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Abstract: Detecting effective parameters in flood occurrence is one of the most important issues
that has drawn more attention in recent years. Remote Sensing (RS) and Geographical Information
System (GIS) are two efficient ways to spatially predict Flood Risk Mapping (FRM). In this study,
a web-based platform called the Google Earth Engine (GEE) (Google Company, Mountain View,
CA, USA) was used to obtain flood risk indices for the Galikesh River basin, Northern Iran. With
the aid of Landsat 8 satellite imagery and the Shuttle Radar Topography Mission (SRTM) Digital
Elevation Model (DEM), 11 risk indices (Elevation (El), Slope (Sl), Slope Aspect (SA), Land Use
(LU), Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI),
Topographic Wetness Index (TWI), River Distance (RD), Waterway and River Density (WRD), Soil
Texture (ST]), and Maximum One-Day Precipitation (M1DP)) were provided. In the next step, all of
these indices were imported into ArcMap 10.8 (Esri, West Redlands, CA, USA) software for index
normalization and to better visualize the graphical output. Afterward, an intelligent learning machine
(Random Forest (RF)), which is a robust data mining technique, was used to compute the importance
degree of each index and to obtain the flood hazard map. According to the results, the indices of
WRD, RD, M1DP, and El accounted for about 68.27 percent of the total flood risk. Among these
indices, the WRD index containing about 23.8 percent of the total risk has the greatest impact on
floods. According to FRM mapping, about 21 and 18 percent of the total areas stood at the higher
and highest risk areas, respectively.

Keywords: Remote Sensing; Google Earth Engine; Random Forest; Flood Risk Mapping

1. Introduction

Floods, which are one of the most common types of natural disasters in the world,
have a very high potential for destruction [1]. Over the past few decades, the occurrence of
numerous floods has had irreversible impacts on the economy, vital resources, and benefits
of human beings around the world [2,3]. Therefore, Flood Risk Mapping (FRM) is one
of the most important challenges in the assessment of the potential of risks of floods and
to consequently reduce their destructive impacts in flood-prone areas. Due to the high
number of effective parameters when considering the occurrence of floods, the application
of up-to-date and accurate information is of high importance in the decision-making
quality. The purpose of flood risk mapping is to accurately manage floods that are caused
by rainfall and dam overflows in order to reduce damage to human life and property.
Heavy rainfall along with unfavorable environmental and geographical factors such as the
topography and its derivatives, Land Use (LU), streams, and rivers as well as the presence
of dams in particular, lead to floods in the area. Flood risk assessment is a qualitative or
semi-quantitative technique that considers simultaneous effects of various environmental
factors such as land topography, soil texture, precipitation, typical LU, and the hydrological
properties of watersheds [4]. To simulate flood events, having accurate field information
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from the physical characterizations of kinematic waves (i.e., wave velocity, wave height, and
flow velocity) that have occurred in the floodplain is a highly time-consuming process and
costly task. For this purpose, various numerical models such as Finite Difference Methods
(FDMs) and Finite Element Methods (FEMs) have been widely applied to solve governing
equations (one of which is known as the Saint-Venante equation) on the flood events in 1-D,
2-D, and 3-D [5–7]. The accuracy level of both FDMs and FEMs is completely dependent
on various factors such as the hydrodynamic conditions of the flood, the availability of
boundary conditions for solving the governing equations, the availability of recorded
information from gauged basins, and the motion of sediments [8–11]. Furthermore, the
suitability of typical numerical schemes (explicit or implicit) and grids size for solving
flood equations will affect the performance of FEMs and FDMs, respectively. Overall,
there is a wide range of factors affecting the precision degree of flood simulation. In
comparison techniques such as prototype observations, physical/experimental models,
and mathematical techniques, which work based on semi-theoretical and semi-empirical
concepts, are restricted to flood scales. In this way, there is an essential need to apply an
efficient tool that is less sensitive to these factors. Nowadays, Remote Sensing (RS) has been
introduced as a key solution in which the data collection process is performed faster and
cost-effectively without human presence in the area [12–16].In the case of flood monitoring,
the integration of these data (hydro-environmental indices related to topography, soil
texture, rainfall, water bodies density, vegetation situation, and land use) to model risk
using Geographical Information System (GIS) software is not conveniently possible despite
the need for high computational time. To solve this drawback, a comprehensive web-based
platform called Google Earth Engine (GEE) (Google Company, Redlands, CA, USA) can be
used [17–23].

The GEE environment is a Cloud Computing Platform (CCP) and online site that hosts
global time-series satellite images. It was designed for storing and processing large amounts
of data during analysis and decision-making processes [24,25]. All of the geographic data
(raw or processed), maps, and tables are freely available from Earth Engine (EE) and can
be downloaded to a user’s Google Drive (Google Company, CA, USA) or Google Cloud
Storage (Google Company, CA, USA) using the GEE platform. The GEE contains a wide
range of RS data sets, such as top of atmosphere (TOA) reflectance, surface reflectance,
and meteorological data. Several studies have recently been conducted using the GEE
platform due to its wide variety of applications and its data processing time [25–27]. The
GEE platform can handle massive processes in a short amount of time. The GEE can be
widely utilized in a variety of environmental fields, including agriculture, natural resources,
and natural disaster monitoring [26,28–32]. Therefore, using this platform, it is possible
to produce and combine different models, which can be performed in less time with high
speed.

In the case of GEE applications in flood detection, several attempts have been made
in which potential applications of this system were studied [24,29,33]. For instance,
Liu et al. [34] introduced a rapid flood prevention and response system in the GEE platform
that used optical and radar data. One of the issues in flood risk mapping is the combination
of various flood indices (e.g., ecological and hydro-environmental factors) and establishing
the relationship among them. To reach this goal, systematic methods and Multi-Criteria
Decision Making (MCDM) processes such as the Analytic Hierarchy Process (AHP) [35,36],
Set Pair Analysis (SPA) [20], and Artificial Intelligence (AI) models have been used suc-
cessfully. Seejata et al. [22] assessed flood risk areas using the AHP method. To spatially
analyze and conduct flood risk mapping, six physical indices including LU, Elevation (El),
Slope (Sl), Rainfall, River Density (RD), and Soil Texture (ST) in the ArcGIS (ESRI, Redlands,
CA, USA) environment were used and were finally able to be detected in high-risk areas.
Bourenane et al. [19] evaluated the FRM in urban areas where they used hydro geomor-
phological interpretation and analysis methods. Youssef et al. (2019) evaluated the flood
risk model using the AHP method and ArcGIS software in the Egyptian region. In this
research, to map flood risk, a combination of influential factors was used in the study area.
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Finally, they evaluated the proposed model with an Overall Accuracy (OA) of 83 percent.
Ogato et al. (2020) assessed flood risk mapping using GIS and MCDM methods with LU,
El, Sl, Rainfall, Drainage Density (DD), and ST indices. Guerriero et al. [37] prepared a
flood risk mapping analysis that used several possible models using data derived from
the Lidar system and hydrometric models. Eini et al. [38] developed a flood risk mapping
analysis of urban areas using Machine Learning (ML) techniques. In their research, flood
risk maps were generated using two ML models: MaxEnt and Genetic Algorithm Rule Set
Production (GARP). They used the economic, social, and infrastructural factors through
the optimization process for the flood risk analysis. The Fuzzy AHP (FAHP) method was
used for the general weighting of the indices. To evaluate the generated map, Area Under
the Curve (AUC) and Receiver Operating Characteristic (ROC) were used, which were
equal to 96.76% and 98.32%, respectively. The results of the FAHP model indicated that the
MaxEnt technique gave a more satisfying performance compared to the GARP technique.
The SPA method also had a significant dependence on the weights of the selected indices
and factors, and additionally, it had high complexity and computational time [20]. To
enhance the flood risk assessment performance, Machine Learning (ML) methods such as
Support Vector Machines (SVM), Gaussian Process Regression (GPR), Decision Trees (DT),
Artificial Neural Networks (ANN), Boosted Regression Trees (BRT), Multivariate Adaptive
Regression Splines (MARS), and the Group Method of Data Handling (GMDH) were ap-
plied [15–17,19,23,39–41]. Among these ML techniques, Random Forest (RF) is an ensemble
learning technique that is generally applied for classification and regression performance.
RF has been applied to investigate the physical patterns of various processes such as
earthquake-induced damage classification [42], rockburst prediction classification [43], tree
species classification [44], gene selection [45], and computer-aided diagnosis [46]. Although
this ML technique has demonstrated good performance in various applications, less atten-
tion has been paid to flood risk mapping [47]. Generally designed for ML classification, the
RF model has received a great deal of popularity in RS applications, where it is employed
in remotely sensed imagery classification due to its highest precision level compared to
other ML methods. Furthermore, the RF model provides the appropriate speed that is
required and well-organized parameterization for the process [48]. The subtle differences
between the present study and previous literature are the use of upgraded web-based
data to produce flood risk indices in which there is no need for powerful PC components
to produce effective indices in flood risk analysis. In the case of flood monitoring, the
implementation of ML techniques in the GEE platform by upgraded web-based data does
not need complex and heavy calculations compared to other platforms such Python (Guido
van Rossum, DE, USA), MATLAB (Mathworks, MA, USA), ENVI (L3 HARRIS, Boulder,
Colorado, USA), and ArcMap (Esri, West Redlands, CA, USA) softwares. In addition, the
GEE platform does not require downloading images and image processing. This issue can
be considered as novelties of this research work. Another positive aspect of the present
research is that the 11 risk indices, which are listed as El, Sl, LU, RD, ST, Slope Aspect
(SA), Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index
(NDWI), Topographic Wetness Index (TWI), Waterway and River Density (WRD), and
Maximum One-Day Precipitation (M1DP), are considered for the flood monitoring. Simul-
taneous usability of these risk indices has not yet been applied in previous literature. It
is possible to implement an RF model on the Google Earth Engine cloud platform; how-
ever, this process is conducted using the interactive Python and GEE interaction package
(geemap: A Python package for interactive mapping with Google Earth Engine) [49]. The
reason why this algorithm is not implemented directly inside Google Earth Engine is that
the ease of using this engine when integrating various effective indices in creating floods,
difficulty in terms of importing samples, ease of quantitatively evaluating the produced
model, ease of determining the importance indices as well as ease of outputting raster data.
The process of producing a flood risk map in the present paper has not been conducted
completely with the GEE platform, and only the flood risk indicators have been extracted
in the mentioned platform. Although risk indices are calculated in the GEE environment,
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desktop-based software (such as ArcMap [(Esri, West Redlands, CA, USA)]) is used to
reclassify and adjust risk indices since one of the disadvantages of the GEE platform is its
poor performance when visualizing shapes compared to desktop software such as ArcMap
10.8 (Esri, West Redlands, CA, USA). Therefore, the Python programming language and
ArcMap software have been used to implement the Random Forest algorithm to obtain the
flood risk map.

The research organization of this work is listed as follows: (i) the second section
introduces the study areas and data sets and the GEE, in which two reliable data sources
are received from Landsat 8 (L8) satellite imagery and the Shuttle Radar Topography
Mission (SRTM) Digital Evaluation Model (DEM); (ii) detailed information about the
proposed methodology is provided in the third section; (iii) the results of methodology
implementation for various risk levels are provided. Then, the results of this study are
compared with those from the literature; and (iv) the key achievements are presented in
the conclusions.

2. Overview of Case Study and Data
2.1. Research Case Study

The study area used for this research is the Galikesh basin. The Galikesh basin, which
is located in Golestan province and is derived from a sub-basin of Gorganrood, has an area
of 404.80 square kilometers. The maximum and minimum heights of the basin are 2461.3 m
and 378.1 m, respectively. The average height of the basin from sea level is 1395.2 m,
and the average slope of the basin is also equal to 23.3 percent. An overview of the case
study is illustrated in Figure 1. Due to the location of this river and the corresponding
expected flooding in recent years, parts of the North Khorasan and Semnan provinces
were also affected by the flood. This case study includes an area of 620 square kilometers
with dense vegetation, which is located in moderate topographic conditions and is at an
altitude of about 1500 m above sea level. Galikesh city has sufficient rainfall quantity due
to its geographical location. In this way, there are surface water networks and storage
of groundwater resources for local dwellers in the cold and warm months of the year,
respectively. Lack of access to the surface water network in some parts of this region has
had its inhabitants benefit from groundwater through the construction of aqueducts and
various deep and semi-deep wells. In this region, one of the natural disasters that has
put surface water and groundwater resources in a dangerous state is flood events. Floods
that occur in the area could have detrimental impacts on the quality of water resources,
agricultural and human activities, and livestock losses. Four flood events that occurred in
the past (12 August 2002; 13 September 2008; 15 October 2014; and 12 July 2020) had severe
impacts on various environmental aspects of the area, such as deforestation, the overuse
of the region’s soil, the abrupt erosion of soil, landslides, sharp elevation directions along
the river, and the pollution of water resources. In this way, the assessment of flood risk is
essential to ameliorate these repercussions. Given the occurrence of numerous floods and
the threat to natural resources, efforts to prevent the occurrence of destructive floods in
this basin are inevitable.
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Figure 1. Overview of case study area.

2.2. Data

In the current study, L8 satellite images and SRTM DEM were used in the GEE
cloud platform. In the GEE platform, all of the preprocessing, such as Radiometric and
Atmospheric corrections, which have already been performed, reduce the essential time
needed to prepare the data for the main analysis.

2.2.1. SRTM DEM

The SRTM DEM is an international project spearheaded by the United States National
Aeronautics and Space Administration (NASA) and the United States National Geospatial-
Intelligence Agency (NGA). SRTM includes a chiefly modified radar sensor that flew
onboard the Space Shuttle Endeavour during the 11-day STS-99 mission in February 2000.
The SRTM DEM has a spatial resolution of 30 m and a height accuracy of 16 m [50,51]. The
current data obtained from SRTM DEM dates back to a 10-day period (from 11 February
2000 to 22 February 2000), and additionally is freely available in GEE and on the United
States Geological Survey (USGS) website (see https://earthexplorer.usgs.gov/).

https://earthexplorer.usgs.gov/
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2.2.2. Landsat 8 Satellite

The L8 satellite is one of the optical satellites launched in February 2013 and has been
frequently used in environmental studies. In the present study, the L8 satellite with OLI
sensor was used. This sensor consists of nine spectral bands in the panchromatic, visible,
and near-infrared bands with a spatial resolution of 15 to 30 m and two thermal bands
with a spatial resolution of 100 m and a temporal resolution of 16 days. In the present
study, bands with a spatial resolution of 30 m have been used. This satellite data covers
the entire globe and can be analyzed for free by GEE and can also be downloaded from
the USGS website. Cloud coverage is one potential issue when using L8 Optical data.
Therefore, images with less cloud cover are used in the present experiment. Since risk
indices are used in preparing flood risk maps, the accuracy and quality of the data used in
the production of indices will affect the accuracy of the generated map. In fact, the higher
the spatial resolution of the data, the more accurate the produced map. In the present study,
images that had less cloud cover over time (below 5%) were used. The characteristics of L8
satellite bands are presented in Table 1. In the present study, the mentioned data (L8 and
SRTM DEM) used to generate risk indices were resampled to a 30 m spatial resolution to
ensure that all of the products had the same pixel size. Then, the flood risk indices were
reclassified.

Given that the management of qualitative and nonlinear data is one of the most
significant challenges in the FRM, the first step in flood risk mapping is to select the most
important indices affecting flood-prone areas. On the other hand, all flood-prone areas
do not have exactly the same characteristics; therefore, these indices may vary in different
areas. Therefore, in the present research, according to the location and conditions in the
study area, 11 environmental indices (El, Sl, SA, LU, NDWI, NDVI, TWI, RD, WRD, ST,
and M1DP) affecting the flood occurrence were used. The flood risk mapping process is
presented in Figure 2. According to Figure 2, in order to prepare a flood risk mapping,
various data such as L8 satellite imagery and the SRTM DEM model are called upon and are
pre-processed on the GEE platform. Then, Landsat 8 satellite images are used to generate
four indices: NDVI, NDWI, ST, and LU. Additionally, the SRTM DEM model is used to
produce six indices Sl, SA, El, RD, WRD, and TWI. In addition, one-day precipitation data
related to CHIRPS satellite are used. Therefore, in general, 11 risk indices are generated
and are used to model flood risk. In the next step, the RF model is fed by the values of each
risk index, which are obtained from historical floods, for the performance of the training
stage. After evaluating the RF model by the testing data, a flood risk map is generated for
the values of all of the pixels and then the importance of each index is determined.

Table 1. Details of Landsat 8 satellite bands.

Satellite/Sensor Band Name Wavelength Resolution

Landsat 8/OLI

Band-1 Coastal/Aerosol 0.43–0.45 30
Band-2 Blue 0.45–0.51 30
Band-3 Green 0.53–0.59 30
Band-4 Red 0.64–0.67 30
Band-5 Near Infrared (NIR) 0.85–0.88 30
Band-6 Shortwave Infrared (SWIR) 1 1.57–1.65 30
Band-7 Shortwave Infrared (SWIR) 2 2.11–2.29 30
Band-8 Panchromatic 0.50–0.68 30
Band-9 Cirrus 1.36–1.38 30
Band-10 Thermal Infrared (TIRS) 1 10.6–11.19 100 × (30)
Band-11 Thermal Infrared (TIRS) 2 11.5–12.51 100 × (30)
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3. Methodology of the Research
3.1. Definition of Indices

According to Figure 2, the SRTM DEM and L8 satellite images in the GEE platform
were applied to map flood risk. As previously mentioned, in this study, 11 environmental
indices influencing the occurrence of floods were used, in which 4 indices produced from
L8 satellite images and 6 indices produced from SRTM DEM were used.

All of the indices that were extracted from L8 satellite imagery and SRTM DEM in
the GEE web-based platform were imported into the ArcMap 10.8 (Esri, West Redlands,
CA, USA) software to analyze and prepare the graphical output. In the next stage, the
appropriate values of the training and testing samples were extracted from these indices,
which were then imported into the Python programming environment. Finally, after
predicting various risk levels, the predicted values were imported into the ArcMap 10.8
(Esri, West Redlands, CA, USA) software, and the final flood risk model was created.
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3.1.1. Elevation

The SRTM DEM model presents the point elevation changes in the study area in each
pixel, which is in the unit of meters. The SRTM DEM model was provided by the GEE
platform, and the elevation point values are between 157 and 2348 m for the case study.
In the case of flood risk, points that have higher elevations are less susceptible to risk
than other points with low elevations. For instance, the point placed on the summit of the
mountain has a lower risk than the points on the hillside.

3.1.2. Slope

The amount of slope in each pixel relative to the surface level obtained from the DEM
and the value of the pixels vary between 0–100 percent. Due to the mechanisms of water
and its flow in areas with sharp slopes and its gentleness in flat areas, this index plays a
significant role in monitoring floods in degree units. For the present case study, the slope
values were 0–69.98%. The higher the slope values, the higher the flood risk.

3.1.3. Slope Aspect

This index is also a derivative of the DEM that determines the directions of the pixels
per unit degree, leading to more accurate decisions in flood risk mapping. In other words,
the SA map is the slope deviation from the geographical north, which varies between 0
and 360 degrees. In fact, determining the SA in the direction of a slope and with a certain
height is capable of completely modeling the shape of the earth. For the SA index, there are
four main directions and four inter-cardinal directions. Hence, there are eight classes for
SA features: N(1), NE(2), E(3), SE(4), S(5), SW(6), W(7), and NW(8). In flood risk mapping,
the number of identification classes is directly assigned to each satellite imagery pixel.

3.1.4. Land Use

The occurrence of floods in areas with different characteristics shows different per-
formance. For instance, the flooding mechanism is very different in urban areas, areas
with vegetation, and areas with soil and rock texture. Therefore, each feature will play a
substantial role in flood risk mapping. In the present study, weight different types of LU
features (i.e., water, urban, bare area, cropland, agriculture land, shrub, forest, and herba-
ceous area) were defined in the case study, including 70 percent of the medium-density and
dense vegetation and 30 percent of the vegetation in other areas. Runoff coefficients related
to each LU feature are presented in Table 2. As seen in Table 2, water and shrub have the
maximum and minimum runoff coefficients, respectively. An increase in the values of
the runoff coefficient increases the flood risk. Then, eight various classes were assigned
for LU, features as seen in Table 2. In this study, the various runoff coefficients were
considered based on two Chinese standards: (i) the code for design for the construction
of water supply and drainage (GB 50015-2003) and (ii) the code for the design of outdoor
wastewater engineering (GB50014-2006). The LU index was generated using the time-series
images from L8 satellite in the GEE, in which SVM, as a supervised classification model,
was used to classify LU with an OA of 95 percent.

Table 2. Land use pattern and corresponding runoff coefficients in the Galikesh River Basin.

Land Use Forest Shrub Herbaceous Agriculture
Land Cropland Bare Area Urban Water

(River)

Runoff Coefficient 0.15 0.18 0.2 0.4 0.6 0.7 0.9 1

Identification Number
of Class 1 2 3 4 5 6 7 8
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3.1.5. Normalized Differential Vegetation Index

Although the location of vegetation is clear in the land use map, the vegetation
status in terms of density and canopy is not clear. To accurately calculate the amount of
vegetation (canopy), the Normalized Difference Vegetation Index (NDVI) was used and
could be calculated as

NDVI =
NIR − R
NIR + R

(1)

In Equation (1), the NDVI is the Normalized Differential Vegetation Index, NIR is
the amount of near-infrared band reflectance, and R is the red band reflectance of the L8
satellite imagery. Using this index, the vegetation values can be extracted in different
intervals. The value of the NDVI varies between +1 and −1, in which values ranging
from 0.2 to +1 are classified as vegetation class [52]. In this research, five classes were
defined for the vegetation situation in the case study. Bare area, water, low vegetation,
medium vegetation, and high vegetation were assigned to the NDVI map by classes 5 to 1,
respectively. Clearly, flood risk in the bare area is higher than it is in districts where there
are various vegetation densities.

3.1.6. Normalized Difference Water Index

One of the significant elements in flood risk mapping that has not drawn great atten-
tion is the presence of water bodies such as water reservoirs, dams, rivers, and permanent
water [17,46,53]. These areas are always a threat to neighboring lands. In the case of a
threat, these water bodies will cause the soil to become as saturated as possible, and the
potential for a flooding event occurring is unavoidable. Since the NDWI is a dynamic index
that can be used over time and since risk is a static phenomenon, the average amount
of water areas (Mean (NDWI)) in 12 months was used. Since Landsat 8 satellite images
are taken twice a month and since the water zones change at different times, the average
monthly value of the water zone was used to have the best estimate of the amount of water
in the study area. The NDWI index has been used to separate water class from other classes,
such as soil, vegetation, etc. The index was introduced by McFeeters [54] to determine
water characterization using the Landsat-TM Green and NIR Band (Band 2 and Band 4).
Positive values in the NDWI image were classified as water classes, whereas negative
values were identified as non-water areas [54]. This index can be obtained as follows:

NDWIi
j =

G − NIR
G + NIR

, NDWIAve = Mean(NDWI)i
j (2)

where NDWIi
j is the monthly Normalized Differential Water Index, i, j is the first to the

last monthly NDWI, NDWIAve is the average of the monthly NDWI, NIR is the amount
of near-infrared band reflectance, and G is the green band reflectance of the L8 satellite
imagery. Using this index, the water values can be extracted at different intervals. The
NDWI values between zero and one are considered as water areas. Areas that are covered
by water have a higher flood risk compared to the districts that are not covered by water.
In this study, the distribution of the NDWI values provided two classes (0 for non-water
area and 1 for water).

3.1.7. Topographic Wetness Index

This index can be generally applied to measure the number of topographic controls
on hydrological events. TWI is in close connection with the slope and the upstream,
contributing an area per unit width that is orthogonal to the direction of flow. As mentioned
in [55], TWI is generated based on its relationship definition and the ramifications of DEM,
slope, the direction of flow, and the accumulation of flow when using the raster calculator
tools in the ArcMap 10.8 (Esri, West Redlands, CA, USA) software. In the present study,
TWI values vary between −5 and 7, indicating low- and high-risk levels, respectively.
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3.1.8. River Distance

This index is introduced as one of the most significant parameters that can be applied
in flood risk mapping. The river system is obtained on the basis of SRTM DEM. The rivers
are therefore set to zero; thereafter, this value becomes greater as the distance to the river
increases. The RD feature ranges from 0 to 2302.17 m in our case study of the Galikesh
River.

3.1.9. Waterway and River Distance

WRD, as an important index in flood risk mapping, is quantified by various geological
factors: the permeability of areas, the vegetation state of areas, the slope of the surface,
and the time duration of the flood/inundation. Generally, there is an inverse correlation
between the WRD index and the permeability of different areas. Higher values of WRD
denote a high volume of run-off per basin along with the erodible soil texture of different
areas (e.g., alluvial sediments, sand, clay), leading to less flood-prone areas [21]. Therefore,
the rating for the WRD index has an inverse correlation with the WRD index. The WRD
index can be computed as

WRD =
L
A

(3)

where L and A are the total distance of the water and river channel (km) and the total area
of the watershed (km2), respectively. When WRD is equal to 0, the areas with the lowest
risk state are met, whereas for WRD > 0, high risk is acquired. The maximum WRD value
obtained for the Galikesh River is 2.53, indicating the highest level of risk.

3.1.10. Soil Texture

This index, which has an important effect on the occurrence of floods, indicates the
type of soil particle characteristics that are present in the case study. As seen in Table 3,
according to the codes of each texture, when the classification values of the different classes
have larger values, it indicates a high degree of infiltration. These values were determined
based on data from the Harmonized World Soil Database [56] and the USDA Soil Taxonomy
(ST). From Table 3, it can be inferred that sandy clay with higher infiltration has the highest
level of flood risk compared to silt (6) and clay (3) soils. The identification number of the
soil classes is dedicated to each pixel used for the flood risk assessment by the RF model.

Table 3. Soil texture and corresponding class of infiltration capability.

Type Alfisols Entisols Mollisols

Texture Silt Clay Sandy clay

Indentification Number of Class 6 3 8

Infiltration Level Moderate Low High

3.1.11. Maximum One-Day Precipitation

Using different satellites by means of the Cloud Computing Platform, the GEE plat-
form can extract the precipitation trend changes that are available in 30-min, 3-h, daily,
and monthly intervals. Climate Hazards Group InfraRed Precipitation with Station data
(CHIRPS) are 30+ year quasi-global rainfall data. CHIRPS incorporates 0.05-degree spatial
resolution satellite imagery with in situ measurement data to create gridded rainfall time
series for trend analysis and seasonal drought monitoring. In the current research, four
flood events take place on four separate days; then the Maximum One-Day Precipitation
(M1DP) index was used to analyze flood monitoring. The consideration of the maximum
precipitation is the more persuasive rainfall index than other precipitation values for pro-
viding flood risk mapping. Then, the M1DP values of the stations are interpolated using
the Kriging interpolation tool, and the network layer of the M1DP index can finally be
generated (30 × 30 m) based on the ArcGIS (ESRI, Redlands, CA, USA) software. From
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meteorological information, M1DP values vary between 37.29–73.84 mm for the four previ-
ous flood events seen in the study area. The lower M1DP values generate a higher level of
flood risk.

3.2. Collection of Training Data

The collection of the sample data is of high importance when mapping the flood risk
to evaluate the performance of the testing and training sets, which has a significant impact
on the quality and reliability of the output map. In the current study, according to the
recent floods that have occurred in the study area, 400 sample data were collected from
the high-resolution satellite imagery source and field observation data to develop the RF
model. These samples were taken from flooded areas and non-flooded areas. There are
11 risk indices, which are considered input variables, that were used to feed the RF model.
The output variable has two labels: non-flooded areas (0) and flooded areas (1). In fact,
400 sample data were equally selected from two typical areas. From all of the sample data,
70 and 30 percent of the sample data were considered for the training and testing stages,
respectively. In this study, the training and testing sample data were normalized between 0
and 1 prior to being fed by the RF model.

In this study, data were associated with the floods that occurred on 12 August 2002
(lower risk), 13 September 2008 (medium risk), 15 October 2014 (higher risk), and 12 July
2020 (highest risk). All of the sample data at the risk state were grouped into the flooded
area. According to the data, the samples in which floods did not occur are considered to
be the areas with the lowest risk level. Moreover, this typical selection of risk categories
was used by previous investigations in which the flooded areas at the flooding time were
classified as the areas that are at medium and high risk [17,57,58]. The number and
distribution of the sample data in the study area are shown in Figure 3. In Figure 3, the
training sample data are uniformly distributed throughout the study area.
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3.3. Implementation of Random Forest

The RF model, as one of the most well-known supervised classification methods, is
capable of combining the predictive trees and was proposed by [59]. In the RF method,
each tree is dependent on the values of a random input vector independently and has equal
distribution to all of the trees in that forest [59]. Currently, this algorithm is a widely used
classification algorithm for high-dimensional data as well as multi-modal data classification
among classification algorithms [57,60]. The RF algorithm is highly useful to reduce the
frequently reported overfitting cases that are associated with the Decision Tree (DT) model.
This non-parametric algorithm is based on DT algorithms. DT is a hierarchical classification
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algorithm that can be used to label an unknown pattern by using a sequence of decisions.
The trees include three main elements: root nodes, child nodes, and leaf nodes (terminal
nodes). The implementation of classification is performed by using a set of rules that define
the path to be followed, starting from the root node and ending at one terminal node,
which indicates the label for the classification of the object. At each non-terminal node, a
decision is made regarding the path to the next node [61]. The flowchart of the RF model is
conceptually sketched in Figure 4.

In the first step, the k subsets of the training data (D1, D2, ..., Dk) are selected from
the entire training data (D) by means of the Bootstrap Sampling (BS) technique. The
BS is a statistical technique for estimating the quantities of a population by averaging
estimates from multiple small data samples. Importantly, samples are created by drawing
observations from a huge data sample one at a time and returning them to the data sample
after they have been selected. Additionally, the sample size of Dk is the same as the whole
of sample set D. Next, k DTs are generated based on the k subsets and k classification results.
At the final step, each DT casts a unit vote for the most popular class; therefore, the most
satisfying results are acquired.

The typical risk indices (11 risk indices) are not selected randomly while the values of
the risk indices are selected based on the principles of the RF model. The accuracy of the
generated flood risk map was evaluated using the collected samples, which are considered
as samples for the training (70 percent) and testing (30 percent) data. In the case of RF
performance, there are setting parameters that may produce uncertainty in the prediction
accuracy level. These parameters are the number of estimators, the maximum number
of features considered for splitting a node, the maximum number of levels in each DT,
and the minimum number of data points put in a node prior to the splitting node. In
some performances, the general structure of the RF model is overparameterized, requiring
an overfitting reduction (when the training stage is too much accurate and the testing
result is too inaccurate) by using the k-fold cross-validation technique. The overfitting
of the RF results produces huge uncertainty. In this study, to avoid the possibility of
overfitting, we assigned five-folds during RF performance among other k-fold values.
Similar investigations that have used ML approaches have proven that five folds are
generally a sufficient number of folds to reduce overfitting occurrence [17,43,44,57]. After
performing the model in the training and testing phases, the RF model was developed for
all pixels (206216). In fact, each pixel includes 11 features (risk indices) and 1 label (0 or 1).
Once the RF technique was performed for all of the pixels, the risk values were obtained
between 0 and 1. These values were classified into five classes: lowest risk, lower risk,
medium risk, higher risk, and highest risk.
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3.4. Flood Risk Mapping and Risk Assessment

To provide the map of the flood, the risk indices generated in the GEE platform
(11 indices) were converted to raster grids, and each risk index had a 206216 raster grid.
Then, according to the floods that had occurred in previous years in the study area, a set of
training data was prepared. As mentioned in the previous section, these sample data were
partitioned into two main sections to create the RF model and to assess the accuracy level
of the output map. In the next step, the Importance Degree Index was determined while
creating the model in the Python package (i.e., seaborn, numpy, pandas, and matplotlib).
After creating the final map, the trained model was evaluated using the test data in the
study area.

3.5. Definition of Error and Index Importance Degree

For a specific training set (Q) with a sample size M, the quantity of probability that
each sample data in the set Q would not be acquired is [1 − 1/M]M. Once the sample size
M is adequately large enough, the probability value increases to 0.368. This value indicates
that more than 1/3 of the M samples in set Q are placed out of the bootstrap sample; these
samples are then called out-of-bag (OOB) data. Generally, OOB data are applied to create a
running, unbiased estimate of the classification error as trees are merged into the forest.

The RF algorithm calculates the importance of the variables, which is called the
Index Importance Degree (IID). This parameter permits the decision-maker to understand
and predict an index contribution to the total risk. Overall, two techniques are used to
calculate IID. At first, the OOB error associated with each tree (EOOB1) is initially computed;
thereafter, these initial values merge the noise to the data of the index i, and then the OOB
error (EOOB2) values are computed. The IID i is acquired by considering the average of
the difference between the EOOB1 and EOOB2 values; thereafter, the standard deviation
normalizes this index. In the case of the second technique, a node split is generated on the
index i each time, and the benchmark of Gini impurity associated with the two descendent
nodes is lower than that of the parent node. The combination of the Gini decreases for
each index over all of the trees in the forest, which expeditiously creates an index that is
generally consistent with the permutation importance measure [62]. In the current research,
the EOOB2 technique is applied to calculate the importance degree of every index; afterward,
the contribution of each index to the total risk is acquired as

pk =

n
∑

i = 1

t
∑

j = 1
DGkij

m
∑

k = 1

n
∑

i = 1
DGkij

(4)

where m is the number of indices, n is the number of classification trees, and t is the number
of nodes in the tree structure. Additionally, DGkij is the value of the decrease in the Gini
Index that is associated with the ith node in the jth tree, which is associated with the kth
index, and Pk denotes the contribution degree of kth index out of all of the existing indices.

3.6. Evaluation of the Proposed Model

In order to assess the accuracy and quality of the model produced with real data, Area
Under the Receiver-Operator Characteristic Curve (ROC-AUC), Kappa Coefficient (KC),
and OA were used. Overall, the rate of predictions indicates the potential of the predictive
models in a specific area using these criteria [54,63,64]. Additionally, in order to evaluate
the performance of the model results, two well-known statistical benchmarks, Root Mean
Square Error (RMSE) and Mean Absolute Error (MAE), were used [65–67],

RMSE =

√√√√√ N
∑

i = 1
(Floodi

Pre − Floodi
Obs)

2

N
(5)
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MAE =
1
N

N

∑
i = 1

∣∣∣Floodi
Obs − Floodi

Pre

∣∣∣ (6)

where FloodObs is the values of the observed flood data, FloodPre is the estimated values,
and N is the total number of measured data.

In the following, brief descriptions of ROC-AUC are given:
An ROC graph is introduced as a curve illustrating the performance of a classifier

technique in all classes. Two parameters, known as True Positive Rate (TPR) and False
Positive Rate (FPR), require the ROC curve to be drawn. Additionally, AUC is a statistical
measure to assess the capability of a classifier model to distinguish among classes and can
be applied as a summary of the ROC graph. These parameters are computed as

TPR =
TP

TP + FN
(7)

FPR =
FP

TP + FN
(8)

The increase in AUC values indicates the more efficient performance of the classifier
model in distinguishing between the positive and negative classes. When the AUC is equal
to 1, the classifier model is capable of perfectly distinguishing between all of the positive
and the negative class points correctly. When the AUC value becomes zero, the classifier
model will predict all of the negatives as positives and all positives as negatives. For
AUC = 0.5–1, there is a high possibility that the classifier model is capable of distinguishing
the positive class values from the negative class values. In the case of AUC = 0.5, the
classifier model is unable to make a distinction between positive and negative class points.
Other descriptions of ROC–AUC can be found in the literature [38].

4. Result and Discussions
4.1. Results of Risk Indices

One of the most important advantages of GEE compared to other software is its
ability to generate various parameters in a short time and at a high speed. As mentioned,
according to the location and conditions in the study area, 11 environmental parameters
indices affecting the occurrence of floods, El, Sl, SA, LU, NDWI, NDVI, TWI, RD, WRD,
ST, and M1DP indices, were generated from L8 satellite imagery and the SRTM DEM, as
shown in Figure 5. As more clarifications for risk indices arise, the link of the script that
was used to specifically create the 11 risk indices was provided in the GEE platform. This
script can be found in the Appendix A section.

According to Figure 5, all of the effective indices for the creation of floods show the
values and density of classes in the study area (especially vegetation class and water areas)
with very high accuracy. However, in previous studies, many classes (especially vegetation
and water) have been ignored. This is because the density of the vegetation is very effective
in creating floods. In other words, the denser the vegetation in the area is, the lower the
probability of flooding.
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4.2. Flood Risk Mapping

With the aid of the natural break classification method in ArcMap 10.8 (Esri, West Red-
lands, CA, USA) software, the five risk classes were assigned to map the flood probability:
lowest (0.0–0.2), lower (0.2–0.4), medium (0.4–0.6), higher (0.6–0.8), and highest (0.8–1.0)
risks. By combining different layers of indices produced in the GEE and classifying them
based on the RF algorithm, the final flood risk mapping was produced in Figure 6, and
finally, the highest and lowest risk areas were determined. As shown in Figure 6, the most
dangerous area is located at the center of the waterway network in low elevation regions
and in the east–west direction. Additionally, in Figure 6, several residential areas are in
high-flood risk areas. According to our results, the margins of the waterways and rivers
that have higher elevation are the lowest, lower, and medium risk, indicating the impor-
tance of El, SL, and SA. According to the flood risk mapping and risk class distribution,
areas with high WRD and RD that are close to the river and that have flat elevation with
low vegetation have the highest risk of floods and inundation. In the eastern region of the
study, the indices for low elevation, moderate slope and slope aspect, low vegetation, water
area, and soil texture are very influential indices when considering the occurrence of floods.
In contrast, the lowest risk areas are the areas with dense vegetation, low rainfall values,
high elevation, gentle slope, soil texture with high infiltration, and arid areas. Moreover,
high values in the rainfall index indicate an increase in flood risk, which has a significant
effect on the occurrence of floods. According to Figure 6, about 18% of the study area has
the highest risk, 21% is at higher risk, 16% is at medium risk, 16% is at lower risk, and 29%
has the very lowest risk. In the study area, there are residential areas that are located in
areas with the lowest and highest risk. Due to this issue, with this method, suitable and
unsuitable areas for building construction can be located in less time. According to the
FRM, about 50 percent of residential areas are located in high-risk areas that would lead to
severe losses of life and property in the event of a flood. The location of several examples
of recent flood damage in the study area is shown in Figure 7.
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4.3. Index Importance Degree Analysis

As mentioned in Section 3.3, the RF computes the variable IID that helps the decision-
maker to realize and estimate an index’s contribution to total risk. Generally, there are
two approaches to compute the IID. The first approach initially computes the out-of-bag
(OOB) error of each tree (EOOB1) and then adds the noise to the data of index i and
subsequently calculates the OOB error (EOOB2). The IID i is obtained by taking the
average of the difference between EOOB1 and EOOB2 variables and then normalizing it
using the standard deviation. In the second approach, when a node split is made on index
i at each time, the Gini impurity criterion for the two descendent nodes is less than that of
the parent node. Combining the decreases in the Gini Index for each individual index over
all trees in the forest rapidly provides an important index that is typically consistent with
the permutation importance measure. This study adopts the latter approach to compute
the importance degree of each index. As such the RF model describes variable importance
by enabling an assessment of the importance of each variable using the Gini decrease index.
One of the RF algorithm capabilities is to provide the impact of each risk indices using the
Gini Index. Based on this index, the importance of each index is estimated in percent, and
users and planners use them to provide the appropriate program to reduce risk damages.
This capability, provided by Breiman [59], is available in most open-source softwares.
Therefore, the impact values of each index were calculated in Python open-source Python
(Guido van Rossum, DE, USA) software, which is shown in Figure 8.

According to Figure 8, the indices of WRD, RD, M1DP, and El, account for about 68.27%
of the total risk of flooding. This suggests these special indices contribute overwhelmingly
to total flood risk. Among these indices, the WRD index, with about 23.8% of the total
risk, had the greatest impact on floods. The second risk index is the RD index with a
risk of 15.3%. The lowest percentage of flood risk is related to the NDWI index, which
accounts for only 1.03% of the total risk. However, NDWI, ST, TWI, SA, LU, NDVI, and Sl
indices account for about 31.73% of the total risk. Together, these indices lead to floods and
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irreparable damages to agricultural land and crops as well as economic resources. Due to
the homogeneity and heterogeneity of features in satellite imagery and DEM, each of the
risk indices may present various results in different regions. Therefore, the results of this
section show the capability of the RF algorithm to identify the most important and least
effective risk factors. The RF model has a significant impact on data generation time and
final map modeling. It also increases the quality of decision-making to prevent a disaster.
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4.4. Assessment of RF Performance

In this study, the performance of the RF model was evaluated using various statistical
measures, such as RMSE, MAE, OA, KC, and ROC-AUC.

As seen in Figure 9, the variation of false-positive rates versus true positive rates
was illustrated using the ROC-AUC. According to Figure 9, the ROC-AUC value for the
model generated by the RF algorithm is equal to 0.91, which indicates high accuracy in the
generated model. Furthermore, the KC and OA obtained 0.87 and 91.11%, respectively,
demonstrating the satisfying quality of RF performance. Therefore, based on the results, it
seems that the application of the GEE (implemented in the CCP) and RF model is highly
efficient when preparing flood risk mapping. In addition, to further ensure the accuracy of
the model, RMSE and MAE values returned by the training stage obtained 0.195 and 0.26,
respectively, while for the testing stage, these values were equal to 0.25 and 0.31. Therefore,
by performing the above analyses and by measuring the performance of the computational
models, it can be concluded that the application of RS along with the GEE platform is a
very useful tool when determining effective indices for the occurrence of floods. Moreover,
the findings of this research can be important to relevant for the straight flood control
initiatives of region authorities at the basin-scale to minimize vulnerability to flooding,
improve early flood alarm systems, and evacuate flood victims.
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4.5. Comparison of Results with Previous Studies

The comparison of present results with the previous literature was made efficiently
in terms of the accuracy level of predictive tools, the usability of the risk indices, and the
typical selection of satellites.

Feng et al. [46] employed Unmanned Aerial Vehicle (UAV) RS for flood monitoring. In
their study, the RF model (OA = 87.3%) had better performance than maximum likelihood
and ANN. The present study showed that the usability of Landsat 8 satellite imagery
was more efficient for flood monitoring than the UAV. Landsat 8 satellite imagery is also
superior to images taken by the UAV system. Images taken by the UAV with a spatial
resolution of less than 5 cm (depending on the flight altitude) make it possible to prepare a
flood risk mapping and to set up an emergency response system for receiving very useful
information during a flood. However, images taken by Landsat 8 are superior to UAV
images in flood risk mapping. Creating UAV images is very expensive, whereas Landsat 8
images are provided to users for free. As a major advantage, Landsat 8 satellite imagery
benefits from historical data at different times, whereas UAV images do not exist in this
regard. In the same area, the amount of data processed in the UAV is significantly higher
than that of the Landsat 8 satellite imagery. Landsat 8 images have different spectral
bands to monitor flood and its risk levels, making it possible to produce spectral indices.
Although there are UAVs with multispectral sensors, the data processing volume is gently
on the rise, particularly when using a large-scale.

In the Youssef et al. [58] study, the AHP method was utilized for flood risk mapping.
According to the evaluation results, the OA obtained 83 percent compared to the OA = 91.11
of the present study. Moreover, the presented method is relatively accurate compared to
other ML methods. Additionally, Eini et al. [38] examined flood risk mapping using the
MaxEnt and GARP methods. Based on the results, the KC for MaxEnt and GARP was equal
to 0.82 and 0.86, respectively, which obtained excellent accuracy compared to the results of
the present research with KC = 87. In addition, Soltani et al. [23] prepared an FRM utilizing
the NDVI index and rainfall. Based on the evaluation of the generated map, the average
value of MAE achieved = 5.076, indicating low accuracy compared to the present results
(MAE = 0.31). Compared to the present results, the lack of precision level in the Soltani et al.
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(2021) study might likely be due to ignorance towards other environmental indices such
as El, RD, Sl, and ST. They applied an improved version of the GMDH model with more
polynomial regression equation complexity for flood risk projection compared to the RF
model in this study. In the case of flood risk mapping, Soltani et al. [23] used MODIS (or
Moderate Resolution Imaging Spectroradiometer) satellite data. The Landsat 8 satellite has
a very high spatial resolution compared to the MODIS sensor, which leads to increased
accuracy when mapping vegetation and water areas. In addition, Landsat 8 bands are
designed to image in the visible, near-infrared, short-infrared, and thermal infrared spectral
ranges that can be used to generate effective flood occurrence indices. On the contrary, in
order to prepare a flood risk mapping on a global scale, MODIS sensor images are more
efficient than Landsat 8 satellite imagery. However, on a local scale, MODIS sensor images
are not suitable for flood risk mapping. In fact, L8 satellite images are highly effective in
mapping the surface features due to their high spatial resolution.

The statistical performance of the RF model demonstrated a permissible accuracy
level (RMSE = 0.25 and MAE = 0.31) when compared to the investigation of Baig et al. [17],
which aimed to provide flood risk mapping by means of SVM (SVM–Polynomial Kernel
Function (RMSE = 0.466 and MAE = 0.342), SVM–Radial Basis Function (RMSE = 0.455
and RMSE = 0.367)) and GPR (GPR–Polynomial kernel function (RMSE = 0.413 and
MAE = 0.373), and GPR–Radial Basis Function (RMSE = 0.450 and RMSE = 0.443)) models.
In fact, Baig et al. [17] used hydro-environmental properties (El, SA, DD, TWI, ST, rainfall,
distance to stream networks, plan curvature, profile curvature, Land Cover (LC), lithology,
Steam Power Index (SPI)) from the Sentinel-1 satellite for flood monitoring. Optical L8
images have a unique advantage over radar images. Radar images from Sentinel-1 are
an effective tool for mapping flood areas; however, due to the lack of diverse spectral
information compared to L8 satellite imagery, they are not effective for flood risk mapping.
Moreover, it is not possible to generate various spectral indices such as NDWI and NDVI
using Sentinel-1 radar images. Meanwhile, L8 images are used to produce multiple spectral
indices.

As a limitation to this study, lithology, SPI, and LC were not used as risk indices.
In addition to the usability of the 11 indices, the study of RFM can comprehensively
be performed by considering three indices (i.e., lithology, SPI, and LC). Additionally,
Avand et al. [53] applied RF (91% accuracy) and a Bayesian generalized linear model
(85% accuracy) to investigate flood risk using Sentinel-1 satellite imagery. As a restriction,
Avand et al. [53] could not use the ecological indices of NDVI and NDWI to monitor floods.
As such, this issue might be a key cause of computational errors when compared to the
present results. In the case of Deep Convolutional Neural Networks (DCNNs) application,
the statistical results of Dong et al.’s [68] investigation for monitoring summer floods (using
Sentinel-1 satellite imagery) are comparable to the RF model in the present study. Although
DCNNs are precise methodologies for flood monitoring, the general structure of RF is
simpler and is a less time-consuming model.

Since the performance of the proposed method depends on training examples, it is not
possible to implement the method in areas without training examples. On the other hand,
in the present study, it is not possible to identify flood-prone areas using Real Time (RT)
measurements or flood-prone areas determined by Near Real Time (NRT) measurements.
However, in the present study, an attempt was made to use upgraded data to determine
flood-prone areas, but this leads to the lack of effective indices in the times before the flood.
In addition, there is no possibility to generate spectral indices using optical images in areas
where the cloud is the predominant phenomenon (this is not the case for the study area
in the present study). One of the major disadvantages of the proposed framework is the
complexity of producing effective indices in determining flood risk areas such as the depth
index of waterways, canals, and rivers in the GEE platform. However, by increasing the
data and making it available to users, this platform can be reliable literature for future
analysis.



Water 2021, 13, 3115 21 of 25

5. Conclusions

Given that extreme climate events such as flooding could improve, in the days ahead,
damage to infrastructure may swell, which is likely to increase economic losses. Hence,
it is critical to develop a method to assess associated meaningful socio-economic losses.
Flood risk mapping is an efficient way to predict and analyze spatial risks; however,
such mapping has a complex and systematic process that involves nonlinear and high-
dimensional data. Processing this data requires very powerful PC components and a high
computational time. To solve this drawback, a web-based platform called GEE was used.
To map the flood risk, 11 important risk indices were used. To combine the risk indices, a
very common model called RF was used in the open-source interactive Python and GEE
interaction package. A number of 400 samples data samples were used to train and test
the model, which was recorded from the floods that occurred in recent years. Among
the various indices, WRD, RD, Rainfall, and El, indices accounted for about 68.27% of
the total flood risk. Among these indices, the WRD index with about 23.8% of the total
risk, shows the greatest impact on the flood. Additionally, the second risk index is the
RD index, which includes 15.3% of the total indices. Among them, the lowest flood risk
percentage was related to the NDWI index, which only included 1.03% of the total risks.
However, NDWI, ST, TWI, SA, LU, NDVI, and SL accounted for about 31.73% of the total
risk. In general, four indices, El, Rainfall, WRD, RD, and Rainfall, were the most important
indices for creating floods in the study area. However, all of the indices together lead
to floods and cause irreparable damage to agricultural lands and products as well as to
economic resources and benefits. Due to the homogeneity and heterogeneity of the features
in the satellite imagery and DEM, each of the risk indices may present different results in
various regions. Therefore, the results show the ability of the RF algorithm to identify the
most important and even the least effective risk indices. This not only has a significant
impact on the data generation time and final map modeling but also increases the quality
of decision-making to prevent disasters. According to the flood risk map, about 18% of the
total areas were placed in the highest-risk levels, and 21% of the total areas were grouped
into higher-risk levels. About 16% of the total areas were categorized in medium-risk
levels, whereas 16% of the total areas had lower-risk levels. Ultimately, 29% of the total
areas were located in the lowest-risk areas. The results of this study were high quality,
so the value of the ROC–AUC for the generated model by the RF algorithm was equal to
0.91. Moreover, the KC (0.87) and OA (90.11) values indicated the high potential of the RF
model. Since GEE cloud computing was used to generate the flood risk indices, this led to
increased computational speed, the use of a very large number of satellite images, no need
to perform the Radiometric and Atmospheric corrections, and free access to all of the data
that were used. However, it seems that the use of the GEE platform and RF algorithm to
prepare flood risk mapping and risk management is very efficient and effective. To further
ensure the accuracy of the model, two benchmark criteria, RMSE (0.25) and MAE (0.31),
were considered. Therefore, by performing analyses and examining the performance of the
computational models, it can be concluded that the GEE platform is a highly useful tool in
flood risk mapping.

In this study, the present framework includes several advantages. The first benefit is
the usability of up-to-date indices in the GEE Cloud Computing Platform (GCCP), which
can import and process several hundred data in a very short time. Using this platform,
researchers will no longer need powerful computer systems to download, preprocess,
and post-process satellite images to perform risk analysis. Additionally, in this platform,
the possibility of time-series analysis can be conducted conveniently, while without this
platform, time series analysis becomes a difficult, time-consuming, and costly thing. It is
necessary to effectively use a wide range of flood risk indices because this issue affects the
accuracy level of models when defining risk levels. The quality of decision-making during
the flood occurrence is inextricably bound up with the number of effective environmental
indices in creating floods. The assessment of presented results created a reference for flood
risk management, avoidance, and decreasing natural disasters in the study area. In future
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research, it is suggested that SAR (Synthetic Aperture Radar) images and multi-sensor
optical data be used simultaneously for flood risk detection. In addition, future research
will consider multiple climate models combined with ML algorithms to predict future
flood risk scenarios in the study area.
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Appendix A

The link to the script that was used to create the flood risk indices directly was
provided in the specific format of the Google Earth Engine platform. This script can be
found through the following link:

https://code.earthengine.google.com/5daa22a7670e049433ef0ba559eaeeff
In order to run the script, after subscribing to the Google Earth Engine platform,

paste the relevant link in the address bar and wait for the script to run. In order to view
the results, it is necessary for the user to activate the desired layer tick. This script has
been adjusted according to the conditions of the study area in the present study, and it is
necessary to change the parameters when considering other areas. After performing the
script and viewing the results, the user needs the output of the desired layers in the vector
or raster format.
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