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Abstract: In response to the problems of large computational volume and tedious computational
process of fuzzy integrated evaluation, and general neural network models without clear water
quality training criteria, this paper organically combines fuzzy rules, affiliation function, and neural
network, and proposes a comprehensive method for the evaluation of water quality based on a T-S
fuzzy neural network. On the three water quality monitoring data of six national key monitoring
stations in Taihu Lake Basin, three evaluation methods—the one-factor evaluation method, the
fuzzy integrated evaluation method, and the T-S fuzzy neural network evaluation method—were
used to comprehensively evaluate water environment quality, and the results showed that the T-S
fuzzy neural network method has the advantages of convenient calculation, strong applicability, and
scientific results.

Keywords: water quality evaluation; fuzzy integrated evaluation method; T-S fuzzy neural network;
Taihu Lake Basin

1. Introduction

The prevention and control of water pollution is the main work of water ecological
and environmental protection. How to accurately evaluate the degree of water pollution,
identify the evolution pattern of the water environmental system, and propose scientific
and effective water environmental protection measures are the main tasks of managers and
scientific researchers [1].

In 1965, the American scholar R.K. Horton first proposed the use of quality indicators
in the evaluation of water environmental quality, marking the formal beginning of the study
of water environmental quality evaluation [2]. Puckett et al. used principal component
analysis to evaluate the water quality of some rivers in Virginia, USA, and obtained the main
pollution factors from many water quality monitoring data in 2004 [3]. William Ocampo-
Duque et al. used an FIS (fuzzy inference system) to evaluate the fuzzy water quality
index of the Ebro River in Spain in 2006, effectively solving the problem of insufficient
parameters for monitoring water quality, and achieving a comprehensive evaluation of
water quality [4]. Using principal component analysis and correlation analysis, R. Noori
et al. (2011) investigated the use of gamma tests and forward selection techniques to
evaluate monthly river flow predictions, and concluded that correlation analysis can deal
well with the relationship between physical and chemical parameters [5]. Zhang Yu et al.
used fuzzy integrated evaluation and multivariate statistical methods to illustrate that
the water quality of the main channel of the Qiantang River was better than that of the
tributaries in 2012 [6]. P. Liu et al. studied a complex multilayered groundwater system in
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the North China coal mining area in 2017, using multivariate statistical methods including
hierarchical cluster analysis (HCA) and principal component analysis (PCA), by combining
HCA and PCA with hydrogeochemical correlation analysis [7]. J.O. Fatoba et al. studied
the spatial variability of water quality data in some parts of southwest Nigeria using factor
analysis (FA), cluster analysis (CA), and correlation analysis in 2017, which showed the
ability of multivariate statistical methods to analyze massive amounts of water quality data
and explain the spatial variability patterns of water quality [8]. Cong Ming et al. evaluated
the groundwater quality of the Minqin Basin with a T-S fuzzy neural network and SVM
model, and the evaluation results of both methods were essentially consistent, while the
convergence speed of the T-S fuzzy neural network was faster [9].

According to the results of previous research, the T-S fuzzy neural network has
strong advantages in groundwater quality evaluation. In this paper, a T-S fuzzy neural
network evaluation method was introduced for surface water quality evaluation, and the
weekly concentration data of three water quality factors—DO, CODMn, and NH3-N—were
evaluated via a single-factor evaluation method, fuzzy integrated evaluation method, and
T-S fuzzy neural network evaluation method for the period of 2009–2018 at six water
quality sampling stations in Taihu Lake Basin and, by comparing the results of different
evaluation methods, we aimed to determine: (1) whether the T-S fuzzy neural network
evaluation method can easily calculate and obtain clear results in the evaluation process;
and (2) whether the results of T-S fuzzy neural network evaluation can comprehensively
and objectively reflect the water quality of the evaluated water bodies.

2. Materials and Methods

The results of this paper’s research contribute to the wide application of T-S fuzzy
neural networks for surface water quality evaluation.

2.1. Study Area

The Taihu Lake Basin is located in the south of the Yangtze River Delta, with the
Yangtze River directly to the north, the Qiantang River bordering the south, the East Sea
near the east, the Tianmu Mountains and part of the Maoshan Mountains to the west, and
the plains, river networks, and depressions centered on Taihu Lake in the middle, with a
total basin area of 36,900 km2. The east, south, and north sides are relatively high due to the
influence of sedimentation from the mouth of the Yangtze River and Hangzhou Bay [10].
The location of the study area is shown in Figure 1.
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2.2. Monitoring Data

DO, CODMn, and NH3-N weekly concentration data were collected from the National
Environmental Monitoring Network (NEMN) for six water quality sampling stations in the
Lake Taihu basin from 2009–2018, and the specific station distribution is shown in Figure 2.
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2.3. Water Environment Evaluation Methods
2.3.1. One-Factor Evaluation Method

The measured concentrations of pollutants in the water were compared with their
permissible concentrations in water environmental standards (evaluation criteria) to obtain
the pollution index of a single parameter [11]. The arithmetic mean method is often
used, i.e.,:

Pi = Ci/Si (1)

P =
n

∑
i=1

Pi
n

(2)

where Pi is the relative pollution value of a pollutant; Ci is the measured concentration
value of a pollutant; Si is the evaluation standard of a pollutant; P is the pollution index of
a pollutant; and n is the measured number of a pollutant.

When P > 1, it means that the pollutant exceeds the evaluation standard, and cannot
meet the environmental quality requirements. When P < 1, it means that the pollutant can
meet the environmental quality requirements.

Equation (1) is applied to pollutants with upper limits. For pollutants with lower
limits—e.g., DO—the following equation is used:

Pi = 0, DO > 8 mg/L
Pi = 1− Ci−Si

Si
, DO = 4 ∼ 8 mg/L

Pi = 1 + (Si − Ci), DO < 4 mg/L
(3)

For pollutants with maximum and minimum criteria, such as pH, the following
equation is used:

Pi =
Ci − 7

Smaximum or minimum − 7
(4)
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2.3.2. Fuzzy Integrated Evaluation Method

The fuzzy integrated evaluation method is used to quantify the evaluation indices by
constructing a fuzzy subset of evaluation index levels, and then deriving the evaluation
levels reflecting the superior and inferior change evaluation indices according to fuzzy
composite operations [1]. Its evaluation steps are as follows:

(1) Construct a set of evaluation indices based on the selected evaluation indices.

U = {u1, u2, . . . , ui}; there are i evaluation indexes;

(2) Determine the set of evaluation index judging criteria based on the corresponding
evaluation criteria of the evaluation indices.

V = {v1, v2, . . . , vj}, representing the set of evaluation levels (with j levels), and each
level can correspond to a fuzzy subset;

(3) Establishment of the affiliation function.

The affiliation degree rij is the degree to which the measured concentration values of
the evaluation indices are affiliated with different evaluation levels in the set of evaluation
criteria, which can be obtained by the affiliation function according to the water quality
level criteria, to construct the affiliation function as follows:

When j = 1, the affiliation function is:

rij =


1, Ci ≤ Sij
Ci−Si(j+1)
Sij−Si(j+1)

, Sij < Ci < Si(j+1)

0, Ci ≥ Si(j+1)

(5)

When 1 < j < n, the affiliation function is:

rij =



0 , Ci ≤ Si(j−1)
Ci−Si(j−1)
Sij−Si(j−1)

, Si(j−1) < Ci < Sij

1, Ci = Sij
Ci−Si(j+1)
Sij−Si(j+1)

, Sij < Ci < Si(j+1)

0 , Ci ≥ Si(j+1)

(6)

When j = n, the affiliation function is:

rij =


0, Ci ≤ Si(j−1)
Ci−Si(j−1)
Sij−Si(j−1)

, Si(j−1) < Ci < Sij

1 , Ci ≥ Sij

(7)

where Ci is the measured concentration value of a pollutant; and Si is the evaluation
standard of a pollutant;

(4) Establish the fuzzy relationship matrix R.

R =
(
rij
)
=


r11 r12 . . . r1j
r21 . . . . . . r2j
. . . . . . . . . . . .
ri1 ri2 . . . rij

 (8)

(5) Calculation of evaluation factor weight value W.

The weight given to each parameter can be calculated according to the exceedance of
each sub-index, and the more exceedance, the greater the weight. The weight value is:

Wi = Ci/Si (9)
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where Ci is the i th pollutant’s measured concentration value; and Si is the arithmetic mean
of the water quality standard values of the i th pollutant at all levels.

For the fuzzy calculation, the individual weights are normalized; that is:

Zi =
Ci
Si

∑n
i=1

Ci
Si

=
Wi

∑n
i=1 Wi

(10)

giving weights to each index in the above set to form a row matrix;

(6) Fuzzy composite operation.

S = B·R = (a1, a2, . . . , an)
(
rij
)
=


r11 r12 . . . r1j
r21 . . . . . . r2j
. . . . . . . . . . . .
ri1 ri2 . . . rij

 = (b1, b2, . . . , bm) (11)

(7) To determine the comprehensive affiliation of the water body via composite operations
of the above matrices. For the fuzzy matrix, the smaller of the two numbers multiplied
is the “product”, and the larger of the numbers added together is the “sum”;

(8) To determine the water quality level via the principle of maximum affiliation—that
is, from the comprehensive affiliation matrix to select the maximum value, its serial
number represents the evaluation of the water quality level. If there are two equal
maximum values in the matrix, then the water quality level can be determined
according to the principle of the adjacent number “greater than smaller” [11].

2.3.3. T-S Fuzzy Neural Network Evaluation Method

(1) T-S fuzzy model

T-S fuzzy theoretical systems are able to use some fuzzy mathematical rules to obtain
more complicated nonlinear functions, thus ensuring the superiority of the system by
reducing the exact number of fuzzy rules when dealing with problems containing multiple
variables [12]. The T-S fuzzy theoretical system is usually defined in the logical form of
“if-then”, and the fuzzy inference of the theoretical system is expressed as follows [13]:

Ri : I f x1 is Ai
1, x2 is Ai

2, . . . xk is Ai
k

Then yi = pi
0 + pi

1x1 + · · ·+ pi
kxk

(12)

where: Ai
j is the fuzzy set of the fuzzy system; pi

j(j = 1, 2, . . . , k) represents the fuzzy
system parameters; and yi is the output value obtained according to the fuzzy rule; the
input part (i.e., the I f part) is fuzzy and the output part (i.e., the Then part) is deterministic;
this fuzzy inference indicates that the output is a linear combination of the inputs.

Supposing that for the input x = [x1, x2, . . . , xk], the affiliation degree of each input
variable xj is first calculated according to the fuzzy rule:

µAi
j
= exp(−(xj − ci

j)
2/bi

j)

(j = 1, 2, . . . , k; i = 1, 2, . . . , n)
(13)

where ci
j and bi

j are the center and width of the affiliation function, respectively; k is the
input parameter; and n is the number of fuzzy subsets.

Fuzzy operations are performed on each of the above affiliation degrees, and the fuzzy
operator is used as a concatenated multiplicative operator:

ωi = uA1
j
(x1)× uA2

j
(x2)× · · · × uAk

j
(xk)

(i = 1, 2, . . . , n)
(14)
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Based on the results of the fuzzy calculation, the output value of the model yi is ob-
tained:

yi =
∑n

i=1 ωi(pi
0 + pi

1x1 + · · ·+ pi
kxk
)

∑n
i=1 ωi (15)

(2) T-S fuzzy neural network

The T-S fuzzy network model generally has four layers, which are the input layer,
fuzzification layer, fuzzy rule calculation layer, and output layer [13]. The input layers of
the model network are linked through the vector xi, so the number of nodes of the model
network is consistent with the dimensionality of the input vector. The fuzzification layer
uses the affiliation function Equation (14) to fuzzify the input values in order to obtain the
affiliation value uAi

j
. The ω in the fuzzy computation layer is obtained using the successive

phase multiplication Equation (15), and then the output value of the output layer in this
fuzzy model system is obtained by Equation (16). The learning algorithm of the fuzzy
neural network is as follows:
1© Error calculation:

e =
1
2
(yd − yc)

2 (16)

where the expected output of the network is yd; the actual output of the network is yc; and
the error between the expected output and the actual output is e;
2© Coefficient correction:

pi
j(k) = pi

j(k− 1)− α ∂e
∂pi

j

∂e
∂pi

j
= (yd − yc)ωi/

m
∑

i=1
ωi·xj

(17)

where pi
j is the neural network coefficient; α is the network learning rate; xj is the network

input parameter; and ωi is the continuous product of the affiliation of the input parameters;
3© Parameter correction:

ci
j(k) = ci

j(k− 1)− β ∂e
∂ci

j

bi
j(k) = bi

j(k− 1)− β ∂e
∂bi

j

(18)

where bi
j and ci

j are the width and the center value of the representative affiliation function
in the fuzzy rule, respectively.

(3) Modeling

A total of 100 samples were obtained randomly and equally spaced in the interval of
each standard water quality class [14], and 500 sample datasets were obtained. The training
set of the neural network was generated by randomly selecting 450 samples from the
dataset, and the remaining 50 samples were used as the test set. Before starting the neural
network training, the normalization function was used to turn all dataset samples into
sample data between 0 and 1 [15]. Because there are three water quality indicators as input
data, and unique water quality levels as output data, the topology of this neural network
model is 3-6-1, and the model has six affiliation functions. The number of evolutions is
1000, and the training accuracy is 10-4. The output of this network model and the actual
grade difference fluctuate up and down in the range of [−0.5, 0.5], and the model output
value and the water quality grade represented are shown in Table 1.
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Table 1. Water quality levels and corresponding output values.

Water Quality Level I II III IV V

Output value [0, 1.5] [1.5, 2.5] [2.5, 3.5] [3.5, 4.5] [4.5, ∞]

3. Results
3.1. Water Quality Evaluation Results Based on One-Factor Evaluation

Using Equations (1)–(3), the one-factor water quality evaluation results of each key
monitoring station in the Taihu Lake Basin were calculated through the water quality
monitoring data, as shown in Table A1. The water quality evaluation results of each station
during the study period are shown in Table 2.

Table 2. Water quality evaluation results based on the one-factor evaluation method.

Station Name
Year

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Shazhu Station II II II II III II II II II II
Lanshanzui Station III III III III IV IV IV IV III III

Xishan Station II II III III III II II II III II
Xintang Port Station II II III III III II II II II II
Jishui Port Station Poor V V V IV III III IV IV III III

Wangjiangjing Station IV IV V V IV IV IV IV IV III

3.2. Water Quality Evaluation Results Based on the Fuzzy Integrated Evaluation Method

We used MATLAB software to program calculations in order to obtain the affiliation
matrix and its normalization results; see Tables A2–A9. Then, fuzzy composite operations
were carried out to obtain the comprehensive affiliation matrix for water quality evaluation
of key monitoring stations in the Taihu Lake Basin (see Tables A10–A15), so as to derive
the surface water quality level of the basin, as shown in Table 3.

Table 3. Water quality evaluation results based on the fuzzy integrated evaluation method.

Station Name
Year

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Shazhu Station I I I I I I I I I I
Lanshanzui Station I I I I I I I I I I

Xishan Station I I I I I I I I I I
Xintang Port Station I I I I I I I I I I
Jishui Port Station V IV V IV II II II I I I

Wangjiangjing Station III IV IV IV IV III IV III II III

3.3. Water Quality Evaluation Results Based on the T-S Fuzzy Neural Network
Evaluation Method

The final output results of the T-S fuzzy neural network evaluation method, along
with the results of the water quality class corresponding to the output results, are shown in
Tables 4 and A16. From the output results, it can be seen that the overall water environment
quality of the Taihu Lake Basin has become better, and the basin has been of the surface
water class III water quality standard since 2014. At the same time, the water environmental
quality in the upper part of the basin is significantly better than that in the lower part.
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Table 4. Water quality evaluation results based on the T-S fuzzy neural network evaluation method.

Station Name
Year

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Shazhu Station I I I I I I I I I I
Lanshanzui Station II II II II II II II II II II

Xishan Station I I II II II I I I I I
Xintang Port Station II II II II II II II II II I
Jishui Port Station IV III III III II II III III II II

Wangjiangjing Station III III IV IV IV III III III III III

4. Discussion

The one-factor evaluation method is one of the more widely used water quality
evaluation methods in China, to select the worst evaluation index criteria as the final water
quality grade of the water body. The main advantage of this method is that the calculation
is simple, and can identify the main pollutants of the water body. However, the water
environment is a multifactor coupled complex dynamic system, and its pollution level is a
fuzzy concept, so the evaluation of the pollution level of the classification boundary is also
fuzzy, based only on the worst individual pollution index to define the water level, and
often produces “overprotective”, one-sided evaluation [9].

The water environment is a socio-ecological structure system with multilevel and
multifactor complex influences. In order to conduct a comprehensive and systematic evalu-
ation of this complex water environment system, regardless of the method used, has its
limitations. As one of the more successful methods used in the evaluation of water quality,
the fuzzy integrated evaluation method takes into account both the fuzzy and hierarchical
nature of the evaluation object, so that qualitative and quantitative evaluation can be
combined to expand the amount of information on the evaluation object and improve the
evaluation accuracy. However, fuzzy integrated evaluation also has its disadvantages—the
calculation is large, and the determination of the weight of the indices is highly subjective.
When there are too many water quality indices involved in the evaluation, under the
condition that the sum of index weights is 1, the relative weight of each index tends to be
small, and the weight vector does not match well with the fuzzy matrix R [1], resulting in
poor resolution of evaluation results, or even evaluation failure.

The T-S fuzzy neural network method, combining the advantages of T-S fuzzy rule
theory and artificial neural networks with one another, effectively eliminates the influence
of the fuzzy rule affiliation function due to subjective factors. The randomness, fuzziness,
and grayness of the water environmental system are considered, and the reasonable
evaluation of water quality levels can be achieved [6]. With the use of current computer
technology, this method can quickly complete the calculation and get the results. According
to the characteristics of neural networks, the more water quality indices, the smaller the
time scale, the more accurate the model established, and the more accurate the water
quality evaluation results obtained. At the same time, according to different research areas
and water quality indices, it is only necessary to modify part of the code to complete the
calculation task, with strong applicability.

Comparing Tables 2–4, it can be seen that the trends of the three water quality evalu-
ation results are consistent—that is, the water environmental quality of the whole Taihu
Lake Basin tended to be better in the study period. However, the evaluation results of the
one-factor evaluation method have obvious differences with the results of the other two
water quality evaluation methods. The evaluation results based on the fuzzy integrated
evaluation method and the T-S fuzzy neural network evaluation method are consistent;
both meet the requirements of water quality evaluation, and can qualitatively and quan-
titatively reflect the quality of the water environment in a comprehensive and scientific
manner. However, in contrast, the calculation of the fuzzy integrated evaluation method is
larger, and when the number of water quality indices involved in the evaluation is large,
there will be inaccurate evaluation, or even evaluation failure.
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For the T-S fuzzy neural network evaluation method, its calculation is convenient and
applicable, and the results are scientific. At present, countries have fixed water quality
monitoring stations on major rivers and their watershed systems, and regularly (weekly,
quarterly, or annually) collect water samples and test relevant factors. Some stations have
accumulated more than a decade, or even several decades, of water quality monitoring data.
Using the method proposed in this paper, we can use a computer to quickly calculate and
analyze the historical water quality monitoring data of all water quality stations involved in
a watershed, and review the evolution pattern of water quality in the watershed. Therefore,
the T-S fuzzy neural network evaluation method is expected to play an important and
positive role in the evaluation of water environmental quality in the future.

5. Conclusions

Fuzzy integrated evaluation is a computationally intensive, tedious computational
process, and general neural network models do not have clear water quality training criteria,
among other problems. The organic combination of fuzzy rules, affiliation functions, and
neural networks complement one another’s strengths and weaknesses; fuzzy rules give
the model a strong logical reasoning ability, grant it the ability to deal with higher order
problems, and at the same time enable it to solve the accurate information and some
uncertainty of fuzzy information. The neural network automates the fuzzy rule refinement
and affiliation function generation in the model, thus making the fuzzy system a self-
processing system, obtaining the T-S fuzzy neural network model, and using this model to
make a comprehensive evaluation of the water environmental quality in the basin.

In this paper, three methods—the one-factor evaluation method, the fuzzy integrated
evaluation method, and the evaluation based on a T-S fuzzy neural network—were used
to analyze and evaluate the water quality environment of data from six water quality
sampling stations in Taihu Lake Basin from 2009 to 2018. Comparing the three evaluation
results, the T-S fuzzy neural network has the best evaluation effect, and its easy calculation,
high applicability, and scientific results are expected to play an important and positive role
in the subsequent evaluation of water environmental quality.
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Appendix A

Table A1. Water quality evaluation results of each water quality factor based on one-factor evaluation.

Station Name Factor
Year

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Shazhu Station
CODMn II II II II III II II II II II
NH3-N II II II II I I II II II II

DO I I I I I I I I I I

Lanshanzui Station
CODMn III III III III IV IV IV IV III III
NH3-N III III III II II II II II II II

DO II I I I I I I II I I

Xishan Station
CODMn II II III III III II II II III II
NH3-N II I II I II II II I II II

DO I I II II II I I II I I

Xintang Port Station
CODMn II II III III III II II II II II
NH3-N II II II II II II II II II II

DO I I I I I I I I I II

Jishui Port Station
CODMn III III II III II III II II II III

NH3-N Poor
V V V IV III III IV IV III II

DO II II II III II III II II II II

Wangjiangjing Station
CODMn III III IV IV IV IV III III IV III
NH3-N IV IV V V IV IV III III III III

DO IV IV IV IV IV IV IV IV III III

Table A2. Normalized results of water quality evaluation index weights.

Year
Station Shazhu Station in Wuxi Lanshanzui Station in Yixing Xishan Station in Suzhou

Factor CODMn NH3-N DO CODMn NH3-N DO CODMn NH3-N DO

2009 0.17 0.11 0.72 0.25 0.20 0.55 0.18 0.08 0.74
2010 0.18 0.08 0.74 0.24 0.18 0.58 0.18 0.05 0.76
2011 0.17 0.09 0.74 0.18 0.27 0.55 0.25 0.07 0.68
2012 0.16 0.09 0.74 0.21 0.16 0.63 0.25 0.06 0.69
2013 0.22 0.06 0.72 0.32 0.10 0.59 0.25 0.08 0.67
2014 0.20 0.05 0.75 0.31 0.12 0.58 0.21 0.06 0.72
2015 0.19 0.07 0.74 0.33 0.12 0.55 0.21 0.07 0.72
2016 0.18 0.08 0.74 0.35 0.09 0.57 0.23 0.06 0.70
2017 0.18 0.06 0.76 0.21 0.09 0.70 0.19 0.07 0.74
2018 0.16 0.08 0.76 0.26 0.12 0.62 0.15 0.10 0.76
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Table A3. Normalized results of water quality evaluation index weights.

Year
Station Xintanggang Station in Huzhou Jishuigang Station in Qingpu Wangjiangjing Station in Jiaxing

Factor CODMn NH3-N DO CODMn NH3-N DO CODMn NH3-N DO

2009 0.19 0.13 0.68 0.15 0.51 0.34 0.27 0.41 0.32
2010 0.19 0.11 0.70 0.17 0.44 0.39 0.28 0.46 0.27
2011 0.20 0.14 0.67 0.14 0.46 0.40 0.25 0.48 0.28
2012 0.20 0.13 0.67 0.19 0.44 0.37 0.27 0.48 0.24
2013 0.24 0.08 0.68 0.19 0.31 0.51 0.30 0.45 0.25
2014 0.20 0.12 0.68 0.22 0.27 0.51 0.32 0.39 0.29
2015 0.17 0.15 0.67 0.17 0.38 0.45 0.33 0.30 0.37
2016 0.18 0.14 0.67 0.16 0.33 0.50 0.30 0.30 0.40
2017 0.19 0.14 0.67 0.21 0.22 0.57 0.28 0.32 0.40
2018 0.19 0.12 0.69 0.23 0.13 0.63 0.30 0.29 0.42

Table A4. Fuzzy matrix of Shazhu Station in Wuxi, Jiangsu.

Year Factor Grade I Grade II Grade III Grade IV Grade V

2009
CODMn 0.30 0.70 0 0 0
NH3-N 0.57 0.43 0 0 0

DO 1.00 0 0 0 0

2010
CODMn 0.21 0.79 0 0 0
NH3-N 0.80 0.20 0 0 0

DO 1.00 0 0 0 0

2011
CODMn 0.24 0.76 0 0 0
NH3-N 0.63 0.37 0 0 0

DO 1.00 0 0 0 0

2012
CODMn 0.90 0.10 0 0 0
NH3-N 1.00 0 0 0 0

DO 1.00 0 0 0 0

2013
CODMn 0.17 0.83 0 0 0
NH3-N 1.00 0 0 0 0

DO 1.00 0 0 0 0

2014
CODMn 0.17 0.83 0 0 0
NH3-N 1.00 0 0 0 0

DO 1.00 0 0 0 0

2015
CODMn 0.17 0.83 0 0 0
NH3-N 0.89 0.11 0 0 0

DO 1.00 0 0 0 0

2016
CODMn 0.13 0.87 0 0 0
NH3-N 0.80 0.20 0 0 0

DO 1.00 0 0 0 0

2017
CODMn 0.20 0.80 0 0 0
NH3-N 0.91 0.09 0 0 0

DO 1.00 0 0 0 0

2018
CODMn 0.47 0.53 0 0 0
NH3-N 0.83 0.17 0 0 0

DO 1.00 0 0 0 0
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Table A5. Fuzzy matrix of Lanshanzui Station in Yixing, Jiangsu.

Year Factor Grade I Grade II Grade III Grade IV Grade V

2009
CODMn 0 0.36 0.64 0 0
NH3-N 0.78 0.22 0 0 0

DO 0.99 0.01 0 0 0

2010
CODMn 0 0.34 0.66 0 0
NH3-N 0 0.92 0.08 0 0

DO 1.00 0 0 0 0

2011
CODMn 0 0.87 0.13 0 0
NH3-N 0 0.26 0.74 0 0

DO 1.00 0 0 0 0

2012
CODMn 0 0.94 0.06 0 0
NH3-N 0.20 0.80 0 0 0

DO 1.00 0 0 0 0

2013
CODMn 0 0 0.75 0.25 0
NH3-N 0.60 0.40 0 0 0

DO 1.00 0 0 0 0

2014
CODMn 0 0 0.77 0.23 0
NH3-N 0.40 0.60 0 0 0

DO 1.00 0 0 0 0

2015
CODMn 0 0 0.67 0.33 0
NH3-N 0.40 0.60 0 0 0

DO 1.00 0 0 0 0

2016
CODMn 0 0 0.69 0.31 0
NH3-N 0.72 0.28 0 0 0

DO 0.98 0.02 0 0 0

2017
CODMn 0 0.78 0.22 0 0
NH3-N 0.66 0.34 0 0 0

DO 1.00 0 0 0 0

2018
CODMn 0.10 0.90 0 0 0
NH3-N 0.43 0.57 0 0 0

DO 1.00 0 0 0 0
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Table A6. Fuzzy matrix of Xishan Station in Suzhou, Jiangsu.

Year Factor Grade I Grade II Grade III Grade IV Grade V

2009
CODMn 0.34 0.66 0 0 0
NH3-N 0.83 0.17 0 0 0

DO 1.00 0 0 0 0

2010
CODMn 0.45 0.55 0 0 0
NH3-N 1.00 0 0 0 0

DO 1.00 0 0 0 0

2011
CODMn 0 0.94 0.06 0 0
NH3-N 0.94 0.06 0 0 0

DO 0.81 0.19 0 0 0

2012
CODMn 0.90 0.10 0 0 0
NH3-N 1.00 0 0 0 0

DO 0.89 0.11 0 0 0

2013
CODMn 0 0.84 0.16 0 0
NH3-N 0.89 0.11 0 0 0

DO 0.89 0.11 0 0 0

2014
CODMn 0.04 0.96 0 0 0
NH3-N 0.97 0.03 0 0 0

DO 1.00 0 0 0 0

2015
CODMn 0.04 0.96 0 0 0
NH3-N 0.94 0.06 0 0 0

DO 1.00 0 0 0 0

2016
CODMn 0.17 0.83 0 0 0
NH3-N 1.00 0 0 0 0

DO 0.69 0.31 0 0 0

2017
CODMn 0 0.99 0.01 0 0
NH3-N 0.80 0.20 0 0 0

DO 1.00 0 0 0 0

2018
CODMn 0.48 0 0 0 0
NH3-N 0.66 0.34 0 0 0

DO 1.00 0 0 0 0
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Table A7. Fuzzy matrix of Xintanggang Station in Hu-zhou, Zhejiang.

Year Factor Grade I Grade II Grade III Grade IV Grade V

2009
CODMn 0.04 0.96 0 0 0
NH3-N 0.37 0.63 0 0 0

DO 1.00 0 0 0 0

2010
CODMn 0.02 0.98 0 0 0
NH3-N 0.51 0.49 0 0 0

DO 1.00 0 0 0 0

2011
CODMn 0 0.80 0.20 0 0
NH3-N 0.23 0.77 0 0 0

DO 1.00 0 0 0 0

2012
CODMn 0 0.66 0.34 0 0
NH3-N 0.26 0.74 0 0 0

DO 1.00 0 0 0 0

2013
CODMn 0 0.66 0.34 0 0
NH3-N 0.80 0.20 0 0 0

DO 1.00 0 0 0 0

2014
CODMn 0 1.00 0 0 0
NH3-N 0.49 0.51 0 0 0

DO 1.00 0 0 0 0

2015
CODMn 0.42 0.58 0 0 0
NH3-N 0.31 0.69 0 0 0

DO 1.0 0 0 0 0

2016
CODMn 0.22 0.78 0 0 0
NH3-N 0.31 0.69 0 0 0

DO 1.00 0 0 0 0

2017
CODMn 0.20 0.80 0 0 0
NH3-N 0.31 0.69 0 0 0

DO 1.00 0 0 0 0

2018
CODMn 0.42 0.58 0 0 0
NH3-N 0.63 0.37 0 0 0

DO 0.99 0.01 0 0 0
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Table A8. Fuzzy matrix of Jishuigang Station in Qingpu, Shanghai.

Year Factor Grade I Grade II Grade III Grade IV Grade V

2009
CODMn 0 0.76 0.34 0 0
NH3-N 0 0 0 0 1.00

DO 0.40 0.6 0 0 0

2010
CODMn 0 0.72 0.28 0 0
NH3-N 0 0 0 0.64 0.36

DO 0.53 0.47 0 0 0

2011
CODMn 0.04 0.96 0 0 0
NH3-N 0 0 0 0.46 0.54

DO 0.69 0.31 0 0 0

2012
CODMn 0 0.76 0.24 0 0
NH3-N 0 0 0.18 0.82 0

DO 0 0.44 0.56 0 0

2013
CODMn 0.08 0.92 0 0 0
NH3-N 0 0.24 0.76 0 0

DO 0.45 0.55 0 0 0

2014
CODMn 0 0.98 0.02 0 0
NH3-N 0 0.6 0.4 0 0

DO 0 0.89 0.11 0 0

2015
CODMn 0.22 0.78 0 0 0
NH3-N 0 0 0.74 0.26 0

DO 0.03 0.97 0 0 0

2016
CODMn 0 1 0 0 0
NH3-N 0 0 0.74 0.26 0

DO 1.00 0 0 0 0

2017
CODMn 0 1.00 0 0 0
NH3-N 0 0.86 0.14 0 0

DO 0.62 0.38 0 0 0

2018
CODMn 0 0.88 0.12 0 0
NH3-N 0.46 0.54 0 0 0

DO 0.89 0.11 0 0 0
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Table A9. Fuzzy matrix of Wangjiangjing Station in Jiaxing, Zhejiang.

Year Factor Grade I Grade II Grade III Grade IV Grade V

2009
CODMn 0 0.30 0.70 0 0
NH3-N 0 0 0.70 0.30 0

DO 0 0 0.55 0.45 0

2010
CODMn 0 0.01 0.99 0 0
NH3-N 0 0 0.22 0.78 0

DO 0 0 0.33 0.67 0

2011
CODMn 0 0 0.98 0.02 0
NH3-N 0 0 0 0.70 0.30

DO 0 0 0.68 0.32 0

2012
CODMn 0 0 0.92 0.08 0
NH3-N 0 0 0 0.90 0.10

DO 0 0 0.28 0.72 0

2013
CODMn 0 0 0.87 0.13 0
NH3-N 0 0 0.26 0.74 0

DO 0 0 0.22 0.78 0

2014
CODMn 0 0 0.86 0.14 0
NH3-N 0 0 0.82 0.18 0

DO 0 0 0.36 0.64 0

2015
CODMn 0 0.20 0.80 0 0
NH3-N 0 0.62 0.38 0 0

DO 0 0 0.47 0.53 0

2016
CODMn 0 0.24 0.76 0 0
NH3-N 0 0.42 0.58 0 0

DO 0 0 0.88 0.12 0

2017
CODMn 0 0 1.00 0 0
NH3-N 0 0.04 0.96 0 0

DO 0 0.77 0.23 0 0

2018
CODMn 0 0.18 0.82 0 0
NH3-N 0 0.46 0.54 0 0

DO 0 0.02 0.98 0 0

Table A10. Fuzzy integrated evaluation results of Shazhu Station in Wuxi, Jiangsu.

Year Grade I Grade II Grade III Grade IV Grade V WQ Grade 1

2009 0.73 0.17 0 0 0 I
2010 0.74 0.18 0 0 0 I
2011 0.74 0.17 0 0 0 I
2012 0.74 0.16 0 0 0 I
2013 0.72 0.10 0 0 0 I
2014 0.75 0.20 0 0 0 I
2015 0.74 0.19 0 0 0 I
2016 0.74 0.18 0 0 0 I
2017 0.76 0.18 0 0 0 I
2018 0.76 0.16 0 0 0 I

1 WQ Grade: water quality grade.
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Table A11. Fuzzy integrated evaluation results of Lanshanzui Station in Yixing, Jiangsu.

Year Grade I Grade II Grade III Grade IV Grade V WQ Grade

2009 0.55 0.25 0.25 0 0 I
2010 0.58 0.24 0.24 0 0 I
2011 0.55 0.26 0.27 0 0 I
2012 0.63 0.21 0.06 0 0 I
2013 0.59 0.10 0.32 0.25 0 I
2014 0.58 0.12 0.31 0.23 0 I
2015 0.55 0.12 0.33 0.33 0 I
2016 0.57 0.09 0.35 0.31 0 I
2017 0.70 0.21 0.21 0 0 I
2018 0.62 0.26 0 0 0 I

Table A12. Fuzzy integrated evaluation results of Xishan Station in Suzhou, Jiangsu.

Year Grade I Grade II Grade III Grade IV Grade V WQ Grade

2009 0.74 0.18 0 0 0 I
2010 0.76 0.18 0 0 0 I
2011 0.68 0.25 0.06 0 0 I
2012 0.69 0.11 0 0 0 I
2013 0.67 0.25 0.16 0 0 I
2014 0.72 0.21 0 0 0 I
2015 0.72 0.21 0 0 0 I
2016 0.70 0.31 0 0 0 I
2017 0.74 0.19 0.01 0 0 I
2018 0.76 0.15 0 0 0 I

Table A13. Fuzzy integrated evaluation results of Xintanggang Station in Hu-zhou, Zhejiang.

Year Grade I Grade II Grade III Grade IV Grade V WQ Grade

2009 0.68 0.19 0 0 0 I
2010 0.70 0.19 0 0 0 I
2011 0.67 0.20 0 0 0 I
2012 0.67 0.20 0 0 0 I
2013 0.68 0.24 0.24 0 0 I
2014 0.68 0.20 0 0 0 I
2015 0.67 0.17 0 0 0 I
2016 0.67 0.18 0 0 0 I
2017 0.67 0.19 0 0 0 I
2018 0.69 0.19 0 0 0 I

Table A14. Fuzzy integrated evaluation results of Jishuigang Station in Qingpu, Shanghai.

Year Grade I Grade II Grade III Grade IV Grade V WQ Grade

2009 0.34 0.34 0.15 0 0.51 V
2010 0.39 0.39 0.17 0.44 0.36 IV
2011 0.40 0.31 0 0.46 0.46 V
2012 0 0.37 0.37 0.44 0 IV
2013 0.45 0.45 0.38 0.26 0 II
2014 0 0.51 0.27 0 0 II
2015 0.17 0.45 0.38 0.26 0 II
2016 0.50 0.16 0.33 0.26 0 I
2017 0.57 0.38 0.14 0 0 I
2018 0.63 0.23 0.12 0 0 I
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Table A15. Fuzzy integrated evaluation results of Wangjiangjing Station in Jiaxing, Zhejiang.

Year Grade I Grade II Grade III Grade IV Grade V WQ Grade

2009 0 0.27 0.41 0.32 0 III
2010 0 0.01 0.28 0.46 0 IV
2011 0 0 0.28 0.48 0.30 IV
2012 0 0 0.27 0.48 0 IV
2013 0 0 0.30 0.45 0 IV
2014 0 0 0.39 0.29 0 III
2015 0 0.30 0.37 0.37 0 IV
2016 0 0.30 0.40 0.12 0 III
2017 0 0.40 0.32 0 0 II
2018 0 0.29 0.42 0 0 III

Table A16. Output values of T-S fuzzy neural network water quality evaluation.

Station Name
Year

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Shazhu Station 1.45 1.38 1.38 1.39 1.47 1.33 1.37 1.38 1.29 1.27
Lanshanzui Station 2.28 2.19 2.36 1.82 2.25 2.30 2.41 2.29 1.60 2.01

Xishan Station 1.33 1.22 1.55 1.51 1.61 1.43 1.43 1.43 1.43 1.29
Xintang Port Station 1.65 1.59 1.78 1.79 1.67 1.64 1.58 1.62 1.63 1.47
Jishui Port Station 4.00 3.44 3.44 3.17 2.36 2.23 2.64 2.61 2.01 1.77

Wangjiangjing Station 3.07 3.46 3.77 3.72 3.52 3.18 2.59 2.65 2.91 2.64
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