easily emulate the underlying 

function attributed to the insufficient parameters; in contrast, as a result of a great number 

of the neurons adopted in the network structure, the overfitting problem might occur [40]. 

Therefore, several methods are proposed to estimate the number of neurons included in 

Table 1. 

Table 1. Formulae for estimating the number of hidden neurons (Wu et al., 2021) [18]. 

No of Formulae Formula Reference 

1 𝑁𝐻𝑁 = (√1 + 8 × 𝑁𝐼𝑃 − 1) 2⁄  Li et al. method [41] 

2 𝑁𝐻𝑁 = 𝑁𝐼𝑃 − 1 Tamura and Tateishi method [28] 

3 𝑁𝐻𝑁 =
2 × 𝑁𝐼𝑃

𝑁𝐼𝑃
⁄ +1 Zhang et al. method [42] 

4 𝑁𝐻𝑁 = √𝑁𝐼𝑃 × 𝑁𝑂𝑃 Shibata and Ikeda method [43]) 

5 𝑁𝐻𝑁 = 2𝑁𝐼𝑃 − 1 Hunter et al. method [44] 

6 𝑁𝐻𝑁 =
[4 × (𝑁𝐼𝑃)2 + 3]

[(𝑁𝐼𝑃)2 − 8]⁄  Sheela and Deepa method [45] 

Therefore, the network structure and the types of the transfer functions are supposed 

to be regarded as the uncertainty factors for training the ANN models; to figure out the 

problem with the above uncertainties in the training of the ANN model, Wu et al. [18] 

proposed an ANN-derived model (named the ANN_GA-SA_MTF) by adopting the 

network structure of three layers with multiple transfer functions (see Table 2) in which 

the associated ANN weights are calibrated by means of the genetic algorithm based on 

the sensitivities to model parameters (called the GA-SA algorithm) [29]. 

Table 2. Transform functions commonly used (Wu et al., 2021, Maca et al., 2014) [18,38]. 

Transfer function Formula Derivative 

TF1 Logistic (soft step, Sigmoid) f(x) =
1

1 + 𝑒−∝𝑥
 f ′(x) = f(x)(1 − f(x)) 

TF2 Tanh f(x) = tanh(x) =
2

1 + 𝑒−2∝𝑥
− 1 f ′(x) = 1 − 𝑓(𝑥)2 

TF3 Arctan f(x) = 𝑡𝑎𝑛−1(∝ 𝑥) f ′(x) =
1

(∝ 𝑥)2 + 1
 

TF4 Identity f(x)= ∝x f ′(x) = ∝ 
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TF5 Rectified linear unit (ReLU) f(x) = {
0 𝑓𝑜𝑟 𝑥 < 0
1 𝑓𝑜𝑟 𝑥 ≥ 0

 f ′(x) = {
0 𝑓𝑜𝑟 𝑥 < 0
1 𝑓𝑜𝑟 𝑥 ≥ 0

 

TF6 Parametric rectified linear unit (PReLU, leaky ReLU) f(x) = {
∝ 𝑥 𝑓𝑜𝑟 𝑥 < 0

𝑥 𝑓𝑜𝑟 𝑥 ≥ 0
 f ′(x) = {

∝ 𝑓𝑜𝑟 𝑥 < 0
1 𝑓𝑜𝑟 𝑥 ≥ 0

 

TF7 Exponential linear unit (ELU) f(x) = {
∝ (𝑒𝑥 − 1)𝑓𝑜𝑟 𝑥 < 0

𝑥 𝑓𝑜𝑟 𝑥 ≥ 0
 f ′(x) = {

𝑓(𝑥)+∝ 𝑓𝑜𝑟 𝑥 < 0
1 𝑓𝑜𝑟 𝑥 ≥ 0

 

TF8 Inverse abs (IA) y(x) =
𝑥

1 + | ∝ 𝑥|
 y′(x) =

1

(1 + |𝑎 ∝ 𝑥|)2
 

TF9 Rootsig (RS) y(x) =
∝ 𝑥

1 + √1 + (∝ 𝑥)2
 y′(x) =

1

(1 + √1 + (∝ 𝑥)2)√1 + 𝑎(∝ 𝑥)2
 

TF10 Sech function (SF) y(x) =
2

exp(∝ 𝑥) + exp (−∝ 𝑥)
 y′(x) = −y(x)tanh (∝ 𝑥) 

To quantify the reliability of the model outputs, the proposed ANN_GA-SA_MTF 

model is collaborated with a nonparametric method, named the weighted likelihood 

sample quantile estimator method proposed by Yang and Tung [46], to compute the 

quantiles of resulting model outputs via the following equation: 

𝑋𝑝,𝑊𝐿 = ∑ 𝑊𝑟,𝑛,𝑊𝐿𝑋(𝑟) 𝑟∈𝜔   (4) 

in which 𝑊𝑟,𝑛,𝑊𝐿 =
𝐹𝑟,𝑛(𝑝)

∑ 𝐹𝑠:𝑛(𝑝)𝑠∈𝜔
, with ω being the band width that contains a set of order 

statistics (
)()2()1( nXXX   ) that are deemed significant in contributing to the 

estimation of Xp as a result of the band width being no smaller than 2.0. 

In addition to quantifying the reliability of the model estimates using the results from 

the ANN_GA-SA_MTF model, the weighted averages of model estimates are issued as 

forecasts using the following equation: 

�̂�𝑊𝐴 = ∑  [𝑊𝑇𝐹
𝑖 × �̂�(𝜃𝑇𝐹𝑖

𝑗
)]

𝑁𝑇𝐹
𝑖=1   (5) 

𝑊𝑇𝐹
𝑖 =

1

𝐸(𝜃𝑇𝐹
𝑖 )

∑
1

𝐸(𝜃𝑇𝐹
𝑖 )

𝑁𝑇𝐹
𝑖=1

 (6) 

in which 𝑁𝑇𝐹 is the number of transfer functions considered; 𝑌𝑘  and �̂�𝑘((𝜃𝑇𝐹
𝑖 ) denote the 

observed hydrological data and estimated ones by the ANN_GA-SA_MTF model with the 

jth set of the appropriate parameters 𝜃𝑇𝐹
𝑖 , respectively; and 𝑊𝑇𝐹

𝑖  represents the weighted 

factor of the ith transfer function with the appropriate parameters 𝜃𝑇𝐹
𝑖  calculated, with 

the 𝐸(𝜃𝑇𝐹
𝑖 ) being the objective-function value (i.e., the root mean square error, RMSE). 

In particular, to provide more reliable and accurate model outputs, the real-time error 

correction method established using the time-series approaches and Kalman filtering [30] 

is adopted within the ANN_GA-SA_MTF to immediately adjust the forecasts (𝑌𝑐𝑜𝑟𝑟

𝑡𝑝𝑟𝑒𝑑 ) 

based on real-time observations through the Internet of Things (IoT) using the ANN_GA-

SA_MTF model by means of the following equation: 

𝑌𝑐𝑜𝑟𝑟

𝑡𝑝𝑟𝑒𝑑
= 𝑌𝑝𝑟𝑒𝑑

𝑡𝑝𝑟𝑒𝑑
+ 𝜀𝑇𝑆

𝑡𝑝𝑟𝑒𝑑
+ 𝜀𝐾𝐹

𝑡𝑝𝑟𝑒𝑑 (7) 

where 𝑌𝑝𝑟𝑒𝑑

𝑡𝑝𝑟𝑒𝑑  stands for the model estimates (i.e., the forecasts); and 𝜀𝑇𝑆

𝑡𝑝𝑟𝑒𝑑
 and 𝜀𝐾𝐹

𝑡𝑝𝑟𝑒𝑑 

serve as the forecast error estimated by the time series approaches and Kalman filtering 

method, respectively. 

In summary, the framework of developing the ANN_GA-SA_MTF model is 

generally classified into the four steps (see Figure 3): the parameter calibration using the 

GA-SA approach, the reliability quantification of model outputs, the estimation of model 

outputs, and the real-time correction of model outputs; the associated concepts are briefly 

introduced as follows. 
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Figure 3. Graphic framework of developing and applying the ANN_GA-SA_MTF model [18]. 

2.5. Model Formulation 

To sum up the aforementioned concepts, this study intends to utilize the ANN_GA-

SA_MTF model to develop a smart model for forecasting the inundation depth at the 

roadside IoT sensors, named the SM_EID_IOT model. As a result of the inundation being 

significantly increased by the rainstorm, the inundation depths at the specific locations, 

where the IoT sensors are set up, should be temporally and spatially related to the rainfalls 

and inundation depths at the previous time steps during an event (Notaro et al., 2013; Lyu 

et al., 2018). Although the resolution of the rainstorm in space obviously impacts the 

estimation of the flood/inundation, the areal average rainfalls calculated from a number 

of the raingauges within the small basin are frequently applied in the 

hydrological/hydraulic analysis under simplification of the rainfall-runoff simulation [47]. 

Therefore, in this study, in addition to the uncertainties in the resolutions of the rainfall 
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parameters of the proposed ANN_GA-

SA_MTF model and weighted factors for a 

variety of transfer functions
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and inundations in time (i.e., the forward time step from the current time), the distances 

to the IoT sensor for calculating the areal-average rainfall with the rainfalls at the grids 

(i.e., gridded rainfall) is treated as the uncertainty factor calculated through the following 

equation: 

�̅�𝐼𝑂𝑇
𝑡 =

1

𝑁𝑔
∑ 𝑅𝑖

𝑡𝑁𝑔

𝑖=1
  (8) 

where �̅�𝐼𝑂𝑇
𝑡  accounts for the areal-average rainfall at the IoT sensor; 𝑁𝑔 is the number of 

the grids, the distance of which to the IoT senor is equal to or less than the specific critical 

distance (i.e., critical spatial resolution); and Lc and 𝑅𝑖
𝑡 serve as the gridded rainfalls for 

the time step t-hour at the ith grid 

Therefore, on the basis of the ANN_GA-SA_MTF model with generated rainfall-

inundation depths and associated gridded rainstorms, this study establishes the 

relationship of the inundation depths at the IoT sensors with the inundation depths and 

rainfall at the lead times, as well as the previous time steps, and the inundation depths at 

the forward time step can be written as follows: 

ℎ̂𝐼𝑂𝑇
𝑡+1 = fANNGA−SA_MTF(�̅�𝐼𝑂𝑇

𝑡+1, �̅�𝐼𝑂𝑇
𝑡 ⋯ �̅�𝐼𝑂𝑇

𝑡−𝑇𝑐−1
, ℎ𝐼𝑂𝑇

𝑡 , ⋯ ℎ𝐼𝑂𝑇
𝑡−𝑇𝑐−1

) (9) 

in which Tc serves as the critical values of the resolutions in time (i.e., critical temporal 

resolution); ℎ̂𝐼𝑂𝑇
𝑡+1 is the inundation-depth estimate for the lead time (t + 1 h); �̅�𝐼𝑂𝑇

𝑡+1 denotes 

the rainfall forecast at the lead time (t + 1 h); �̅�𝐼𝑂𝑇
𝑡 , ⋯ �̅�𝐼𝑂𝑇

𝑡−𝑇𝑐−1
 account for the areal average 

rainfall at the current time (t hour) and those from the forward TR hours calculated from 

the gridded rainfalls within the specific critical spatial resolution, i.e., the distance Lc to 

the IoT sensor; and ℎ𝐼𝑂𝑇
𝑡 , ⋯ ℎ𝐼𝑂𝑇

𝑡−𝑇𝑐−1
 represent the observed inundation depths from the t 

hour to the t-Th hours under consideration of the critical temporal resolution (i.e., the 

forward time steps Th.). Note that the critical values of the resolution in time and space TR 

and Th can be determined by evaluating the spatially and temporally varying trend of the 

at-site inundation depth with the areal average rainfall via the correlation and sensitivity 

analysis in this study. 

2.6. Model Framework 

According to the aforementioned concepts, the development and application of the 

proposed SM_FIDEP_IOT model can be grouped into six parts: (1) generation of the 

rainstorm events at all grids within the study area; (2) 2D rainfall-induced inundation 

simulation; (3) extraction of the at-site inundation depths and corresponding rainfall at 

neighboring grids; (4) identification of critical resolution in time and space; (5) 

development of the proposed SM_EID_IOT model on the basis of the ANN_GA-SA_MTF 

model; and (6) integration with the real-time error correction (RTEC_TS&KF) method to 

adjust the inundation-depth estimates. The detained framework of the model 

development and application are addressed as follows: 

2.6.1. Model Development 

Step [1]: Collect the historical rainstorm events at all grids within the study area and 

extract their gridded characteristics, i.e., rainfall duration, gridded rainfall 

depth, areal average of cumulative dimensionless rainfall, and the associated 

bias. 

Step [2]: Reproduce a great number of rainfall fields with high spatiotemporal 

resolutions comprised of the simulated gridded rainfall characteristics by the 

SM_GSTR model with the results from uncertainty analysis using the 

observations obtained in Step [1]. 

Step [3]: Carry out the 2D inundation simulation by means of the SOBEK model with a 

great number of gridded rainstorms simulated in Step [2] to obtain the 

simulations of inundations depths at the IoT sensors. 

Step [4]: Extract the simulated inundation depths at the IoT sensor under consideration 
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of different periods (i.e., critical temporal resolution) and the corresponding 

simulated rainfalls at the neighboring girds within the specific distances to the 

IoT sensor (i.e., critical spatial resolution). 

Step [5]: Perform correlation and sensitivity analysis to determine the appropriate 

critical resolutions in time and space. 

Step [6]: Calculate the areal average rainfalls from the simulations of the gridded rainfall 

under the consideration of critical temporal and spatial resolutions determined 

in Step [5]. 

Step [7]: Calibrate the parameters of the ANN_GA-SA_MTF model used in the 

estimation of inundation depths via the proposed SM_EDI_IOT model using 

the simulations of the inundation depths at the IoT sensor and corresponding 

areal average rainfalls. 

2.6.2. Model Application 

Step [1]: Collect the observed inundation depths during the rainfall-induced flood event 

at the IoT sensor and calculate the corresponding areal average rainfalls under 

the conditions of the appropriate temporal and spatial resolutions. 

Step [2]: Obtain the resulting inundation-depth estimate at the lead times and associated 

95% confidence intervals from the proposed SM_EID_IOI model. 

Step [3]: Carry out the real-time correction regarding the resulting inundation-depth 

estimates at the lead times from the proposed SM_EID_IOT model with the 

RTEC_TS&KF method in accordance with the bias of the inundation-depth 

estimates in comparison with the observations at the forward time steps during 

the event. 

3. Study Area and Data 

The Nankan River—whose length and drainage area and slope are 31 km and 224 

km2, respectively (see Figure 4)—in Taoyuan County is one of the most polluted rivers in 

northern Taiwan; further, its average slope and mountain area are about 0.0077 and over 

900 m, respectively. Additionally, it flows through Guishan, Taoyuan, and Luzhou 

Districts in Taoyuan City, including six riverside parks and three branches, Dongmon 

Creek, KengZi Creek, and Kengzi Creek. Of the aforementioned branches, Dongmon 

Creek is frequently inundated as a result of a reduction in the number of detention ponds 

and the cross-section area in the river channel. Note that, within the Nankan River 

watershed, Taiwan Central Weather Bureau (CWB) provides the quantitative 

precipitation estimation (QPE) with a spatial resolution of 1.5 km × 1.5 km, i.e., the rainfall 

data of 336 grids (called QPE grids), as shown in Figure 4. 
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Figure 4. Locations and DEM as well as QPE grids (blue circle) within the study area, Nankan River 

watershed (yellow region) [18]. 

As the purpose of this study is to develop a stochastic ANN-derived model using the 

training datasets comprising a great number of the rainfall-induced 2D inundation 

simulations with high resolution in time and space, the hourly rainfall of 20 rainstorm 

events at 336 grids within the study area (Nankan River watershed) (see Table 3) is 

adopted as the study data. 

Figure 5 shows the hyetographs of the 20 selected radar-based rainstorm events 

(2005–2017) provided by Taiwan Central Weather Bureau. According to the process of 

extracting the gridded rainfall characteristics, the gridded rainfall depths and storm 

patterns of the concerned 20 rainstorm events in the study area can be obtained. Therefore, 

upon establishing the proposed SM_EID_IOT model, the uncertainties in the gridded 

rainfall characteristics should be taken into account and quantified for the simulations of 

the rainstorm events at all grids within the study area. Accordingly, big data regarding 

the 2D rainfall-induced flood events can be generated at the training and validation 

datasets.
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EV1 (Rainfall depth = 140 mm) 

2005/7/17 10:00–2005/7/18 18:00 

 

EV2 (Rainfall depth = 231 mm) 

2005/8/4 09:00–2005/8/6 00:00 

 

EV3 (Rainfall depth = 126 mm) 

2005/8/31 07:00–2005/9/1 08:00 

 

EV4 (Rainfall depth = 55 mm) 

2005/10/1 23:00–2005/10/2 18:00 

 

EV5 (Rainfall depth = 106 mm) 

2008/7/26 22:00–2008/7/28 22:00 

 

EV6 ((Rainfall depth = 403 mm) 

2008/9/12 02:00–2008/9/15 00:00 

 

EV7 (Rainfall depth = 121 mm) 

2010/10/21 00:00–2010/10/22 13:00 

 

EV8 (Rainfall depth = 367 mm) 

2012/6/11 21:00–2012/6/12 23:00 

 

EV9 (Rainfall depth = 20 mm) 

2012/6/14 11:00–2012/6/15 06:00 

 

EV10 (Rainfall depth = 30 mm) 

2012/8/26 09:00–2012/8/27 08:00 

 

EV11 (Rainfall depth = 185 mm) 

2013/5/11 01:00–2013/5/13 01:00 

 

EV12 (Rainfall depth = 75 mm) 

2013/7/12 16:00–2013/7/13 14:00 

 

EV13 (Rainfall depth = 56 mm) 

2013/10/4 14:00–2013/10/6 23:00 

 

EV14 (Rainfall depth = 196 mm) 

2014/5/20 20:00–2014/5/22 00:00 

 

EV15 (Rainfall depth = 43 mm) 

2014/7/22 21:00–2014/7/24 03:00 

 

EV16 (Rainfall depth = 84 mm) 

2014/9/21 16:00–2014/9/22 12:00 

 

EV17 (Rainfall depth = 185 mm) 

2015/8/7 08:00–2015/8/8 13:00 

 

EV18 (Rainfall depth = 138 mm) 

2015/9/27 14:00–2015/9/29 05:00 

 

EV19 (Rainfall depth = 106 mm) 

2016/9/26 10:00–2016/9/28 04:00 

 

EV20 (Rainfall depth = 271 mm) 

2017/6/2 10:00–2017/6/4 04:00 

Figure 5. Hyetographs of 20 observed rainstorm events used in the model development and application [18]. 
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4. Results and Discussion 

4.1. Simulation of Rainfall-Induced Inundation 

Before carrying out the rainfall-induced inundation, a great number of the gridded 

rainstorms should be reproduced in advance. Thus, in this study, using the SG_GSTR 

method with the above statistical moments of gridded rainfall characteristics, 1000 

simulations can be obtained. After that, the SOBEK 1D-2D hydrodynamic model is 

employed to carry out the inundation simulation with 20 m × 20 m DEM of Nankan River 

watershed provided by Water Resource Agency in Taiwan (see Figure 5). Figure 6 

presents the river-channel internet and computation nodes in the SOBEK 1D-2D dynamic 

model set up according to the geographical and hydrological data in the study area. 

Within the Nankan River watershed, a mesh composed of 335 × 520 computation grids 

whose the spatial resolution is 20 m × 20 m is adopted. The above topographic, hydrologic, 

and hydraulic features used in Nankan River SOBEK model are listed in Table 3. Finally, 

using the SOBEK model for the Nankan River watershed with 1000 simulations of the 

gridded rainstorm events, the resulting 2D inundation simulations, including the gridded 

inundation depths and corresponding flooding area, could be accordingly obtained. 

Thereby, this study implements the 2D inundation simulation by taking into account 

the spatiotemporal uncertainty in the rain field to achieve the goal of providing detailed 

2D inundation information with high spatial and temporal resolution as the training 

datasets for the proposed SM_EID_IOT model. 

 

Figure 6. 2D SOBEK model for the study area (Nankan River watershed) (note: the circle is the 

rainfall-runoff computing node for each sub-basin). 

Table 3. Summary for hydraulic facilities, hydrological analysis, and topographic features used in 

the SOBEK model for the Nankan River watershed. 

Hydraulic Facility Number Hydrologic Analysis Model 

1. Sub-basins 579 Rainfall-runoff modeling SCS UH 

2. Cross-sections 3219 Topographic feature Measurement date 

3. Gates 18 1. Digital elevation map 2012 

4. Bridges 90 2. Map for land-use 2014 

5. Sewer 1386 Hydraulic factors Kn Magnitude 
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6. Manholes for sewer system 1382 Roughness coefficient 0.2–0.45 

4.2. Identification of Potential Locations of Roadside IoT Sensors 

On the basis of the results from the simulated grid-based inundation depths within 

the study area, a 2D inundation simulation with high spatial and temporal resolution can 

be used to determine the locations of the roadside water-level sensors. In detail, the road-

side water-level sensors can be set up at the locations in association with high flooding 

frequency calculated from the above 2D inundation simulations for the correction of 

flooding forecasts [30]. Under the consideration of IoT quality, the most appropriate 

locations of roadside water-level sensors can be accordingly determined and named IoT 

sensors. 

To quantify the flooding risk at all grids, this study utilizes the following equation to 

calculate the flooding probability (𝑃𝑓(ℎ𝑓 > 0)) within the study area, the Nankan River 

watershed (see Figure 4): 

𝑃𝑓(ℎ𝑓 > 0) =
∑ (𝐼𝑓(ℎ𝑓

𝑖 ))
𝑁𝐺𝑅𝑆
𝑖=1

𝑁𝐺𝑅𝑆

 

𝐼𝑓(ℎ𝑓
𝑖 ) = 1, 𝑖𝑓 𝑚𝑎𝑥(ℎ𝑓) > 0

𝐼𝑓(ℎ𝑓
𝑖 ) = 0, 𝑖𝑓 𝑚𝑎𝑥(ℎ𝑓) = 0

 

(10) 

where 𝐼𝑓(ℎ𝑓
𝑖 ) is the flooding indicator and 𝑚𝑎𝑥(ℎ𝑓) stands for the maximum gridded 

inundation. In Equation (10), if the maximum of gridded inundation depth is greater than 

zero, the corresponding flooding probability 𝐼𝑓(ℎ𝑓
𝑖 ) is equal to one; otherwise, it is equal 

to 0. Thus, in reference to Figure 7, it can be seen that inundation mainly takes place in the 

four regions. Apparently, the first 46 grids associated with high flooding probabilities 

(approximately 0.7) can be identified in the two locations marked with a red line, near the 

locations (TWD97X:280200.2, TWD97Y:2765356.7) and (TWD97X:281523.6, 

TWD97Y:2761435.5), respectively; they can be treated as the potential inundated grids. 

Therefore, among the aforementioned potential inundated spots, the locations of desired 

roadside IoT sensors can be determined. 

 

Figure 7. Flooding risk map and locations of potential inundated spots within the study area (the Nankan River 

watershed). 

Flooding risk map

45 grids

Locations of inundated spots
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In conclusion, the quantification of flood risk at all grids within the study area can be 

carried out using a large number of inundation simulations by the hydraulic numerical 

model with the generated grid-based rainstorm events through the proposed SM_GSTR 

model. Additionally, the resulting big data of rainfall-inundation simulations are 

advantageous to the identification of roadside inundation-depth sensors, which can be 

used in the real-time error correction of flood forecasts [1]. 

As the Nankan River watershed lacks practical roadside IoT sensors, the grid with 

high flooding risk, the TWD97 coordination of which is (TWD97X: 281523.6, TWD97Y: 

2761435.5), is selected as the potential IoT sensor. As a result, the corresponding 

simulations of rainfall-induced inundation, consisting of the inundation depths and 

associated areal average rainfalls, are employed in the development and validation of the 

proposed SM_EID_IOT model. 

4.3. Determination of Critical Resolutions in Time and Space 

In this study, the correlation and sensitivity analysis for the inundation depth at the 

IoT sensor of interest (TWD97X: 281523.6, TWD97Y: 2761435.5) is carried out to detect the 

appropriate critical value of the spatial and temporal resolutions. In detail, the critical 

distance to the IoT sensor for calculating the areal average rainfalls and the forward time 

steps from the current time for selecting the observed inundation depths and areal average 

rainfalls are required for deriving Equation (9) within the proposed SM_EID_IOT model. 

4.3.1. Critical Resolution in Space 

To quantify the fitness of the areal average rainfall for various critical distances to the 

inundation depth, Pearson correlation coefficients (ρ) are adopted, as shown in Figure 8, 

presenting that most correlation coefficients gradually increase/decrease with the critical 

distances, i.e., the critical spatial resolution Lc used in Equation (9). For example, regarding 

the 5th, 500th, and 1000th simulation cases, the correction coefficient generally declines 

from the critical distance of 1.5 km to 4 km critical distance; it then remains constant. 

Contrarily, in the case of the remaining simulation cases, the correlation coefficient 

remains constant. 

  

Figure 8. Relationship between the inundation depth and associated areal average of rainfall calculated using the 

simulated gridded rainfall with the specific distances from the IoT sensor of interest. 

To quantify and assess the effect of critical distances regarding the calculation of areal 

average rainfall on the estimated inundation depth, the statistical properties of Pearson 

coefficients (i.e., mean value μ and standard deviation σ) calculated from 1000 simulation 

cases are computed as shown in Figure 9, where the mean value of the correlation 

coefficient ρ declines with the critical distance from 1.5 km (ρ = 0.655) km to 3 km (ρ = 

0.645), and the correlation coefficient then reaches its constant value (ρ = 0.645); further, 

its standard deviations for various critical distances approximate 0.69, except for the 2 km 

critical distance (σ = 0.688). 
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Figure 9. Correlation coefficients and associated statistical properties of inundation depths with the 

areal average rainfall calculated using the simulated gridded rainfall with specific distances from 

the IoT sensor of interest. 

To sum up, the above results from the correlation analysis reveals that, in spite of the 

2 km distance having the smallest variation, the areal average rainfall calculated from the 

precipitations at the grids, the distance of which to the IoT sensor is less than or equal to 

3 km, exhibits a stable variation in terms of the correlation coefficient. In conclusion, the 

critical resolution in space is assigned as 3 km for the calculation of the areal average 

rainfalls. 

4.3.2. Critical Resolution in Time 

Generally speaking, the water level at the current time is markedly related to the areal 

average rainfall and inundation depths at the previous time steps. Thus, the temporal 

resolution of the areal average rainfall and inundation depths in terms of the correlations 

within the specific forward time steps, i.e., critical temporal resolution Tc hour in the 

standardized regression equation, possibly affect the estimation of the inundation depths 

at the current time step for the IoT sensors. The standardized regression equation is as 

follows (Speed and Yu, 1993): 

𝑌−�̅�

𝑆𝑌
= ∑ 𝛽𝑖

𝑋𝑖−�̂�𝑖

𝑆𝑋𝑖

𝑛
𝑖=1   (11) 

where Y and X are the model output and inputs; �̅� and �̂� account for the mean of the 

model output and inputs, respectively; 𝑆𝑌  and 𝑆𝑋  separately represent the 

corresponding standard deviation; and  𝛽𝑖  denotes the regression coefficient that is 

inversely related to the model outputs; otherwise, the model parameter is proportional to 

the model output in the case of the associated 𝛽𝑖 being positive. Note that the standard 

regression coefficient 𝛽𝑖 accounts for the sensitivities of the ith model parameter to the 

model outputs, meaning that a larger absolute value indicates that the change in the ith 

model parameter more significantly impacts the estimation of the model outputs. 

Moreover, the model parameter is associated with the negative 𝛽𝑖. Accordingly, the above 

specific forward period k hours should be treated as the sensible factors, which can be 

determined based on the regression coefficients β (i.e., the sensitivity coefficient) of the 

standard regression Equation (11). 

In this study, using 1000 simulations of the rainfall-induced inundation, the 

inundation depths at the six particular time steps—0.3, 0.5, 0.6, 0.7,0.8, and 0.9 times the 

duration—and the inundation depths as well as the areal average rainfall at the forward 
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6 h are used in the establishment of the standard regression equation; their resulting 

regression coefficients could be obtained as shown in Figure 10. By observing Figure 10, 

the average of absolute sensitivity coefficients regarding the areal average rainfall and 

inundation depths at the forward 1–6 h, it is known that, with respect to the inundation 

depth, the average of the absolute sensitivity coefficients of the forward period from Tc = 

1 h to Tc = 3 h ranges between 0.563 and 0.43, which are obviously greater than the 

coefficients regarding the forward Tc = 4 h to Tc = 6 h (about 0.029–0.127). Furthermore, in 

the case of the areal average rainfall, the absolute sensitivity coefficients corresponding to 

the forward 3 h change on average from 0.123 to 0.426, which are significantly greater than 

the coefficients at the forward 4–6 h (approximately 0.015–0.048). 

 

Figure 10. The averages of absolute sensitivity coefficients regarding the areal average rainfall and inundation depths at 

the various forward time steps. 

To sum up the above results, the inundation depths at a particular time step are 

strongly and significantly related to the areal average of rainfall and inundation depths at 

the forward Tc = 3 h. Therefore, in referring to Equation (9), the relationship of the 

estimated/forecasted inundation depth regarding the lead time (t + 1 h) at a specific IoT 

sensor ℎ̂𝐼𝑂𝑇
𝑡+1 with the observation of the areal average rainfall at the lead time (t + 1 h) and 

current time (t hour) as well as the forward 2 h and the inundation depths at the forward 

3 h (i.e., t, t − 1 and t − 2 h) can be written as follows: 

ℎ̂𝐼𝑂𝑇
𝑡+1 = 𝑓𝐴𝑁𝑁−𝐺𝐴−𝑀𝑇𝐹(�̅�𝐼𝑂𝑇

𝑡+1, �̅�𝐼𝑂𝑇
𝑡 , �̅�𝐼𝑂𝑇

𝑡−1, �̅�𝐼𝑂𝑇
𝑡−2, ℎ𝐼𝑂𝑇

𝑡 , ℎ𝐼𝑂𝑇
𝑡−1, ℎ𝐼𝑂𝑇

𝑡−2) (12) 

where �̅�𝐼𝑂𝑇
𝑡  is the rainfall forecast at the lead time (t + 1 h); �̅�𝐼𝑂𝑇

𝑡 , �̅�𝐼𝑂𝑇
𝑡−1, and �̅�𝐼𝑂𝑇

𝑡−2 are the 

areal average rainfalls calculated using the gridded rainfall at the current time (t hour) 

and forward 2 h (t − 1 and t − 2 h) within the distance of 3 km to the location of the IoT 

sensor; and ℎ𝐼𝑂𝑇
𝑡 , ℎ𝐼𝑂𝑇

𝑡−1, and ℎ𝐼𝑂𝑇
𝑡−2 represent the observed inundation depths at the current 

time (t hour) and forward 2 h (t − 1 and t − 2 h). 

4.4. Development of the Proposed SM_EID_IOT Model 

In referring to the framework of the model development, the proposed SM_EID_IOT 

model for estimating the inundation depths at the lead time regarding the IoT sensor is 

developed based on the ANN-derived ANN_GA-SA_MTF model by taking into account 

the uncertainty factors, including the areal average rainfall at the lead time and forward 3 

h and the inundation depths at the forward 3 h. Furthermore, according to the induction 

to the ANN_GA-SA_MTF model, the initial conditions regarding the parameters should 

be given in advance, including the number of the hidden layers, the total number of 

neurons used, and the candidate transfer functions, as listed in Table 2. It is well-known 
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that the three-layer network structure, comprising one input layer, one output layer, and 

one hidden layer, is commonly adopted in hydrological/hydraulic modeling (e.g., Wu et 

al., 2021); thus, the hidden layer used in the derivation of the SM_EID_IOT model is 

derived on the basis of the three-layer ANN-based model (i.e., the ANN_GA-SA_MTF 

model). Moreover, in general, the number of neurons in the entire ANN network structure 

can be set up by means of a variety of formulae listed in Table 1 in accordance with the 

number of model inputs and outputs. Figure 11 indicates the resulting number of neurons 

from the different equations, ranging from 3 neurons to 127 neurons. Accordingly, their 

average number of 8 neurons is employed in the model development. In addition, the 

statistical properties, the mean and standard deviation, of the ANN weights are assigned 

as 0 and 1, respectively. As for the remaining parameters, their initial conditions can be 

referred to in Table 4. 

Table 4. Definition of parameters used in the proposed ANN-GA-SA_MTF model. 

Parameters Definition 

Transfer functions used TF1-TF10 

Input factors 
Average rainfall �̅�𝐼𝑂𝑇

𝑡+1, �̅�𝐼𝑂𝑇
𝑡 , �̅�𝐼𝑂𝑇

𝑡−1, �̅�𝐼𝑂𝑇
𝑡−2 

Inundation depth ℎ𝐼𝑂𝑇
𝑡 , ℎ𝐼𝑂𝑇

𝑡−1, ℎ𝐼𝑂𝑇
𝑡−2 

Output factor Inundation depth ℎ̂𝐼𝑂𝑇
𝑡+1 

Number of hidden levels 1 

Number of neurons 8 

Calibration of parameters of transfer function 

Number of optimizations 10 

Weights of neurons (𝜔𝐻𝐿) 
Mean 1 

Standard deviation 3 

Bias of function (𝜃𝑇𝐹) 
Mean 0 

Standard deviation 1 

Adjusting factor (∝𝑇𝐹) 
Mean 1 

Standard deviation 0.005 

 

Figure 11. Summary for the estimation of the number of hidden neurons via various methods. 

Using the parameter definition shown in Table 5, the SM_EID_IOT model can be 

developed by training the ANN_GA-SA_MTF model with 650 simulations of the training 

datasets, extracted from 1000 rainfall-induced inundation simulations obtained in 

Sections 4.1 and 4.2. Table 5 summarizes the results from the parameter calibrations under 
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consideration of the transfer function TF1 (Sigmoid function). Furthermore, according to 

Figure 12, the inundation-depth estimates are the weighted average using the model 

estimates resulting from a variety of transfer functions with the corresponding weights, 

as shown in Figure 13, in which TF2 (Tanh function) and TF5 (ReLU function) are 

associated with the maximum and minimum weights, 0.10045 and 0.0996, respectively, 

indicating that the various transfer functions significantly contribute to different degrees 

to the estimation of the inundation depths at the IoT sensors. Consequently, it is necessary 

to take into account the effect of uncertainty in the formulation of the transfer functions 

on the estimation of model outputs via the proposed SM_EID_IOT model. 

Table 5. Summary for the calibrated parameter of the SM_EID_IOT model in the study area (the Nankan River Watershed). 

Transfer Function Adjust Factor (∝𝑻𝑭) 0.99139 

TF1 (Sigmoid) Connection weights of neurons 𝜔𝐻𝐿 

First Hidden Layer 
Model Inputs at Input Layer 

1 2 3 4 5 6 7 Bias 

Neuron 

1 2.105 −0.146 −3.114 −3.035 1.756 −3.039 −3.355 0.169 

2 1.879 −0.267 2.018 −3.344 −1.904 −0.069 −4.633 −2.275 

2 1.898 3.023 −3.828 −2.855 4.008 −1.024 4.944 −3.015 

4 −0.186 −1.392 2.213 1.737 4.005 6.746 −2.054 −0.052 

5 −1.372 2.638 −1.166 −3.536 1.961 −2.736 −3.007 −0.043 

6 3.729 −3.363 −2.254 −0.530 −4.844 4.774 2.666 5.212 

7 5.364 0.546 5.105 0.169 −4.981 2.625 2.180 3.198 

8 10.950 −3.238 6.896 −1.404 −5.472 1.547 −4.310 −4.908 

Output layer Connection neurons at the first hidden layer 

Model output 1 
1 2 3 4 5 6 7 8 Bias 

−0.264 −0.002 0.357 0.136 −0.560 −1.682 −0.582 0.368 0.085 

 

Figure 12. Summary of the weights of the transfer function for calculating the weighted average of 

inundation-depth estimates. 

4.5. Model Validation 

To demonstrate the reliability and accuracy of the resulting inundation-depth 

estimates from the proposed SM_EID_IOT model, a simulated rainfall-induced 

inundation event, i.e., the 825th simulated rainstorm event (see Figure 13) is adopted as 

the validated one, where the duration and average rainfall intensity regarding the 

validated event are 57 h and 3.7 mm/h, respectively; moreover, in the validated water-

level hyetograph, the two peaks of the inundation depths are 0.12 m and 0.1 m at the 30th 

and 40th hours, respectively. As the Center Weather Bureau (CWB) in Taiwan can provide 

the gridded rainfall forecasts at lead times of 3 h, the model verification focuses on the 
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evaluation in comparison with the inundation-depths estimates at the 1, 2, and 3 h lead 

times, namely, t + 1, t + 2, and t + 3 h, respectively (t = current time). 

 

Figure 13. Relationship between the areal average rainfall and inundation depths regarding the 

825th validated rainfall-induced flood event. 

4.5.1. Reliability Quantification of Inundation-Depth Estimates 

Accordingly, as for the 460th simulation case, the resulting inundation-depth 

estimates and associated 95% confidence intervals at the IoT sensor can be obtained from 

the SM_EID_IOT model as compared with the validated ones, as shown in Figure 14. It 

can be seen that the temporal change in the inundation-depth estimates at the three lead 

times resembles variation regarding the areal average rainfall in accordance with the high 

correlation. Moreover, at the 1 h lead time, the estimated inundation depths mostly lie 

around the 95% confidence interval, except for the 30th–31th and 40th–41th hour, where 

the inundation-depth estimates are about 0.119 m and 0.09 m, exceeding the upper bounds 

of 0.075 m and 0.085 m, respectively. Similar results can be found for the inundation-depth 

forecasts at the 2 h and 3 h lead times. The above results imply that the proposed 

SM_EID_IOT model can produce the inundation-depth estimate with high likelihood of 

approaching the true values (i.e., observations). 

As can be seen in Figure 14, in spite of the proposed SM_EID_IOT model possibly 

producing reasonable inundation-depth estimates, the inundation-depth estimates at the 

1 h lead time are underestimated as compared with the validated data at the 30th–32th 

hours regarding the 825th simulated event. Hence, to evaluate the accuracy of the 

inundation-depth forecasts at the various lead times, the performance in comparison with 

the estimated inundation depths and validated ones at the 31th–51th hours is carried out 

in terms of the root mean error (RMSE) and correlation coefficients, as shown in Figure 

15. According to the results from Figure 15, the RMSE increases with the lead time; 

however, the correlation coefficient declines with the lead time. For example, although the 

estimations exhibit an obvious difference from the validation data in association with a 

large root mean error square (RMSE) (about 0.01 m), the corresponding correlation 

coefficient approaches 0.3, meaning the change in the average rainfall in time is close to 

that regarding the inundation depth; similar conclusions are also made based on the 

results from the 2 h and 3 h lead time. The above difference between the estimation and 

validations might be caused by the uncertainties in the observation and model 

parameters. 
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Lead time = 1-hour 

 

Lead time = 2-hour 

 

Lead time = 3-hour 

Figure 14. Comparison among the validated, estimated, and corrected inundation depths as well as 

the quantified 95% confidence intervals for the validated rainfall-induced flood event by the 

proposed SM_EID_IOT model. 
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Figure 15. Summary of the performance indices of the inundation-depth estimates and comparison 

with the validation datasets at various lead times. 

4.5.2. Real-Time Correction of Inundation-Depth Estimates 

To facilitate the accuracy of the results from the proposed SM_EID_IOT model, the 

inundation-depth estimates are supposed to be adjusted based on the real-time measured 

data. The real-time error correction method is developed via the time series approach and 

Kalmen filtering equation (RTEC_TS&KF) [30]. Figures 16 and 17 show the comparison 

between the validated, estimated, and corrected inundation depths, respectively, as well 

as the corresponding performance indices, respectively, indicating that the RMSE value 

increases with the lead time; in contrast, the correlation coefficient markedly decreases 

with the lead time. In spite of the RMSE values for the corrected inundation-depth 

estimates significantly increasing with the lead time, from 0.007 m to 0.014 m, on average, 

they are less than those for the forecasts (0.012 m). Moreover, with respect to the 

consistency wof the validations, the correlation coefficients for both inundation-depth 

estimations and corrections generally decrease with the lead time, 0.28–0.26 (estimations) 

and 0.74–0.06 (corrections), respectively. For illustration, the correlation coefficients for 

the corrections at the 1 h lead time approximate 0.7, obviously greater than that from the 

estimates (about 0.28). In particular, at the 3 h lead time with the worst correlation, −0.25 

(estimations) and 0.07 (corrections), the corrections have better consistency with the 

validated datasets than the estimations. The above results reveal that the corrected 

inundation-depth forecasts exhibit better agreement with the observations than the 

underestimated/overestimated inundation-depth forecasts, with the marked errors even 

for the long lead times being able to be immediately adjusted. 
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Lead time = 2-hour 

 

Lead time = 3-hour 

Figure 16. Comparison among the validated inundation depths and the corrected as well as 

corrected ones by the proposed SM_EID_IOT model during the validated rainfall-induced flood 

event. 

In summary, the accuracy of the resulting inundation-depth estimates at various lead 

times (hours) from the proposed SM_EID_MTF with a reasonable reliability can be 

effectively improved based on the difference between the observations and estimates at 

the previous time steps during a rainfall-induced flooding event. 
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Figure 17. Summary of the performance indices of the inundation-depth estimates and the 

corresponding corrections for the validated rainfall-induced flood event. 

5. Conclusions 

This study intends to propose a stochastic ANN-derived model for the estimation of 

the inundation depths at the roadside water-level sensors set up through the Internet of 

Things (IoT) (named the SM_EID_IOT). The proposed SM_EID_IOT is developed on the 

basis of the artificial neural network model ANN_GS-SA_MTF (Wu et al., 2021), in which 

the associated parameters are calibrated by means of the modified genetic algorithm (GA-

SA) [30] under the consideration of multiple transfer functions. A basin located in 

northern Taiwan, the Nankan River watershed, is selected as the study area and the 

associated grid-based precipitation data regarding 20 historical rainstorms provided by 

Center Weather Bureau in Taiwan are utilized to reproduce 1000 simulations of the 

rainfall-induced inundations via as the training dataset for the development of the 

proposed SM_EID_IOT model. 

According to the results from the correlation and sensitivity analysis, the inundation 

depths at the IoT sensor for the forward periods of 3 h (i.e., critical temporal resolution) 

and the corresponding precipitations at the neighboring grids within the specific distance 

of 3 km (i.e., critical spatial resolution) to the IoT sensor should be regarded as the 

uncertainty factors for the resulting inundation-depth estimate (i.e., model inputs) from 

the proposed SM_EID_IOT model. Additionally, the results from the model 

demonstration indicate that the validated inundation depths at the lead times of 3 h are 

almost located within the quantified 95% confidence intervals by the proposed 

SM_EID_IOT model, revealing that the proposed SM_EID_IOT can provide the 

inundation-depth estimates at the lead times of 3 h with a high likelihood of approaching 

the validated datasets. Furthermore, the corrected inundation-depth estimates by the real-

time error correction method RTEC_TS&KF method integrated within the proposed 

SM_EID_IOT model could effectively improve the accuracy of the inundation-depth 

estimates by 50%; thereby, the estimate exhibits a good match with the validated datasets 

under a better temporal correlation (i.e., correlation coefficient approaching 0.8). 

Consequently, the proposed SM_EID_IOT model is capable of estimating more accurate 

inundation depths at the IoT sensors of interest with high reliability. 

In addition to the estimation of the inundation depths at the particular locations at 

which the roadside water-level IoT sensors are set up, the rainfall-induced flooding map 

is necessarily delineated in order to primarily estimate the possible inundation area under 

conditions of the flood-rated indices, such as the flash-food potential index (FFPI) and 

flooding potential index (FPI) [48], and rainfall-rated variables, such as the radar 

precipitation [49,50]. As a result of the flooding map being composed of the gridded 

inundation depths, the inundation depths at the ungauged locations should be quantified; 
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by doing so, future work would improve the application of the framework and detailed 

concepts of developing the proposed SM_EID_IOT model in the derivation of stochastic 

ANN-derived modeling (i.e., the ANN_GA-SA MTF model) for the inundation-depth 

estimates at the ungauged locations within the flood-prone zones. 
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