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Abstract: Rapid industrialization and population growth have elevated the concerns over water
quality. Excessive nitrates and phosphates in the water system have an adverse effect on the aquatic
ecosystem. In recent years, machine learning (ML) algorithms have been extensively employed to
estimate water quality over traditional methods. In this study, the performance of nine different ML
algorithms is evaluated to predict nitrate and phosphorus concentration for five different watersheds
with different land-use practices. The land-use distribution affects the model performance for all
methods. In urban watersheds, the regular and predictable nature of nitrate concentration from
wastewater treatment plants results in more accurate estimates. For the nitrate prediction, ANN
outperforms other ML models for the urban and agricultural watersheds, while RT-BO performs
well for the forested Grand watershed. For the total phosphorus prediction, ensemble-BO and
M-SVM outperform other ML models for the agricultural and forested watershed, while the ANN
performs better than other ML models for the urban Cuyahoga watershed. In predicting phosphorus
concentration, the model predictability is better for agricultural and forested watersheds. Regarding
consistency, Bayesian optimized RT, ensemble, and GPR consistently yielded good performance
for all watersheds. The methodology and results outlined in this study will assist policymakers in
accurately predicting nitrate and phosphorus concentration which will be instrumental in drafting a
proper plan to deal with the problem of water pollution.

Keywords: nitrate concentration; phosphorus concentration; machine learning; Bayesian optimiza-
tion; water pollution

1. Introduction

With the current pace of industrialization and population growth, the concerns over
water quality are very sensitive at present [1]. The demand for water has increased because
of the growing population and development activities. On the other hand, the level of
pollution in water sources has also increased significantly [2].

Nitrate and phosphate compounds are commonly used as industrial chemical reagents
and in chemical fertilizers. Higher amounts of nitrate and phosphate can have an adverse
effect not only on the water resources but also on the surrounding ecosystem. Proper
management of these chemicals is important in large water bodies to mitigate the harmful
impact on the aquatic ecosystem. Machine learning (ML) models can be effectively em-
ployed to model the nitrate and phosphorus distribution and predict its concentration in
the water system. The ability to predict nitrate and phosphorus concentration accurately
can provide engineers and policymakers with a proper plan to deal with the problem.
These nutrients need to be measured over multiple locations due to the distributed nature
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of the water networks. However, measuring daily nutrient concentrations across stream
cross-sections is both arduous and expensive. Consequently, most hydrological monitoring
programs measure streamflow and nutrient concentrations less frequently (such as weekly
or monthly), supplemented by storm sampling to better quantify nutrient movement
during high-flow periods [3].

Ahmed et al. [4] used wavelet denoising technique (WDT) combined with ML to
predict various quality parameters. Over the last decade, the methods for forecasting
various water quality indicators have advanced. Heuvelmans et al. [5] forecasted nitrate
concentration on a daily basis using a regression equation. While various ML models have
been tested in recent years for the most reliable forecast, the most used techniques capable
of predicting missing nitrate and phosphorus concentrations are artificial neural network
(ANN), k-nearest neighbor (kNN), support vector machine (SVM), regression tree (RT),
random forest (RF), and reduced error pruning tree (REPTree) [3,6–11].

ANN has been one of the most accurate models for nutrient concentration prediction.
Anctil et al. [12] reported that two and three input MLP models based on the neural network
could predict the daily nitrate concentration of a 7.1 square kilometer urban agricultural
basin near Paris with 90% and 75% accuracy, respectively. Yu et al. [13] developed a
MLP model to estimate nitrate loading that accounted for 80% of the variance in daily
streamflow and nitrate loads, with better efficacy than linear regression (LR). Additional
studies have confirmed that for similar nutrient loading/concentration prediction, MLP
is more efficient than traditional methods [14–17]. Poor and Ullman [18] compared the
performance of the regression tree (RT) and multiple linear regression (MLR) methods
to predict the yield of nitrate and chloride ions in 71 watersheds in the Willamette River
Basin. The results demonstrate that the RT can result in a high R2 in all types of watersheds.
However, the learning speed of the MLP is slow and tends to fall into the local extremum
leading to partial training and learning [19]. Therefore, it is necessary to test and validate
the performance of MLP method for the prediction of water quality.

The kNN algorithm can also achieve excellent results [20–22]. Towler et al. [23] used a
kNN bootstrap approach to accurately simulate the variability in the influent water quality
data from a drinking water treatment plant with respect to observed data. Li et al. [24] used
both kNN and principal component analysis (PCA) to forecast nutrient profile from an
agricultural watershed and found both algorithms to be equally accurate. The algorithm,
however, is sensitive to outliers, as it simply selects the neighbors based on Euclidean
distance, such that missing values also cause considerable biases in the prediction. For
unevenly distributed data, the algorithm may be biased towards the category with large
data and ignore the one with a smaller number of data points [25].

LR is the simplest and intuitive regression model; hence, it is taken as the reference
baseline method to predict nutrient concentration. After an extensive literature study, it is
observed that the classification tree-based methods [8,9] and cluster-based methods [6,7,11]
are the two most used methods in predicting the nutrient concentration. So, three classi-
fication tree-based models: RT, RF, and the ensemble model, and two cluster-based ML
models: kNN and ANN are employed to predict nutrient concentration. In addition to
the above-mentioned ML models, the performance of two kernel-based models: SVM and
Gaussian process regression (GPR) [7,10] are also evaluated. Hence, in this study, the per-
formance of different machine learning algorithms is evaluated over multiple watersheds
(Cuyahoga, Grand, Maumee, Raisin, and Sandusky) draining into Lake Erie in the United
States. The major objectives of the study include

• The analysis of concentration–discharge (C–Q) relationship for different type of watersheds;
• To assess the applicability of BO to optimize hyperparameters of RT, ensemble, and

GPR to predict nitrate and phosphorus concentration;
• The performance evaluation of nine different ML algorithms for the nitrate and

phosphorus prediction.

The paper is arranged in the following order: Section 2 outlines the methodology
employed in the study with a brief description of the study area, ML algorithms and



Water 2021, 13, 3096 3 of 20

parameter settings for the training and test set, Section 3 incorporates relevant results with
appropriate discussions, and Section 4 concludes the study.

2. Materials and Methods
2.1. Study Area and Data Structure

In this study, the water quality data were collected from five watersheds: Cuyahoga,
Grand, Maumee, Raisin, and Sandusky, draining into Lake Erie (Figure S1—Supplementary
Materials). These five basins have similar climate, soil, ecoregion, and cropping systems
and are also located very close to each other. National Center for Water Quality Research
(NCWQR) maintains long-term daily time-series datasets for these watersheds [26]. The
water quality depends on the physical and anthropogenic features of the watershed; hence,
watersheds with different land-use distributions are selected in this study. As per NCWQR,
Cuyahoga is an urban watershed (39.54% urban and 33.55% forest), Grand is a forested
watershed (50.10% forest and 40% agricultural), while Maumee (73.33% agricultural), Raisin
(49.56% agricultural), and Sandusky (77.59% agricultural) are predominantly agricultural
watersheds (Table S1—Supplementary Materials). The water quality does not change
drastically for an urban watershed, so the data structure is simple and consistent [3]. On
the contrary, agricultural watershed experiences an influx of nutrients deposited in the soil
during the high flow season, so the water quality response is partially seasonal. Likewise,
the water quality response from the forest watershed can be entirely seasonal.

The long-term daily streamflow data were obtained from the United States Geological
Survey (USGS) website (https://waterdata.usgs.gov/nwis/rt, accessed on 14 October 2021)
and nitrate, total suspended solids, and total phosphorus concentration were obtained
from the NCWQR at Heidelberg University. The total data points used in this study are
11,996 for Cuyahoga, 5049 for Grand, 12,849 for Maumee, 9241 for Raisin, and 11,468 for
Sandusky. The streamflow and water quality samples were collected daily at the outlet of
each watershed, supplemented by more frequent samplings (up to three per day) during
high-flow periods. Hence, daily average streamflow and concentration values were used
in this case. The preliminary data cleaning was performed to remove the observation with
negative streamflow and concentrations.

Descriptive statistics of parameters for all watersheds are provided in Table S2 (Sup-
plementary Material). The agricultural Maumee watershed (16, 395 km2) is the largest wa-
tershed considered in this study, followed by Sandusky (3239 km2) and Raisin (2698 km2).
Hence, the Maumee watershed had the highest mean streamflow of 180.27 m3/s, which is
expected because of its large size. The urban Cuyahoga watershed resulted in the highest
mean total suspended solids concentration of 102.627 mg/L, which can be attributed to con-
struction activities in the urban areas. Likewise, the highest mean nitrate (4.192 mg/L) and
total phosphorus (0.236 mg/L) concentrations were observed in the agricultural Maumee
watershed. The standard deviation of streamflow for Maumee is very high, indicating
that the streamflow varies significantly throughout the year for this watershed. The same
is the case for total suspended solids in the Cuyahoga and total phosphorus and nitrate
concentration in the Sandusky.

2.2. Machine Learning Algorithms

In this study, MATLAB R2020a [27] is used to implement all ML algorithms. Likewise,
linear regression (LR) is taken as the reference method to estimate nitrate and phosphorus
concentration for all watersheds.

2.2.1. Linear Regression (LR)

LR fits the data with a linear equation, i.e., polynomial equation of first order. This
modeling is useful for data having linear relations. The typical linear regression model can
be mathematically modeled as:

Ŷ = ∑(aX + b) (1)

https://waterdata.usgs.gov/nwis/rt
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where X and Ŷ represent the input and output variable, respectively. The least-square
method is employed to fit the model coefficients (a and b) using the actual and the predicted
data.

2.2.2. k Nearest Neighbors (kNN)

kNN models are based on the proximity of data points where a new object is classified
based on features and training patterns [28]. Here, the output or the forecasted value is the
average or the specified number of neighboring values. The specified number is described
as the value k. The algorithm for kNN is:

• Initialize k;
• Calculate the Euclidean distance of the query example to the labeled examples

d
(

x, x′
)
=

√(
x1 − x′1

)2
+
(
x2 − x′2

)2
+ · · ·+ (xn − x′n)

2 (2)

where, (x, x′) is the sample point;

• Sort the labeled examples from smallest to largest;
• Find an optimal number k of nearest neighbors based on RMSE using cross validation;
• Compute an inverse weighted average with kNN.

2.2.3. Regression Tree (RT)

A RT is an approach to nonlinear regression, which is built through recursive par-
titioning. Recursive partitioning is an iterative process of splitting the data into more
manageable partitions and again splitting each partition into smaller sub-divisions. RT
represents recursive partitioning in the form of a tree with each terminal node representing
a cell of the partition. RT is simple to model and visualize, but the unstable nature of a
single tree model resulted in the development of ensembles.

2.2.4. Ensemble

Ensemble methods combine a number of weak RT models to form a more accurate RT
model. Ensembles create multiple diverse regression models by taking different samples of
the original data set and then combining their output. Two types of ensembles: Bagging
and Least-Squares Boosting (LSBoost) are used in this study.

Random sampling with replacement is employed in Bagging to generate numerous
training sets. RT algorithm is applied to each data set, and then the average of the models
is taken to compute predictions for the unseen data.

A more accurate model is generated in Boosting by successively training models
to concentrate on records with poor prediction in previous models. All predictors are
combined by a weighted majority vote after completion. A new learner is fitted to the
difference between the observed response and the aggregated prediction of all learners
grown previously by the ensemble in LSBoost.

2.2.5. Random Forest (RF)

Another type of ensemble employed in this study is a RF. RF constructs a number
of decision trees which is used to classify a new instance by the majority vote. A subset
of randomly selected attributes from the original set is used by each decision tree node.
Likewise, a different bootstrap sample data is used by each tree, such as that of Bagging.
The number of trees generated in RF might range from hundreds to thousands. In this
study, the number of trees is selected to be ten to construct a forest.

2.2.6. Artificial Neural Network (ANN)

ANN uses connected units between input and output layers to resolve a complex
problem. Among several ANN topologies, MLP is employed in the current study. The
connected unit is generally a simple linear equation, and the output layer uses an activation
unit, which makes it very different from the polynomial regression. The activation unit
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acts as a logical switch that is activated only for threshold values. Some common types of
activation functions are Sigmoid and ReLu. This study uses ReLu activation. Typical MLP
with a hidden layer can be mathematically modeled as:

yi = ∑n
j wi,jxj + b (3)

where, x is the input, w is the weight, and b is the bias in hidden layer.

2.2.7. Support Vector Machine (SVM)

SVM based regression model is useful for modeling complex relations, which are not
easily described by lower-order polynomial equations. SVM is a powerful supervised
learning technique with excellent generalization ability because of which it is extensively
utilized for solving problems regarding pattern recognition, classification, regression, and
prediction [29]. The predicted value is obtained using the equation:

Ŷ = ∑n
i=1 K(Xi, X0)(αi − α∗i ) (4)

where αi and α∗i are the support vectors and K(Xi, X0) is the kernel function. SVM function
can be used with various kernel functions (KF) to implement its regression learner. The
application of the gaussian kernel function (GKF) is popular with SVM classification and
regression which is defined as:

K(Xi, X0) = exp

(
−
∣∣∣∣xi − xj

∣∣∣∣2
2σ2

)
(5)

In this study, fine Gaussian SVM (F-SVM) and medium Gaussian SVM (M-SVM) is
used. Medium and fine gaussian is defined based on the slenderness of the gaussian
function being used.

2.2.8. Gaussian Process Regression (GPR)

GPR is a non-parametric model which works on the principles of Bayesian probability.
GPR can be applied through various methods with variations in kernel type, kernel func-
tion basis function, etc. In this study, Nonisotropic Exponential, Nonisotropic Matern 3/2,
Nonisotropic Matern 5/2, Nonisotropic Rational Quadratic, Nonisotropic Squared Expo-
nential, Isotropic Exponential, Isotropic Matern 3/2, Isotropic Matern 5/2, and Isotropic
Squared Exponential kernels are applied. Constant, Zero, and Linear basis functions are
employed in the implementation.

2.3. Experimental Configuration

The entire dataset was divided into two sets for each watershed; an initial 70% of
the data was utilized for training ML models, and the rest 30% was employed for the
model assessment. A five-fold cross validation method was employed during the model
development to prevent model overfitting in the training set. Daily measured stream-
flow and month (representing the seasonal characteristic) were taken as independent
variables to predict nitrate concentration. As most of the total phosphorus is particulate
phosphorus attached to suspended solid particles, total suspended solid was also taken
as an independent variable alongside streamflow and month to predict total phospho-
rus concentration. Detailed parameters for each ML algorithm are illustrated in Table S3
(Supplementary Materials).

2.4. Bayesian Optimization (BO)

BO is a hyperparameter search method applied in ML problems by minimizing a
particular objective function [30]. Based on the past evaluation results of the objective
function, an alternate function is established with BO to minimize its value. In comparison
to random grid search, BO refers to past evaluation results when selecting parameters
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in each iteration which greatly saves search time and improves optimization efficiency.
Mean squared error (MSE) is taken as an objective function for this study. While minimum
leaf size is the only hyperparameter to be optimized in the RT model, ensemble method,
minimum leaf size, number of learners, learning rate, and number of predictors to sample
are to be optimized in the ensemble method. Likewise, sigma, basis function, kernel
function, kernel scale, and standardization are the hyperparameter to be optimized in the
GPR model. The hyperparameters and search spaces of RT, ensemble, and GPR are listed
in Table S4 (Supplementary Materials).

2.5. Evaluation Metrics

Following statistical indicators namely, coefficient of determination (R2), root mean
square error (RMSE), and mean absolute error (MAE) is utilized to evaluate the perfor-
mance of various models. The model performance is evaluated using the equations given
below [31]:

R2 =

[
∑m

i=1
(
Xi − X

)(
Yi − Y

)]2
∑m

i=1
(
Xi − X

)2
∑m

i=1
(
Yi − Y

)2 (6)

MSE =
1
m ∑m

i=1(Yi − Xi)
2 (7)

RMSE =

√
1
m ∑m

i=1(Yi − Xi)
2 (8)

MAE =
1
m ∑m

i=1|Yi − Xi| (9)

where, Xi and Yi represent the measured and predicted values; while X and Y represent
the average measured and average estimated values. m is the number of data points.

R2 indicates the variance of the dependent variable that is explained by independent
variables. RMSE value indicates the short-term performance of the model. A lower RMSE
value corresponds to better performance. Similarly, MAE indicates the magnitude of error
one can expect from the forecast on an average without considering their direction. The
combination of RMSE and MAE can be used to analyze the variation of errors in the
forecast. The RMSE is always greater than or equal to MAE, and the greater difference
between them indicates the greater variance in the individual errors of the forecast.

3. Results and Analysis
3.1. Impact of Watershed Characteristics on Prediction

Concentration–discharge (C–Q) relationships for each watershed are given in Figure S2
(Supplementary Materials). In regard to the nitrate concentration, the slope of the C–Q
regression line (b) for the Cuyahoga was negative, while that of the other four watersheds
was positive. This indicates that the nitrate concentration essentially dilutes with the
increasing streamflow in Cuyahoga. On the contrary, the nitrate concentration increases
along with the streamflow in the other four watersheds. In an urban watershed, such as the
Cuyahoga, the point sources such as wastewater treatment plants are the primary source of
nitrate, which can be quickly diluted by storm events [3,32]. In agricultural areas, however,
increased flow can flush the nitrate deposited in the soil, resulting in the elevated nitrate
concentration. In this case, a more severe event can result in more nitrate loss in water,
which is similar to the situation in a forested watershed.

In regard to the total phosphorus concentration, the slope of the C–Q regression line (b)
for all five watersheds was positive. Suspended solids are generated from nonpoint sources
from agricultural lands and construction areas. Likewise, increased streamflow can flush
the sediment and associated soil particles and increase suspended solids concentration in
the water column. As most of the total phosphorus is particulate phosphorus attached
to suspended solid particles, the total phosphorus concentration increases during storm
events [2]. Hence, the total phosphorus concentration increases along with the streamflow
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irrespective of the type of watershed. The larger slope ‘b’ indicates that the concentration
has more reaction with the streamflow [33].

3.2. Relative Performance of ML Algorithms to Predict Nitrate Concentration
3.2.1. Model Development

In this study, Bayesian optimized RT, Ensemble, and GPR models were run for 30 iter-
ations during the model development, and the convergence of objective function in the
iterative process is illustrated in Figure 1. For the Cuyahoga watershed, GPR converged
to the minimum objective of 0.3355 after 13th iteration. Hence, BO is more effective in
improving GPR compared to RT and Ensemble for the Cuyahoga watershed. Likewise, BO
is more effective in improving GPR compared to RT and Ensemble for Maumee (4.9569),
Raisin (2.0403), and Sandusky (5.4210). On the contrary, BO is more effective in improving
ensemble compared to RT and GPR for the Grand watershed with the objective of 0.0788.
The result of Bayesian optimized hyperparameters in RT, ensemble, and GPR models for
nitrate prediction are shown in Table 1.
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Table 1. Result of Bayesian optimized hyperparameters in RT, ensemble, and GPR models for nitrate prediction.

Algorithm Parameter Cuyahoga Grand Maumee Raisin Sandusky

RT Minimum leaf size 73 83 72 54 51

Ensemble Ensemble method Bag LSBoost LSBoost LSBoost Bag
Minimum leaf size 58 39 39 2 80
Number of learners 10 10 10 12 10

Learning rate - 0.57165 0.65104 0.3731 -
Number of predictors 2 2 2 2 2

GPR Sigma 10.491 3.3665 0.077995 22.7795 30.6111
Basis function Constant Zero Linear Zero Zero

Kernel function Nonisotropic
Exponential

Nonisotropic Rational
Quadratic

Nonisotropic
Exponential

Nonisotropic
Matern 3/2

Nonisotropic
Exponential

Kernel scale 47.9729 11,091.2258 4054.6778 22.7014 7039.0333
Standardize TRUE FALSE TRUE TRUE TRUE

Table 2 illustrates the fitting statistics of different ML models for nitrate prediction on
the training dataset. For the urban Cuyahoga watershed, F-SVM, M-SVM, ANN, RT-BO,
ensemble-BO, and GPR-BO performed reasonably well in explaining the variance of nitrate
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concentration. Among these models, GPR-BO performs better than other ML models with
R2 of 0.76, RMSE of 0.5792 mg/L, and MAE of 0.4168 mg/L for the training set. Likewise,
ensemble-BO ranks second with R2 of 0.75 and RMSE of 0.5846 mg/L.

Table 2. Comparison of R2, RMSE, and MAE using different ML algorithms for nitrate prediction on training dataset.

Watershed Parameter LR F-SVM M-SVM kNN RF ANN RT-BO Ensemble-BO GPR-BO

Cuyahoga R2 0.41 0.75 0.74 0.70 0.71 0.75 0.75 0.75 0.76
RMSE 0.9026 0.5887 0.5997 0.6470 0.6330 0.5850 0.5894 0.5846 0.5792
MAE 0.7088 0.4183 0.4266 0.4730 0.4620 0.4210 0.4259 0.4211 0.4168

Grand
River R2 0.05 0.27 0.21 0.03 0.19 0.31 0.28 0.31 0.30

RMSE 0.3287 0.2890 0.2988 0.3420 0.3030 0.2800 0.2861 0.2808 0.2814
MAE 0.2434 0.1914 0.1983 0.2460 0.2100 0.1970 0.2003 0.1964 0.1962

Maumee R2 0.12 0.49 0.45 0.26 0.39 0.52 0.50 0.51 0.51
RMSE 2.9846 2.2875 2.3591 2.7370 2.490 2.2230 2.2580 2.2382 2.2264
MAE 2.3930 1.5890 1.6711 2.0240 1.7860 1.6070 1.6403 1.6249 1.6142

Raisin R2 0.23 0.59 0.56 0.46 0.53 0.62 0.59 0.61 0.62
RMSE 2.0289 1.4755 1.5265 1.6970 1.5890 1.4250 1.4787 1.4461 1.4284
MAE 1.4971 0.9628 0.9967 1.1620 1.0890 0.9780 1.0208 0.9909 0.9807

Sandusky R2 0.10 0.48 0.41 0.30 0.38 0.52 0.50 0.51 0.51
RMSE 3.1481 2.4046 2.5503 2.7740 2.6140 2.3130 2.3467 2.3326 2.3283
MAE 2.4705 1.6156 1.7488 1.9610 1.8080 1.6390 1.6676 1.6595 1.6505

On the contrary, for the forested Grand watershed, all the ML models showed
mediocre performance with ANN (R2 = 0.31 and RMSE = 0.2800 mg/L) being the best
performing model regarding the R2 and RMSE. For the agriculture dominated watersheds
(Maumee, Raisin and Sandusky), F-SVM, M-SVM, ANN, RT-BO, ensemble-BO, and GPR-
BO again showed acceptable performance, which was lower than that of the Cuyahoga but
better than the Grand. For the agricultural watersheds of Maumee, Raisin and Sandusky,
ANN was the best performing model followed by GPR-BO regarding the R2 and RMSE.
Among the agricultural watersheds, the model predictability was comparatively higher for
the Raisin. It was also observed that all ML models significantly outperforms traditional
LR model in predicting nitrate concentration for the training dataset.

A comparison of statistical indicators showed that R2, RMSE, and MAE, at times,
followed a different trend. For the urban Cuyahoga watershed, all statistical indicators
followed the same trend as the GPR-BO has the maximum R2 and the minimum RMSE
and MAE. For the agricultural and forested watersheds, ANN has the maximum R2 and
the minimum RMSE whereas F-SVM has the minimum MAE. Also, reasonable difference
between the RMSE and MAE indicates that the variance in the individual errors of the
forecast is acceptable.

3.2.2. Model Testing

Model testing was carried out on 30% of the unseen test dataset after the model
development. Table 3 illustrates the fitting statistics of different ML models for nitrate con-
centration prediction on the test dataset. Figures 2–6 show the observed versus predicted
daily nitrate concentration using different ML models for the Cuyahoga, Grand, Maumee,
Raisin, and Sandusky, respectively.

For the urban Cuyahoga watershed, F-SVM, M-SVM, ANN, RT-BO, ensemble-BO,
and GPR-BO performed reasonably well in predicting the daily nitrate concentration for
the test data. Among these models, ANN performs better than other ML models with R2 of
0.754 and RMSE of 0.6670 mg/L. Regarding MAE, F-SVM outperforms other ML models
with the value of 0.4836 mg/L. In urban watersheds, nitrate inputs mainly originate from
wastewater treatment plants, urban runoff, and other periodic activities. This regular and
predictable nature of nitrate concentrations in urban watersheds might be the reason for
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fairly accurate modeling of nitrate concentration with the streamflow and month of the
year as independent variables [34].

On the contrary, for the forested Grand watershed, all the ML models showed
mediocre performance with RT-BO being the best performing model R2 of 0.214, RMSE
of 0.3236 mg/L, and MAE of 0.2263 mg/L. For the agriculture-dominated watersheds of
Maumee, Raisin and Sandusky, F-SVM, M-SVM, ANN, RT-BO, ensemble-BO, and GPR-BO
again showed acceptable performance, which is lower than that of the Cuyahoga but better
than the Grand. For the agricultural watersheds of Maumee and Raisin, ANN is the best
performing model regarding the R2 and M-SVM is the best performing model regarding
RMSE and MAE. Likewise, for the agricultural Sandusky watershed, F-SVM was the best
performing model with R2 of 0.544, RMSE of 1.9639 mg/L, and MAE of 1.4242 mg/L.

Table 3. Comparison of R2, RMSE, and MAE using different ML algorithms for nitrate prediction on test dataset.

Watershed Parameter LR F-SVM M-SVM kNN RF ANN RT-BO Ensemble-BO GPR-BO

Cuyahoga R2 0.404 0.751 0.745 0.690 0.689 0.754 0.745 0.749 0.752
RMSE 1.0083 0.6748 0.6873 0.7300 0.7290 0.6670 0.6749 0.6702 0.6688
MAE 0.7806 0.4836 0.4839 0.5360 0.5360 0.4860 0.4933 0.4900 0.4886

Grand
River R2 0.039 0.152 0.188 0.023 0.079 0.093 0.214 0.173 0.145

RMSE 0.3592 0.3479 0.3446 0.3840 0.3930 0.3740 0.3236 0.3335 0.3433
MAE 0.2475 0.2334 0.2287 0.2740 0.2710 0.2570 0.2263 0.2345 0.2415

Maumee R2 0.160 0.463 0.462 0.282 0.387 0.479 0.466 0.470 0.477
RMSE 2.5797 2.0970 2.0362 2.5140 2.4870 2.1780 2.2078 2.1863 2.1726
MAE 2.1279 1.5809 1.5620 1.9500 1.8470 1.6880 1.7092 1.6886 1.6815

Raisin R2 0.251 0.466 0.476 0.409 0.406 0.485 0.468 0.485 0.482
RMSE 1.8689 1.6611 1.5797 1.8310 1.9320 1.7130 1.7328 1.6797 1.7082
MAE 1.4777 1.1395 1.0997 1.3080 1.3250 1.2310 1.2558 1.2159 1.2280

Sandusky R2 0.147 0.544 0.492 0.351 0.431 0.544 0.533 0.5395 0.542
RMSE 2.6995 1.9639 2.0125 2.5060 2.5390 2.1590 2.1973 2.1850 2.1553
MAE 2.1899 1.4242 1.4762 1.8670 1.8320 1.6340 1.6615 1.6662 1.6367

Water 2021, 13, x FOR PEER REVIEW 10 of 21 
 

 
Water 2021, 13, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/water 

 RMSE 1.8689 1.6611 1.5797 1.8310 1.9320 1.7130 1.7328 1.6797 1.7082 
 MAE 1.4777 1.1395 1.0997 1.3080 1.3250 1.2310 1.2558 1.2159 1.2280 

Sandusky 𝑅2  0.147 0.544 0.492 0.351 0.431 0.544 0.533 0.5395 0.542 
 RMSE 2.6995 1.9639 2.0125 2.5060 2.5390 2.1590 2.1973 2.1850 2.1553 
 MAE 2.1899 1.4242 1.4762 1.8670 1.8320 1.6340 1.6615 1.6662 1.6367 

 

Figure 2. Observed versus predicted daily nitrate concentration for the Cuyahoga watershed using 

different ML algorithms. 

 

Figure 2. Observed versus predicted daily nitrate concentration for the Cuyahoga watershed using
different ML algorithms.



Water 2021, 13, 3096 10 of 20

Water 2021, 13, x FOR PEER REVIEW 10 of 21 
 

 
Water 2021, 13, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/water 

 RMSE 1.8689 1.6611 1.5797 1.8310 1.9320 1.7130 1.7328 1.6797 1.7082 
 MAE 1.4777 1.1395 1.0997 1.3080 1.3250 1.2310 1.2558 1.2159 1.2280 

Sandusky 𝑅2  0.147 0.544 0.492 0.351 0.431 0.544 0.533 0.5395 0.542 
 RMSE 2.6995 1.9639 2.0125 2.5060 2.5390 2.1590 2.1973 2.1850 2.1553 
 MAE 2.1899 1.4242 1.4762 1.8670 1.8320 1.6340 1.6615 1.6662 1.6367 

 

Figure 2. Observed versus predicted daily nitrate concentration for the Cuyahoga watershed using 

different ML algorithms. 

 

Figure 3. Observed versus predicted daily nitrate concentration for the Grand watershed using
different ML algorithms.

Water 2021, 13, x FOR PEER REVIEW 11 of 21 
 

 
Water 2021, 13, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/water 

Figure 3. Observed versus predicted daily nitrate concentration for the Grand watershed using dif-

ferent ML algorithms. 

 

Figure 4. Observed versus predicted daily nitrate concentration for Maumee using different ML 

algorithms. 

 

Figure 5. Observed versus predicted daily nitrate concentration for Raisin using different ML algo-

rithms. 

Figure 4. Observed versus predicted daily nitrate concentration for Maumee using different
ML algorithms.



Water 2021, 13, 3096 11 of 20

Water 2021, 13, x FOR PEER REVIEW 11 of 21 
 

 
Water 2021, 13, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/water 

Figure 3. Observed versus predicted daily nitrate concentration for the Grand watershed using dif-

ferent ML algorithms. 

 

Figure 4. Observed versus predicted daily nitrate concentration for Maumee using different ML 

algorithms. 

 

Figure 5. Observed versus predicted daily nitrate concentration for Raisin using different ML algo-

rithms. 

Figure 5. Observed versus predicted daily nitrate concentration for Raisin using different
ML algorithms.

Water 2021, 13, x FOR PEER REVIEW 12 of 21 
 

 
Water 2021, 13, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/water 

 

Figure 6. Observed versus predicted daily nitrate concentration for Sandusky using different ML 

algorithms. 

3.3. Relative Performance of ML Algorithms to Predict Phosphorus Concentration 

3.3.1. Model Development 

During the model development for the total phosphorus prediction, Bayesian opti-

mized RT, ensemble, and GPR models were also run for 30 iterations. The convergence of 

objective function in the iterative process is illustrated in Figure 7. For the Cuyahoga wa-

tershed, ensemble converged to the minimum objective of 0.01485 after 29th iteration. 

Hence, BO is more effective in improving ensemble compared to RT and GPR for the 

Cuyahoga watershed. Likewise, BO is more effective in improving ensemble compared to 

RT and GPR for Raisin (0.00559) and Sandusky (0.00365). On the contrary, BO is more 

effective in improving GPR compared to RT and Ensemble for Grand (0.00165) and 

Maumee (0.00362). The result of Bayesian optimized hyperparameters in RT, ensemble, 

and GPR models for phosphorus prediction is illustrated in Table 4. 

Table 4. Result of Bayesian optimized hyperparameters in RT, ensemble, and GPR models for phosphorus prediction. 

Algorithm Parameter Cuyahoga Grand Maumee Raisin Sandusky 

RT Minimum leaf size 45 14 19 22 18 

Ensemble Ensemble method Bag Bag LSBoost LSBoost Bag 
 Minimum leaf size 23 4 3 9 8 
 Number of learners 465 119 12 17 11 
 Learning rate - - 0.26808 0.24101 - 
 Number of predictors 3 3 3 3 3 

GPR Sigma 0.067662 0.02207 0.56943 1.0875 0.00010808 
 Basis function Constant Linear Linear Constant Constant 

 Kernel function 
Nonisotropic 

Exponential 

Isotropic Ex-

ponential 

Nonisotropic 

Exponential 

Nonisotropic 

Exponential 

Nonisotropic 

Exponential 
 Kernel scale 418.2057 335.4861 96,562.4233 22,084.4674 25,385.3054 

Figure 6. Observed versus predicted daily nitrate concentration for Sandusky using different
ML algorithms.



Water 2021, 13, 3096 12 of 20

The value for test statistics is similar for the training as well as the test set. Hence,
the developed ML models can predict nitrate concentration without severely underfit-
ting or overfitting the training dataset employing streamflow and month of the year as
independent variables.

3.3. Relative Performance of ML Algorithms to Predict Phosphorus Concentration
3.3.1. Model Development

During the model development for the total phosphorus prediction, Bayesian opti-
mized RT, ensemble, and GPR models were also run for 30 iterations. The convergence of
objective function in the iterative process is illustrated in Figure 7. For the Cuyahoga water-
shed, ensemble converged to the minimum objective of 0.01485 after 29th iteration. Hence,
BO is more effective in improving ensemble compared to RT and GPR for the Cuyahoga
watershed. Likewise, BO is more effective in improving ensemble compared to RT and
GPR for Raisin (0.00559) and Sandusky (0.00365). On the contrary, BO is more effective in
improving GPR compared to RT and Ensemble for Grand (0.00165) and Maumee (0.00362).
The result of Bayesian optimized hyperparameters in RT, ensemble, and GPR models for
phosphorus prediction is illustrated in Table 4.
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Table 4. Result of Bayesian optimized hyperparameters in RT, ensemble, and GPR models for phosphorus prediction.

Algorithm Parameter Cuyahoga Grand Maumee Raisin Sandusky

RT Minimum leaf size 45 14 19 22 18

Ensemble Ensemble method Bag Bag LSBoost LSBoost Bag
Minimum leaf size 23 4 3 9 8
Number of learners 465 119 12 17 11

Learning rate - - 0.26808 0.24101 -
Number of predictors 3 3 3 3 3

GPR Sigma 0.067662 0.02207 0.56943 1.0875 0.00010808
Basis function Constant Linear Linear Constant Constant

Kernel function Nonisotropic
Exponential

Isotropic
Exponential

Nonisotropic
Exponential

Nonisotropic
Exponential

Nonisotropic
Exponential

Kernel scale 418.2057 335.4861 96,562.4233 22,084.4674 25,385.3054
Standardize TRUE TRUE FALSE FALSE TRUE
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Table 5 illustrates the fitting statistics of different ML models for phosphorus prediction
on the training dataset. A comparison of statistical indicators shows that R2, RMSE, and
MAE, may follow a different trend. For the urban Cuyahoga watershed, M-SVM, RF,
ANN, RT-BO, ensemble-BO, and GPR-BO showed acceptable performance in explaining
the variance of phosphorus concentration. Among these models, ensemble-BO performs
better than other ML models with R2 of 0.58 and RMSE of 0.1219 mg/L for the training
set. Likewise, GPR-BO ranks second with R2 of 0.56 and RMSE of 0.1237 mg/L. Regarding
MAE, M-SVM is the best performing model with MAE of 0.0740 mg/L.

Table 5. Comparison of R2, RMSE, and MAE using different ML algorithms for phosphorus prediction on training dataset.

Watershed Parameter LR F-SVM M-SVM kNN RF ANN RT-BO Ensemble-BO GPR-BO

Cuyahoga R2 0.43 0.38 0.50 0.47 0.51 0.53 0.55 0.58 0.56
RMSE 0.1419 0.1475 0.1327 0.1360 0.1310 0.1290 0.1258 0.1219 0.1237
MAE 0.0885 0.0785 0.0740 0.0880 0.0830 0.0790 0.0801 0.0772 0.0782

Grand
River R2 0.79 0.48 0.66 0.74 0.80 0.78 0.78 0.81 0.81

RMSE 0.0428 0.0673 0.0544 0.0470 0.0420 0.0430 0.0431 0.0410 0.0406
MAE 0.0219 0.0228 0.0201 0.0220 0.0180 0.0190 0.0193 0.0175 0.0178

Maumee R2 0.82 0.74 0.80 0.72 0.85 0.86 0.83 0.85 0.86
RMSE 0.0676 0.0804 0.0700 0.0840 0.0620 0.0590 0.0646 0.0615 0.0602
MAE 0.0466 0.0421 0.0400 0.0520 0.0410 0.0390 0.0417 0.0407 0.0386

Raisin R2 0.50 0.48 0.54 0.47 0.55 0.57 0.56 0.59 0.59
RMSE 0.0825 0.0841 0.0789 0.0840 0.0780 0.0770 0.0773 0.0748 0.0748
MAE 0.0448 0.0370 0.0359 0.0440 0.0400 0.0380 0.0395 0.0376 0.0368

Sandusky R2 0.85 0.77 0.86 0.82 0.88 0.88 0.87 0.89 0.88
RMSE 0.0702 0.0851 0.0679 0.0760 0.0630 0.0610 0.0634 0.0604 0.0620
MAE 0.0446 0.0377 0.0337 0.0440 0.0350 0.0330 0.0355 0.0336 0.0344

Likewise, for the forested Grand watershed, LR, kNN, RF, ANN, RT-BO, ensemble-
BO, and GPR-BO performed well in explaining the variance of phosphorus concentration
with total suspended solids, streamflow, and month of the year as independent vari-
ables. Among these models, GPR-BO performed better than other ML models with R2

of 0.81 and RMSE of 0.0406 mg/L for the training set. Regarding MAE, ensemble-BO
is the best performing model with MAE of 0.0175 mg/L. Similarly, for the agricultural
watersheds (Maumee and Sandusky), LR, M-SVM, kNN, RF, ANN, RT-BO, ensemble-BO,
and GPR-BO also performed exceptionally well in explaining the variance of phosphorus
concentration. GPR-BO was the best performing model for Maumee regarding R2 and
MAE and ensemble-BO was the best performing model for Sandusky regarding R2 and
RMSE. For the agricultural Raisin watershed, LR, M-SVM, RF, ANN, RT-BO, ensemble-BO,
and GPR-BO showed acceptable performance in explaining the variance of phosphorus
concentration. Among these models, ensemble-BO and GPR-BO performed similarly with
R2 of 0.59 and RMSE of 0.0748 mg/L for the training set. Regarding MAE, M-SVM was the
best performing model with MAE of 0.0359 mg/L.

The model predictability of ML models was significantly high in predicting phospho-
rus concentration for the forested and agricultural watersheds. It was also observed that
the model predictability of traditional LR model was comparable to that of the ML models
in predicting the phosphorus concentration for the training dataset.

3.3.2. Model Testing

Model testing is carried out on the 30% of the unseen test dataset after the model
development. Table 6 illustrates the fitting statistics of different ML models for phosphorus
prediction on the test dataset. Figures 8–12 show the observed versus predicted daily
phosphorus concentration using different ML models for the Cuyahoga, Grand, Maumee,
Raisin, and Sandusky, respectively.
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For the urban Cuyahoga watershed, LR, M-SVM, RF, ANN, RT-BO, Ensemble-BO,
and GPR-BO performed reasonably well in predicting the daily phosphorus concentration
for the test data. Among these models, ANN outperformed other models regarding R2

(0.829) and M-SVM outperforms other models with RMSE of 0.0766 mg/L and MAE of
0.0511 mg/L for the test set. The developed ML models performed exceptionally well in
test data in comparison to the training data. Hence, it could be concluded that the ML
models for the Cuyahoga was underfitting the training dataset.

Table 6. Comparison of R2, RMSE, and MAE using different ML algorithms for phosphorus prediction on test dataset.

Watershed Parameter LR F-SVM M-SVM kNN RF ANN RT-BO Ensemble-BO GPR-BO

Cuyahoga R2 0.800 0.574 0.778 0.720 0.754 0.829 0.778 0.808 0.820
RMSE 0.1007 0.1013 0.0766 0.1000 0.1034 0.0901 0.0975 0.0941 0.0926
MAE 0.0873 0.0618 0.0511 0.0765 0.0787 0.0737 0.0770 0.0745 0.0746

Grand
River R2 0.665 0.483 0.633 0.590 0.676 0.665 0.720 0.733 0.718

RMSE 0.0414 0.0505 0.0429 0.0294 0.0264 0.0264 0.0381 0.0369 0.0375
MAE 0.0251 0.0266 0.0240 0.0111 0.0093 0.0097 0.0215 0.0204 0.0216

Maumee R2 0.800 0.800 0.850 0.708 0.812 0.846 0.822 0.838 0.842
RMSE 0.0640 0.0629 0.0568 0.0743 0.0603 0.0556 0.0592 0.0587 0.0563
MAE 0.0466 0.0414 0.0390 0.0514 0.0427 0.0390 0.0417 0.0407 0.0391

Raisin R2 0.652 0.688 0.762 0.561 0.618 0.680 0.671 0.709 0.697
RMSE 0.0572 0.0507 0.0459 0.0578 0.0539 0.0505 0.0504 0.0488 0.0487
MAE 0.0389 0.0264 0.0236 0.0341 0.0311 0.0308 0.0296 0.0285 0.0283

Sandusky R2 0.817 0.816 0.876 0.808 0.857 0.877 0.868 0.878 0.865
RMSE 0.0895 0.0885 0.0752 0.0879 0.0774 0.0729 0.0758 0.0737 0.0751
MAE 0.0567 0.0426 0.0395 0.0493 0.0416 0.0391 0.0403 0.0394 0.0399
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Likewise, for the forested Grand watershed, LR, M-SVM, RF, ANN, RT-BO, Ensemble-
BO, and GPR-BO performed reasonably well in predicting the daily phosphorus concen-
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tration with total suspended solids, streamflow, and month of the year as independent
variables. Among these models, ensemble-BO outperformed other models regarding
R2 (0.733) and RF outperformed other models with RMSE of 0.0264 mg/L and MAE of
0.0093 mg/L for the test set. Similarly, for the agricultural watersheds of Maumee and
Sandusky, all ML models performed exceptionally well in predicting the daily phosphorus
concentration. For Maumee watershed, M-SVM outperformed other models regarding
R2 (0.850) and ANN outperformed other models with RMSE of 0.0556 mg/L. Regarding
MAE, both M-SVM and ANN have the minimum value of 0.0390 mg/L for the Maumee
watershed. For Sandusky watershed, ensemble-BO performed better than other ML models
regarding R2 (0.878) and ANN performed better than other ML models with RMSE of
0.0729 mg/L and MAE of 0.0391 mg/L. For the agricultural Raisin watershed, all ML
models except kNN performed reasonably well in predicting the daily phosphorus concen-
tration for the test dataset. Among these models, M-SVM outperformed all other models
with R2 of 0.762, RMSE of 0.0459 mg/L, and MAE of 0.0236 mg/L. For the agricultural
and forested watershed, value for test statistics was similar for the training as well as test
set while predicting the daily phosphorus concentration. Hence, the developed ML models
could accurately predict daily phosphorus concentration without severely underfitting or
overfitting the training dataset for the agricultural and forested watershed.

Suspended solids are derived from nonpoint sources from agricultural lands and con-
struction sites in the urban areas. Most of the total phosphorus is particulate phosphorus
attached to suspended solid particles. In agricultural and forested watershed, increased
streamflow can increase soil erosion which can elevate the particulate phosphorus con-
centration in water column. Hence, in predicting phosphorus concentration, the model
predictability is better for agricultural and forested watersheds. On the contrary, in urban
watershed, phosphorus inputs mainly originate from point sources such as wastewater
treatment plants. Hence, in predicting phosphorus concentration, the model predictability
is a bit deteriorated.

3.4. Discussion

Various ML models, namely, MLP, radial basis function (RBF), general regression
neural network (GRNN), kNN, RF, MLR, evolutionary polynomial regression (EPR), naïve
Bayes model (NBM) and many more have been employed to predict groundwater as
well as surface water nutrient concentration. In one such study, Al-Mahallawi et al. [6]
found that MLP (R2 = 0.955 and error = 8.4322) with six input nodes and 4 hidden nodes
outperformed RBF, GRNN, and other linear networks to predict groundwater nitrate
concentration in the Gaza Strip Aquifer. In another study to model groundwater nitrate
contamination at the African continent scale, Ouedraogo et al. [8] concluded that the
predictive power of RF (R2 = 0.97) was more than the MLR (R2 = 0.64).

Furthermore, Markus et al. [35] compared the performance of ANN, EPR, and NBM
to predict weekly fluctuations of nitrate concentration in a small agricultural watershed in
Illinois. They found that the ANN (RMSE = 0.935) with two hidden nodes was the most
accurate. In a more recent study, Li et al. [3] analyzed the performance of MLP, kNN, RF,
and reduced error pruning tree (REPTree) to predict nitrate concentration and estimate
nutrient loading in different types of watersheds. They concluded that the REPTree was
the best performing model with R2 ranging from 0.61 to 0.85. The classification tree
methods (REPTree and RF) performed better than the cluster methods (MLP and kNN)
for agricultural and forested watersheds. Shen et al. [36] presented a novel geo-dataset to
estimate and map the nitrate and phosphorus concentrations in streams and rivers with
models built using a RF. The developed model had R2 of 0.66 on average.

The model performance is not only determined by the model complexity but also by
the land-use practices in the watershed. In comparison to the published literature, the de-
veloped ML models are more accurate in predicting nitrate concentration for the urban and
agricultural watershed. The ANN is the best performing model with R2 ranging from 0.479
to 0.745. Likewise, in comparison to the published literature, the developed ML models
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are more accurate in predicting phosphorus concentration for all type of watersheds. The
ensemble-BO is the best performing model with R2 ranging from 0.709 to 0.878. As a limited
number of independent variables are employed in the study, these methods can be applied
to predict nutrient concentrations with limited data, which increases the applicability of
the developed models. Hence, the ML model must be selected considering the land-use
practice alongside algorithmic methods to accurately predict nutrient concentration.

4. Conclusions

In this study, the performance of nine different ML algorithms (LR, F-SVM, M-SVM,
kNN, RF, ANN, RT-BO, ensemble-BO, and GPR-BO) was evaluated to predict nitrate
and total phosphorus concentration for different types of watersheds. Initially, the C–Q
relationship was analyzed for each watershed to understand the impact of watershed type
on the prediction of nutrient concentration. While the nitrate concentration diluted with the
increasing streamflow in the urban Cuyahoga watershed, it increased with the streamflow
in agricultural and forested watersheds. Similarly, the total phosphorus concentration
increased with the streamflow irrespective of the type of watershed.

For nitrate concentration prediction, the land-use distribution affected the model
performance for all methods. In urban watersheds, the regular and predictable nature of
nitrate concentration results in more accurate modeling with the streamflow and month of
the year as independent variables. Likewise, ML models were more accurate in predicting
nitrate concentration for the agricultural watershed (Maumee, Raisin, and Sandusky) in
comparison to the forested Grand watershed. The ANN outperformed other ML models
regarding the R2 for the urban and agricultural watersheds. On the contrary, for the
forested Grand watershed, RT-BO outperformed other ML models. Likewise, the Bayesian
optimized RT, ensemble, and GPR consistently yielded good performance for all type
of watersheds.

In agricultural and forested watersheds, increased streamflow could increase soil
erosion which could elevate the particulate phosphorus concentration in the water column.
Hence, in predicting phosphorus concentration, the model predictability was better for
agricultural and forested watersheds with the streamflow, total suspended solids, and
month of the year as independent variables. On the contrary, in an urban watershed,
phosphorus inputs mainly originate from point sources such as wastewater treatment
plants. Hence, in predicting phosphorus concentration, the model predictability was a
bit deteriorated. For the urban Cuyahoga watershed, the developed ML models were
underfitting the training dataset and the ANN appeared to outperform other ML models
regarding the R2 for the test data. On the contrary, ensemble-BO and M-SVM outperformed
other ML models in predicting total phosphorus concentration for the agricultural and
forested watershed.

In comparison to the published literature, the developed ML models were more ac-
curate in predicting nitrate concentration for the urban and agricultural watershed. The
ANN was the best performing model with R2 ranging from 0.479 to 0.745. Likewise, in
comparison to the published literature, the developed ML models were more accurate in
predicting phosphorus concentration for all types of watersheds. The ensemble-BO was
the best performing model with R2 ranging from 0.709 to 0.878. As a limited number of
independent variables were employed in the study, these methods could be applied to
predict nutrient concentrations with limited data, which increased the applicability of the
developed models. Regarding the shortcoming of the developed ML models, the model
predictability for nitrate concentration in the forested Grand watershed was greatly dimin-
ished. Hence, further study is required in this regard to identify additional independent
variables to improve the model predictability of ML algorithms.
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