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Abstract: Monitoring and managing water quality parameters (WQPs) in water bodies (e.g., lakes)
on a large scale using sampling-point techniques is tedious, laborious, and not highly representative.
Hyperspectral and data-driven technology have provided a potentially valuable tool for the precise
measurement of WQPs. Therefore, the objective of this work was to integrate WQPs, derived
spectral reflectance indices (published spectral reflectance indices (PSRIs)), newly two-band spectral
reflectance indices (NSRIs-2b) and newly three-band spectral indices (NSRIs-3b), and artificial neural
networks (ANNs) for estimating WQPs in Lake Qaroun. Shipboard cruises were conducted to collect
surface water samples at 16 different sites throughout Lake Qaroun throughout a two-year study
(2018 and 2019). Different WQPs, such as total nitrogen (TN), ammonium (NH4

+), orthophosphate
(PO4

3−), and chemical oxygen demand (COD), were evaluated for aquatic use. The results showed
that the highest determination coefficients were recorded with the NSRIs-3b, followed by the NSRIs-
2b, and then followed by the PSRIs, which produced lower R2 with all tested WQPs. The majority of
NSRIs-3bs demonstrated strong significant relationships with three WQPs (TN, NH4

+, and PO4
3−)

with (R2 = 0.70 to 0.77), and a moderate relationship with COD (R2 = 0.52 to 0.64). The SRIs integrated
with ANNs would be an efficient tool for estimating the investigated four WQPs in both calibration
and validation datasets with acceptable accuracy. For examples, the five features of the SRIs involved
in this model are of great significance for predicting TN. Its outputs showed high R2 values of 0.92
and 0.84 for calibration and validation, respectively. The ANN-PO4

3−VI-17 was the highest accuracy
model for predicting PO4

3− with R2 = 0.98 and 0.89 for calibration and validation, respectively. In
conclusion, this research study demonstrated that NSRIs-3b, alongside a combined approach of
ANNs models and SRIs, would be an effective tool for assessing WQPs of Lake Qaroun.

Keywords: artificial neural networks models; total nitrogen; non-destructive technique; water
quality; lakes
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1. Introduction

The quality of surface water is a critical worldwide environmental concern, since it
is essential for long-term economic progress and environmental protection. The status of
water quality is based on several physicochemical parameters [1]. Therefore, WQPs are
essentially concerned with carefully constructed water quality metrics that are difficult to
effectively interpret, since the condition of water quality status is dependent on several
physiochemical properties [2,3]. Furthermore, the typically huge amounts of water quality
data provided by monitoring systems sometimes creates difficulties for water managers in
performing effective evaluations [4]. Contamination of surface water resources has become
a serious environmental issue on a worldwide scale, requiring regular assessment and
observation throughout all altitudes for ecosystem sustainability [5–7].

According to the US Environmental Protection Agency’s (USEPA) [8] most current
national water quality surveys, more than a third of our lakes, as well as nearly half of
our rivers and streams, are polluted. According to the United Nations (UNEP) [9], over
80% of the world’s wastewater is dumped into the environment without being cleaned
or repurposed. In certain developing nations, the ratio is as high as 95%. On average,
most cities in developing countries generate 30–70 mm3 of wastewater per person every
year [10].

Shallow lakes are necessary ecological and socio-economic resources worldwide.
However, human activities have caused deterioration for the ecological status of sallow
lakes in many regions of the world. Thus, there is a crucial interest in the precise evaluation
and careful monitoring of ecological status in shallow lakes [11]. Multiple contamination
sources are observed along the lake’s southern shore, comprising agricultural and industrial
wastewater flows from the El-Fayoum region, as well as fisheries [12–14].

The term WQPs refers to the identification of various chemical, physical, and biological
properties of water bodies, as well as determining the possible pollution sources that lead
to the deterioration of water quality in these bodies [15]. The WQPs should be monitored
and assessed, not just to evaluate the influence of different pollutants, but also to conserve
aquatic life and follow efficient water management strategies [16]. Water quality status can
be evaluated for aquatic environment using several parameters, such as total dissolved
solids (TDS), temperature (T ◦C), hydrogen ion concentration (pH),total nitrogen (TN),
ammonium (NH4

+), orthophosphate (PO4
3−), and chemical oxygen demand (COD). The

physicochemical characteristics of surface water are considered significant parameters
of contamination in aquatic environments. For example, major nutritional components
such as TN, NH4

+, and PO4
3− also play a vital role in aquatic environmental quality by

maintaining the food chain of phytoplankton, zooplankton, and fish [17]. Nutritional
constituents have always been considered as an indicator of the prospective fertility of
water sources, reflecting both natural processes and human activities and their influence
on the quality of lake water [18]. Furthermore, COD is commonly utilized to determine
industrial, domestic, and agricultural waste contents, and the quantity of abiotic oxidizable
substances in water, as well as the levels of total oxygen consumption in water [19].

Analytical analyses employed to determine and assess water quality characteristics
are costly, complex, and time consuming. The monitoring data of the contaminant indicates
the types of contaminants and their trends in an aquatic ecosystem, allowing water quality
regulators to provide suggestions for future forecasting [20,21]. New approaches and
procedures for monitoring water quality are being developed as technology advances
and its functions are extended. Water quality may be investigated utilizing cutting-edge
methods such as geospatial (GIS) spectral analysis of water, and statistical modeling to
save money and time while increasing accuracy [22]. In this regard, the efficient resolving
and panoramic data obtained by various remote sensing platforms and GIS may be a
robust tool in the construction of highly effective strategies for assessing and monitoring
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ecological status in shallow lakes system, and also provide insights into the functions of
various ecosystems, showing how they respond to environmental changes [21].

Remote sensing or ground-based remote sensing technologies can offer a sensible
significant contribution to the monitoring of shallow lakes, since they may be able to
provide quantitative large-scale panoramas of water quality status in shallow lakes [23].
The properties of spectral reflectance of the water surface at different wavebands along the
electromagnetic spectrum can be used as indicators for the change in chemical and physical
constituents of water [24,25]. t Many previous studies revealed that many WQPs, such as
TN, chlorophyll concentration, turbidity, total dissolved solids (TDS), and PO4

3−, can be
estimated via remotely sensed data [26–30]. Therefore, remotely sensed data would be an
effective tool for decision makers to assess water-bodies more efficiently. To enhance the
efficiency of remotely sensed data for monitoring and assessing lake systems, efforts are
vital to determine the optimum algorithm formulations for estimating different WQPs [31].
Therefore, it may be useful to further demonstrate the efficacy of various methods to the
formulation of remotely sensed based algorithms for the quantification of WQPs of shallow
lakes. In this study, the optimized newly two- and three-band of spectral reflectance indices
(SRIs) were calculated from two- and three-dimensional slice maps.

The prediction of WQPs in shallow lakes is a serious issue in maintaining the ecosys-
tem at a safe level. In this regard varying deterministic models have been employed in the
past decades [32]. However, practically, the statistical efficiency of different deterministic
models is normally weak, since actual natural ecosystems tend to be too complex for these
state-of-the-art models. Artificial Neural Networks (ANNs) may provide a fast and reliable
technique for creating models for the estimation of different WQPs in lake systems. ANNs
are able to generalize non-linear patterns within a dataset, and can solve complicated
problems [33]. Methods based on machine learning, such as ANNs, are increasingly being
applied to solve environmental challenges. These data-driven strategies can be used to
solve problems that are extremely nonlinear [34]. ANNs have been successfully applied to
assess the accuracy of water quality constituent prediction [35].

There is a scarcity of data on the effectiveness of ANNs models integrated with SRIs
for estimating WQPs (TN, NH4+, PO43−, and COD). The major purpose of this research
was to develop effective tools for making informed judgments about Lake Qaroun’s water
quality in order to ensure efficient management, identify pollution sources, and provide a
clear picture of how sampling strategies should be redesigned. This research study was
based on the hypothesis that ground-based remotely sensed data and machine learning
modeling would be effective tools for assessing WQPs in Lake Qaroun.

Therefore, the specific objectives of this research study were to: (i) assess the water
quality status of Lake Qaroun using four WQPs (TN, NH4

+, PO4
3−, and COD) integrated

with geospatial techniques; (ii) build the two- and three-dimensional slice map based on
spectral bands to detect the optimized NSRIs-2b and NSRIs-3b; (iii) evaluate the accuracy of
three different groups of SRIs (PSRIs, NSRIs-2b, and NSRIs-3b) in quantifying WQPs; and
(iv) evaluate the performance of ANNs models linked with SRIs in quantifying the WQPs.

2. Materials and Methods
2.1. Study Site and Description

Lake Qaroun is an important inland aquatic environment with a total area of approxi-
mately 200 km2, located in Egypt’s Western Desert, between the latitudes of 29◦24′ and
29◦33′ N and longitudes of 30◦24′ and 30◦50′ E (Figure 1). The lake’s peripheries have water
depths ranging from 2 to 5 m, while the central area has an 8 m depth [36]. The minimum
and maximum values of annual mean temperatures, rainfall, and evaporation rate are
14.5 ◦C and 31.0 ◦C, 0.6 mm and 4 mm, and 1.9 mm/day and 7.3 mm/day, respectively [37].
The research area is more or less rectangular and elongated in design, measuring an average
of 45 km long, 5.7 km wide, and 4.2 m deep, acting as a natural discharge zone for the
El-Fayoum area [17]. Furthermore, the lake is significant for fishing, salt manufacturing,
tourism, and migrating birds [38]. Therefore, Lake Qaroun has been classified as a natural
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restricted area, although it has recently been safeguarded from various contaminating
factors [12,36,39]. It is well known that contamination of surface water by inorganic and
organic compounds is a severe danger to aquatic ecosystems, as a result of increasing
industrialization and urbanization [12,17,36]. The lake is mainly encompassed by urban
and agricultural regions to the south and east, and by uninhabited desert lands to the north
and west. Lake Qaroun acts as a large natural reservoir for varying wastes (agricultural,
domestic, sewage, and industrial wastes) coming from a large area of El Fayoum Province
that flows through the eastern and southern drains (El-Bats, El-Wadi, Sheikh Allam, and
Bahr Qaroun), as well as a number of narrower drains that go into the lake [40]. The
research site is a confined shallow brackish lake with no discharge exits.
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2.2. Sampling and Analyses

Over the course of a two-year investigation, water samples were gathered (2018
and 2019). Water samples were collected from 16 sites to cover the whole lake (Figure 1).
Using a hand-held GPS device (MAGELLAN GPS 315, U.S.), each sampling location
was pinpointed, with an accuracy of approximately 7 m in both vertical and horizontal
directions. The accuracy of determining locations was maintained by repeatedly identifying
the location of fixed points with respect to the sources of pollution. Sampling locations
were selected carefully across Lake Qaroun in order to have a good representation of
the spatial variability of WQPs throughout the entire lake. A mobile calibrated glass
electrode multi-parameter (YSI Professional Plus, Portugal) was used to determine several
physicochemical parameters, including TDS, pH, and temperature in water samples, with
an accuracy of approximately 10 mg/L, 0.02 and 0.2 ◦C, respectively. Water samples
were collected in polyethylene bottles, labeled, kept in an ice box, and were taken to
the laboratory for various analyses within 48 h. Total nitrogen (TN) was measured in
unfiltered water samples in the lab using the 2,6-dimethylphenol procedure after persulfate
digestion. A UV/Visible multiparameter bench photometer (HI 81226, Romania) was
used to determine the concentration of NH4

+, PO4
3−, and COD, with an accuracy of

approximately 0.01 mg/L, 0.01 mg/L, and 1 mg/L, respectively. Water sample tests were
carried out using established techniques for water-wastewater analysis. To enhance data
confidence of the analytical technique, duplicates of samples were conducted during quality
assurance and quality control (QA/QC) analysis. Authenticated reference materials were
used to ensure procedural accuracy (ERM-CA713).
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2.3. Spatial Distributions of WQPs

The ArcGIS Spatial Analyst package v.10.2.1 has various tools for analysis of spatial
data that utilize statistical theory, and methodologies to model spatially referenced data.
The interpolation methods in ArcGIS Spatial Analysis were utilized to identify the inter-
vening values for the four tested WQPs. GIS was used to establish the maps of different
tested WQPs through the inverse distance weighted interpolation (IDW) procedure, which
is well famed as one of the simplest and most commonly used interpolation procedures to
map varying water quality parameters. Using the records at certain stations, the results
can be extrapolated to determine the value at non-sampled locations [41–44]. An efficient
method to specify the most suitable interpolation method or the studied parameters is the
calculation of the root mean square error (RMSE) by running an aggregate error analysis on
the interpolation, following across the validation routine. It can be performed by removing
one data point at a time, and it estimates the value using the interpolation method and
all other data points. This method generates a residual error at each data point location
(residual error = measured data value at the point—estimated value). This technique
was applied on all collected samples. The RMSE was calculated from the collection of
residual errors.

2.4. Spectral Reflectance Measurements

The spectral measurements of the above- surface radiance were made at each sampling
point across Lake Qaroun using a handheld spectrometer, according to Elsayed [30,45]. The
instrument has a spectral band which ranged from 302 to 1148 nm. The measurements of
the reflectance from water surfaces was restricted between 11:00 and 13:00 p.m. in order to
minimize the effect of solar zenith changes. The detector was adjusted at nadir position at
approximately 0.25 m above the water surface at all sampling sites, with a 0.05 m2 scanning
area. A calibration factor derived from a white reference standard was used to correct the
reflectance data. Each water sample’s spectral reflectance was repeated three times, and
then the mean spectrum was calculated. Lastly, the obtained spectra were smoothed to
reduce the electromagnetic spectrum’s noise.

2.5. Selection of Published, Newly Two and Three Band SRIs

Five commonly band-ratio and band combinations used indices, and 13 newly ex-
tracted SRIs were chosen in this study for the estimation of four WQPs (Table 1). To
identify the best combination of two-band (2-D) and three-band (3-D) SRIs for identifying
WQPs, all possible combinations of bands ranging from 302 nm to 1148 nm were calculated
based on correlation matrices [30], which were established using the pooled data of both
investigated years for each water quality indicator (n = 32). The 2D and 3D slice maps of
determination coefficient (R2) values were constructed, which showed sequential linear
regression between different spectral indices and various WQPs. The SRIs with the highest
R2 were selected.

The two-band ratio SRIs were calculated as a ratio spectral index (RSI) from all
potential two-band ratio combinations covering the wavelengths from 302 nm to 1148 nm,
according to the following equation:

RSI = R1/R2 (1)

where R1 and R2 are the spectral reflectance values at wavelengths ranging from 302 nm to
1148 nm.

3-D slice maps of R2 that were determined for the relationship between different
WQPs and the normalized spectral index (NSI) that was quantified to the greatest extent
possible combination of three bands over spectral bands from 390 to 750 nm were based on
the following equation:

NSI = (R1 − R2 − R3)/(R1 + R2 + R3) (2)
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where R1, R2, and R3 are the spectral reflectance values at wavelengths ranging from
390 nm to 750 nm.

The lattice package in R statistics v. 3.0.2 (R Foundation for Statistical Computing, 2013)
was used to extract different 2-D correlogram maps, while MATLAB 7.0 (The MathWorks,
Inc., Natick, MA, USA) was used to derive 3-D slice maps.

2.6. Artificial Neural Networks Technique
2.6.1. Back-Propagation Neural Network (BPNN)

The backpropagation neural network (BPNN) model is among the most predominantly
used artificial neural networks [46]. The BPNN is mainly constructed based on three layers:
(1) the input layer is basically a primitive dataset for the neural network; (2) the unseen
layer is a medium layer between both independent variables and dependent output layers;
and (3) the output layer ends up with the results of the specified inputs. The ANN is a type
of machine learning mathematical technique that employs multiple layers to obtain high-
advanced features from basic input data. Input layers are noted as vector I. The network has
one hidden layer, and the number of nodes is estimated according to regression precision.
The concealed layers symbolize the “activation” nodes, and are usually seen as weight.
The final circle symbolizes the output layer that demonstrates the predicted value of a
measured parameter. The model’s hyperparameters were the number of neurons in two
hidden layers (1 to 25), and different activation functions (identity, logistic, tanh, and ReLu).
A learning rule is a mathematical logic or technique that increases the performance and
training time of an artificial neural network [22]. This rule is usually applied repeatedly
across the network. The network was tried for at least 1500 iterations, or until the error
measurement reached (10−4). To select the number of neurons in the unseen layer for this
model, the cross-validation manner with the leave-one-out validation (LOOV) method was
run on the training data set. The parameter of limited memory Broyden–Fletcher–Goldfarb–
Shanno (lbfgs) was employed as a weight optimizer to effectively apply the algorithm [47].
To enhance the predictive capacity of the regression model and diminish hyperspectral
image dimensionality, the following equation was used to estimate the most informative
feature [48]:

M =
∑nH

j=1

[(
|I|Pj

/ ∑
np
k=1|I|Pj,k

)
|O|j

]
∑

np
i=1

(
∑nH

j=1

[(
|I|Pi,j

/ ∑
np
k=1|I|Pi,j,k

)
|O|j

]) (3)

where M refers to the necessary parameter for the input variable, np refers to the number of
input variables, nH is the number of unseen layer nodes, |I|Pj

represents the absolute value
of the concealed layer rating corresponding to the pth input variable and the jth concealed
layer, and |O|j refers to the absolute account of the output layer rating corresponding to
the jth concealed layer.

The ANN model was optimized by selecting the best hyperparameters (number of
neurons in two hidden layers, and activation function). Generally, the spectral indices of
three SRIs groups were fed randomly to the model in the first loop, the low-level features
were dropped during each loop, and the superb features were organized in an ascending
order concerning the highest contribution. During looping, the best hyperparameters were
adopted, and the rest were excluded. Subsequently, the ANN outputs were compared
to identify high-ranking variants and superior hyperparameters at minimum RMSECV
that could improve the prediction of WQP. More details about the CODs can be found in
Table S1.

2.6.2. Model Evaluation

To assess the performance of a regression model, the following statistical parameters
have been quantified: RMSE, and R2 [49,50]. All parameters are explicated as follows: Fact
is the real value that was estimated based on laboratory calculations, Fp is the predicted or
simulated value, Fave is the average value, and N is the total number of data points.
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RMSE was calculated according to the following formula:

RMSE=

√√√√ 1
N

N

∑
i=1

(
F act − F p

)2 (4)

Coefficient of determination:

R2=
∑
(

F act − F p
)2

∑(F act − F ave)
2 (5)

2.7. Data Analysis

The estimates of WQPs were subjected to statistical analysis to identify differences
between the WQPs. Duncan’s test at a p value of ≤0.05 was run to compare the significant
variations between the mean values of TN, NH4

+, PO4
3−, and COD, as well as different

tested SRIs among 16 sampling points. A simple linear model was investigated to assess
the relationships between the four assessed WQPs and varying types of SRIs across the
two-year study. SPSS package (v. 12.0, SPSS Inc., Chicago, IL, USA) was used to perform
the above statistical analysis of WQPs, and to calculate the values of WQPs (e.g., min, max,
mean, and standard deviation).

Table 1. Description of the previously published and newly constructed spectral indices tested in this work.

SRIs Formula References

PSRIs
Ratio spectral index (RSI700,560) R700/R560 [51]
Ratio spectral index (RSI700,675) R700/R675 [52]

Normalized difference spectral index
(NDSI699,705,670,677) (NDSI699,705,670,677) (R699 − R705)/(R670 − R677) [53]

Ratio spectral index (RSI833,1004) R833/R1004 [54]
Normalized difference spectral index (NDSI560,520) (R560 − R520)/(R560 − R520) [55]

NSRIs-2b
Ratio spectral index

(RSI622,602) R622/R602 This work
(RSI690,650) R690/R650 This work
(RSI760,484) R760/R484 This work
(RSI700,650) R700/R650 This work
(RSI1130,500) R1130/R500 This work
NSRIs-3b

Normalized difference spectral index
NDSI620,610,622 (R620 − R610 − R622)/(R620 + R610 + R622) This work
NDSI700,650,712 (R700 − R650 − R712)/(R700 + R650 + R712) This work
NDSI700,648,712 (R700 − R648 − R712)/(R700 + R648 + R712) This work
NDSI648,712,696 (R648 − R712 − R696)/(R648 + R712 + R696) This work
NDSI698,650,712 (R698 − R650 − R712)/(R698 + R650 + R712) This work
NDSI620,614,602 (R620 − R614 − R602)/(R620 + R614 + R602) This work
NDSI620,600,614 (R620 − R600 − R614)/(R620 + R600 + R614) This work
NDSI696,710,652 (R696 − R710 − R652)/(R696 + R710 + R608) This work

3. Results and Discussion
3.1. Water Quality Parameters

During a two-year investigation, the WQPs of Lake Qaroun were assessed. The
statistical analysis of the WQPs is presented in Table 2.
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Table 2. Statistical analysis of WQPs in Lake Qaroun over two years (2018–2019).

WQPs TDS
(mg/L) pH Temp. TN NH4

+ PO43− COD

(Unit) (mg/L) (◦C) (mg/L) (mg/L) (mg/L) (mg/L)

First year 2018 (n = 16)

Minimum 27,704.74 7.70 28.80 0.24 0.04 0.022 22.32
Maximum 38,797.87 8.30 32.30 14.24 6.24 0.175 43.22

Mean 35,616.34 8.08 30.94 6.79 3.250 0.092 31.08
Standard deviation 2627.96 0.13 0.85 5.03 2.60 0.0612 5.82

Second year 2019 (n = 16)

Minimum 28,891.94 7.80 29.40 0.77 0.04 0.027 24.36
Maximum 39,067.53 8.40 34.20 15.83 7.04 0.184 45.82

Mean 35,815.22 8.24 31.35 8.38 3.60 0.097 32.69
Standard deviation 2434.93 0.14 1.167 5.68 2.81 0.063 6.37

Data across two years (n = 32)

Minimum 27,704.74 7.70 28.80 0.24 0.039 0.022 22.32
Maximum 39,067.53 8.40 34.20 15.83 7.04 0.184 45.82

Mean 35,715.78 8.17 31.15 7.59 3.43 0.094 31.89
Standard deviation 2494.14 0.156 1.026 5.34 2.67 0.061 6.06

According to the results obtained over two years, the TDS levels in the water varied
from 27,704.74 to 39,067.53 mg/L, with an average of 35,715.78 mg/L, showing a significant
spatial variance extending from the lowest records at site 1 in the exit of the El Bats drain
to the greatest records in the western part at site 12. One of Lake Qaroun’s environmental
challenges is high salinity, which is mostly caused by the lake’s huge evaporation rate,
and massive amounts of wastewater being released. According to Taha and Abd El-
Monem [56], high salinity has a detrimental influence on phytoplankton metabolisms,
which has ramifications across the food supply chain. In Lake Qaroun, weak alkaline
water samples were recorded, with pH values ranging from 7.7 at site 6 to 8.3 at site
11, with a mean of 8.0 over both years (Table 2), indicating an increase in planktonic
phytoplankton metabolic activity [57,58]. To protect aquatic life, the CCME [58] advised
a pH range of 6.5–9.0, which is appropriate for Lake Qaroun water. The average value of
water temperatures was 31.5 ◦C over the two years of study, despite the fact that water is
the appropriate point for most aquatic species. The high temperature variations, according
to CCME [58], can have direct detrimental consequences on fish for aquatic consumption,
affecting the oxygen level of the water.

The nutrients of Lake Qaroun were represented by TN, NH4
+, and PO4

3−, which are
necessary components for any healthy aquatic ecosystem (Bhateria and Jain 2016). In the
present study, the concentrations of TN ranged from 0.24 mg/L to 15.83 mg/L, with an
average of 7.59 mg/L (Table 2). The highest concentration of TN across two years was
recorded at site 2, while the lowest concentration was remarked at site 14, as presented in
Table 3. Spatial distribution map of TN concentrations in Lake Qaroun presented closed
areas with high peaks of TN in the southern part, in front of the El Wadi and El Bats drain
exits, which decrease gradually towards the north and northwest (Figures 2a and 3a). The
results of the TN concentrations presented remarkable changes due to the influence of
anthropogenic activities [59,60].
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Table 3. Statistical analysis of four WQPs in Lake Qaroun over two years (2018–2019).

WQPs
TN NH4

+ PO43− COD

(mg/L) (mg/L) (mg/L) (mg/L)

Site 1 13.83 ab 5.82 b–d 0.171 a 36.46 c
Site 2 14.70 a 6.64 a 0.146 bc 35.8 c
Site 3 11.95 a–c 5.98 a–c 0.140 c 35.01 c
Site 4 11.37 b,d 4.60 e 0.150 bc 44.52 a
Site 5 14.16 ab 5.33 c–e 0.178 a 40.82 b
Site 6 13.98 ab 6.24 ab 0.163 ab 34.36 c
Site 7 9.69 c–e 6.13 ab 0.136 c 35.39 c
Site 8 7.80 e 5.13 de 0.141 c 33.43 cd
Site 9 8.76 d,e 4.90 e 0.075 d 27.80 e

Site 10 3.78 fg 1.95 f 0.031 e 25.97 ef
Site 11 4.34 f 1.79 f 0.030 e 28.83 e
Site 12 1.53 f–h 0.08 g 0.033 e 23.88 f
Site 13 1.02 gh 0.06 g 0.025 e 26.75 ef
Site 14 0.51 h 0.04 g 0.031 e 30.02 de
Site 15 1.54 f–h 0.05 g 0.032 e 27.12 ef
Site 16 2.56 f–h 0.08 g 0.034 e 23.96 f

The same letters are not statistically different from one another, according to Duncan’s test at a p-value of 0.05.
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According to the obtained results, the concentrations of NH4
+ in Lake Qaroun at site

14 were recorded to be the lowest (0.04 mg/L), while the highest value 6.24 mg/L was
recorded at site 6 over the two years (Tables 2 and 3), with an average of 3.426 mg/L. These
NH4

+ values showed the unsuitability of Lake Qaroun for aquatic utilization, according
to CCM [58] (Table 4). NH4

+ is the main nitrogenous final product of organic matter
decomposition produced by heterotrophic bacteria, and is easily absorbed by plants in the
trophogenic zone [61]. Due to consumption by plants in the photic zone and nitrification
to N oxidized forms, NH4

+ contents are typically low in oxygenated waters of oligotrophic
to mesotrophic deep lakes. According to the levels of NH4

+, it could be concluded that
Lake Qaroun suffers from high levels of NH4

+ contents and eutrophication due to high
amounts of effluents discharge from the El Bats and El-Wadi drains, with negative impacts
for aquatic utilization, according to CCM [58] (Table 4). Spatial distribution of NH4

+

contents showed closed areas with high concentrations of NH4
+ in the southern part,

which decrease gradually to the north and northwest (Figures 2b and 3b). According to the
spatial variations of NH4

+ in the lake, high concentrations were measured close to the El
Bats and El Wadi drains exits, which reflect the untreated industrial, domestic, and urban
waste water discharged into the lake, as well as, agricultural activities in the study site.
Therefore, the high concentrations of NH4

+ may indicate the existence of contamination,
and are largely responsible for eutrophic conditions, which occur naturally and through
human impact on the surrounding environment [62,63]. The obtained results indicated
that most of the collected surface water samples from the lake (69.0%) were unsuitable for
drinking usages and aquatic life protection across two years according to the WHO [64]
and CCM [58] (Table 4). The discharge of wastes containing high amounts of NH4

+ can
cause problems in water quality issues such as dissolved oxygen depletion and fish deaths
in receiving bodies of water [65].

Table 4. Classification of surface water in Lake Qaroun compared to guidelines of drinking utilization
and aquatic life protection, according to WQPs over two years.

WQPs
Drinking
Water a

Aquatic
Live b

Water Quality
Class for

Aquatic Live

Number of Samples (%)

2018 2019 Across
Two Years

TN
(mg/L)

- - - - - -
- - - -

NH4
+

(mg/L)
0.2 1.37

Suitable (<1.37) 5 (31.0%) 5 (31.0%) 10 (31.0%)
Unsuitable

(>1.37) 11 (69.0%) 11 (69.0%) 22 (69.0%)

PO4
3−

(mg/L)
- 0.3

Suitable (<0.3) 16 (100.0%) 16 (100.0%) 32 (100.0%)
Unsuitable

(>0.3) 0.0% 0.0% 0.0%

COD
(mg/L) 11 7

Suitable (<7) 0.0% 0.0% 0.0%
Unsuitable (>7) 16 (100.0%) 16 (100.0%) 32 (100.0%)

a WHO, 2017 (World Health Organization). b CCME, 2007 (Canadian Council of Ministers of the Environment).
(-) means that the parameter isn’t utilized to categorize surface water quality.

Regarding PO4
3−, the highest values were recorded over the two years 2018 and

2019 at sites 1, 5, and 6 (0.171, 0.178, and 0.163 mg/L, respectively) near the southern
border of the lake, while the lowest values were recorded at sites 11, 13, and 14 (0.030,
0.025, and 0.031 mg/L, respectively), which were near the northern border of the lake
(Table 3; Figures 2c and 3c). The values of the PO4

3− results showed the suitability of
Lake Qaroun for aquatic utilization to be high, according to CCM [58] (Table 4). Despite
the fact that orthophosphate did not exceed the limit, the absence of orthophosphates
in water is attributable to consumption by aquatic organisms [61] Nutrient data such
as TN, NH4+, and PO43− have been utilized in much research on water pollution and
water quality monitoring to improve knowledge on the fate of physiochemical pollutants
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in water systems, and to assist those managing water supply reservoirs [66,67]. These
investigations found that nutrient concentrations in the Sabalan dam reservoir (SDR) in
northwest Iran were higher than those found in the current study, which revealed high
nutrient concentrations which primarily migrated from bottom sediments to the water
column, resulting in eutrophication.

In addition, the COD is mainly an estimate of the total quantity of oxygen required to
oxidize all organic compounds into carbon dioxide and water. During the present study,
the lake’s COD exhibited that all surface water samples recorded high values, ranging from
22.23 to 45.82 mg/L (Table 2). Over the two years, the highest values were recorded at
sites 4 and 5 in front of Sheikh Allam drain (Table 3), which gradually decreased towards
the north and northwest (Figures 2d and 3d), showing the degrading impact of dissolved
organic materials discharged through the drains. This finding indicated the unsuitability
of the lake water for drinking and the aquatic environment (Table 4), according to the
WHO [64] (COD > 10) and CCM [58] (COD > 7), respectively. High concentrations of
COD in the lake could be attributed to the different wastes discharged as domestic sewage,
industrial effluents, and agricultural runoff [68,69].

3.2. Variation Values of Different Types of Spectral Reflectance Indices

Changes in shallow lake systems may be detected by means of remotely sensed data
in a non-destructive manner in order to estimate spatial variations across the entire lake. In
the literature, several previous studies suggested that spectral-based indices derived from
ground-based remote sensing measurements can be used to estimate spatial variations in
WQPs [26–30]. Here, we investigate whether different groups of SRIs would be a useful
tool for determining the water quality status of Lake Qaroun in terms of various WQPs. We
also explored the efficiency of newly derived and published indices for the identification of
WQPs at different stations in a two-year investigation (2018 and 2019).

The characteristics of the light reflected from water bodies at different wavebands
along the magnetic spectrum can be used as indicators for the changes in the water’s
physical and chemical composition [25,30,70,71]. Surprisingly, these changes cause signif-
icant shifts in the SRIs acquired from the water samples across the whole spectral range
at specific bands. All tested spectral indices (PSRIs, NSRIs-2b, and NSRIs-3b), extracted
as indicators of various WQPs, are presented in Table 5. The values of different SRIs
demonstrated remarkable significant changes at different points of the shipboard survey
throughout the entire lake (stations 1 to 16). Generally, when derived SRIs were linked
to assess WQPs, the SRIs presented significant differences among nominated measuring
stations. There were obvious differences between SRIs values among different stations,
as seen in Table 5, which may have been a result of the great variations in WQPs at the
same stations. For example, quantitative analyses revealed that the TN, NH4

+, PO4
3− and

COD values in Table 3 changed from 0.51 to 14.70, from 0.04 to 6.64, from 0.030 to 0.178,
and from 23.88 to 44.52, respectively, and were then followed by changes in the values of
NDSI698,650,712, NDSI620,614,602, NDSI620,600,614 and NDSI696,710,652 from −0.3336 to −0.3284,
from −0.3383 to −0.3309, from−0.3387 to −0.3311, and from −0.3328 to −0.3286, as seen
in Table 5. A gradual increase or decrease in the SRIs values associated with the variation
in the values of WQPs across the lake was clearly noted.

3.3. Performance of Different SRIs to Asess WQPs

The R2 for the relationships between the four WQPs and the SRIs was selected from
the two and three-band slice map. The 2D maps, depicted in Figure 4, were derived
from all potential combinations of binary dual wavelengths in the entire spectral range
(302–1148 nm), while the 3D maps, illustrated in Figure 5, were derived using all possible
combinations of binary dual wavelengths ranging from 390 to 750 nm. The best associations
between the SRIs and WQPs were identified by the hotspot areas, based on the color scale
for the best R2. Based on the information gathered from the WQPs in the VIS, red-edge,
and NIR regions, the NSRIs-2b and NSRIs-3b were selected based on the hotspots (color
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scale) of the discovered best R2. Table 6 shows the R2 values for the association between
the four measured WQPs and PSRIs (NSRIs-2b and NSRIs-3b).

Table 5. Variation values of 18 SRIs of water samples as averaged over two years for sixteen surface water samples.

RSI700,560 RSI700,675 NDSI699,705,670,677 RSI833,1004 NDSI560,520 RSI622,602 RSI690,650 RSI760,484 RSI700,650

Site1 0.947 a–c 0.977 a–c −5.689 a 2.938 a 0.022 a–c 0.9991 a–e 0.991 ab 0.798 a–c 0.972 a–c
Site2 0.971 a 0.988 a 3.295 a 2.294 ab 0.034 ab 1.010 a 0.9928 a 0.849 a 0.979 a
Site3 0.940 a–d 0.971 b–d 9.377 a 1.460 b–d 0.026 a–c 1.000 a–d 0.982 a–d 0.762 a–d 0.962 c–e
Site4 0.944 a–d 0.981 ab −3.519 a 2.0432 bc 0.026 a–c 1.003 a–c 0.993 a 0.815 ab 0.978 ab
Site5 0.973 a 0.973 b–d 6.741 a 1.491 b–d 0.036 a 1.009 ab 0.987 a–c 0.820 ab 0.964 b–d
Site6 0.950 a–c 0.975 a–d 8.117 a 1.355 bc 0.024 a–c 1.003 a–c 0.983 a–d 0.776 a–d 0.965 b–d
Site7 0.958 ab 0.972 b–d 7.993 a 1.335 bc 0.029 a–c 1.002 a–c 0.980 b–e 0.785 a–d 0.960 c–f
Site8 0.881 c–e 0.967 b–d 4.082 a 1.866 b–d 0.007 cd 0.995 b–f 0.977 c–f 0.677 c–e 0.954 d–g
Site9 0.910 a–e 0.966 cd 4.291 a 1.273 bc 0.011 b–d 0.9999 a–e 0.979 c–f 0.702 b–e 0.955 d–g
Site10 0.840 e 0.962 d 3.251 a 1.178 bc −0.013 d 0.990 c–f 0.971 d–f 0.587 e 0.946 fg
Site11 0.870 d,e 0.966 cd 5.669 a 1.260 bc −0.007 d 0.991 c–f 0.971 d–f 0.617 e 0.949 e–g
Site12 0.899 a–e 0.971 b–d 8.000 a 1.666 b–d 0.006 cd 0.986 ef 0.969 ef 0.670 de 0.950 e–g
Site13 0.893 b–e 0.968 b–d 4.651 a 1.308 bc 0.008 cd 0.992 c–f 0.974 c–f 0.685 c–e 0.953 d–g
Site14 0.857 e 0.966 cd 4.569 a 1.057 d −0.009 d 0.984 f 0.969 ef 0.606 e 0.947 fg
Site15 0.851 e 0.964 cd 4.901 a 1.176 bc −0.010 d 0.986 ef 0.968 ef 0.594 e 0.945 g
Site16 0.842 e 0.962 d 4.341 a 0.984 d −0.011 d 0.984 f 0.967 f 0.583 e 0.943 g

RSI1130,500 NDSI620,610,622 NDSI700,648,712 NDSI648,712,696 NDSI698,650,712 NDSI620,614,602 NDSI620,600,614 NDSI620,600,614 NDSI696,710,652

Site1 1.125 a–c −0.3332 a–c −0.331 a-c −0.3315 ab −0.3277 ab −0.3293 ab −0.3335 a–d −0.3338 a–d −0.3328 e
Site2 1.145 ab −0.3322 a −0.3301 a −0.3303 a −0.3271 a −0.3284 a −0.3309 a −0.3311 a −0.3327 de
Site3 1.102 a–c −0.3332 a–c −0.3326 b–e −0.3327 a–d −0.3284 a–c −0.3303 a–d −0.3333 a–c −0.3336 a–d −0.3325 de
Site4 1.101 a–c −0.333 ab −0.3306 ab −0.3307 b −0.3274 ab −0.3289 a −0.3328 ab −0.3331 a–c −0.3324 de
Site5 1.175 a −0.3327 ab −0.3317 a–d −0.332 a–c −0.3274 ab −0.3294 a–c −0.3313 a −0.3312 a −0.3324 de
Site6 1.085 a–d −0.3329 ab −0.3325 b–e −0.3327 a–d −0.3288 a–d −0.3304 a–e −0.3325 ab −0.3327 ab −0.3322 c–e
Site7 1.118 a–c −0.3333 a–c −0.333 c–f −0.3333 b–e −0.3287 a–d −0.3307 a–e −0.333 a–c −0.333 a–c −0.3319 c–e
Site8 1.046 b–e −0.3338 b–d −0.3341 eg −0.3346 c–g −0.3295 b–e −0.3317 c–f −0.335 b–f −0.335 b–e −0.331 b–e
Site9 1.077 a–d −0.3339 b–e −0.3338 d–g −0.3343 c–f −0.3292 a–e −0.3313 b–f −0.334 a–e −0.334 a–d −0.3305 a–d

Site10 0.997 de −0.3345 c–f −0.3356 g −0.3362 fg −0.331 de −0.3331 f −0.3366 c–f −0.337 c–e −0.3302 a–c
Site11 0.986 de −0.3340 b–f −0.3352 fg −0.3354 e–g −0.3307 c–e −0.3327 ef −0.3361 b–f −0.3367 b–e −0.3301 a–c
Site12 0.995 de −0.3348 d–f −0.3355 g −0.3359 fg −0.3312 e −0.3332 f −0.3371 d–f −0.3377 de −0.3301 a–c
Site13 1.029 c–e −0.3341 b–f −0.3349 eg −0.3353 d–g −0.3305 c–e −0.3325 d–f −0.3357 b–f −0.336 b–e −0.3291 ab
Site14 0.966 e −0.3352 ef −0.3358 g −0.3364 fg −0.3312 e −0.3333 f −0.3381 f −0.3386 e −0.329 ab
Site15 0.966 e −0.3349 d–f −0.3359 g −0.3364 fg −0.3314 e −0.3334 f −0.3376 ef −0.3382 e −0.329 ab
Site16 0.986 de −0.3354 f −0.3362 g −0.3369 g −0.3314 e −0.3336 f −0.3383 f −0.3387 e −0.3286 a

The same letters are not statistically different from one another, according to Duncan’s test at a p-value of 0.05.

Linear regression models revealed the most significant associations for the majority
of SRIs combined with TN (R2 = 0.25–0. 77), with NH4

+ (R2 = 0.20–0.72), with PO4
3−

(R2 = 0.30–0.75), and with COD (R2 = 0.21–0.64). In general, the most of the PSRIs showed
weak to moderate relationships with the four WQPs (TN, NH4

+, PO4
3−, and COD) (R2

ranging from 0.45 to 0.64), while most of the NSRIs-2b showed moderate to strong rela-
tionships with three WQPs (TN, NH4

+, and PO4
3−) (R2 = 0.54 to 0.73), and a moderate

relationship with COD (R2 = 0.51 to 0.61). The results further showed that the most of
NSRIs-3b performed strong significant relationships with three WQPs (TN, NH4

+, and
PO4

3−) (R2 = 0.70 to 0.77), and a moderate relationship with COD (R2 = 0.52 to 0.64), as
detailed in Table 6. The newly constructed NSRIs-2b and NSRIs-3b were comparable to
PSRIs, since the lowest R2 always recorded with PSRIs for the relationships with WQPs.
The relationships observed between TN and different SRIs recorded the highest coeffi-
cient of determination (R2 = 0.77) with the NSRIs-3b (NDSI648,712,696, NDSI698,650,712 and
NDSI696,710,652); for the relationship between NH4

+ and different SRIs, the highest coeffi-
cient of determination (R2 = 0.72) was recorded with the NSRIs-3b (NDSI620,614,602); for the
relationship between PO4

3− and different SRIs, the highest coefficient of determination
(R2 = 0.75) was recorded with the NSRIs-3b (NDSI696,710,652); and for the relationship be-
tween COD and different SRIs, the highest coefficient of determination (R2 = 0.64) was
recorded with the NSRIs-3b (NDSI700,650,712, NDSI700,648,712 and NDSI698,650,712) in Table 6.
In this study, the spectral index based on the electromagnetic spectrum’s red-edge regions
appears to always produce a greater coefficient of determination. This could be explained
by the red region of the electromagnetic spectrum being more sensitive to changes in TN.
Liu et al. [28] performed a correlation analysis between the hyperspectral reflectance and
the measured TN, and discovered that spectral index calculated from wavelengths near
680, 850, and 940 nm could be used as a sensitivity indicator for the inversion of total TN
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in surface water. Moreover, since the chlorophyll is strongly related to TN, Elhag et al. [28]
revealed that the maximum chlorophyll index (MCI) calculated from wavelengths of 665,
705, and 740 nm from the red-edge regions could be utilized to estimate chlorophyll con-
centrations in water. In addition, Liu et al. [72] found that Band 3 (red region: 630–700 nm)
of IKONOS presented a strong relationship with TN in an urban water surface in China,
with an R2 of 0.87.
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Figure 5. Three-dimensional slice map of the determination coefficients (R2) values that were obtained for the relationship
between total nitrogen (TN), ammonium (NH4

+), orthophosphate (PO4
3−), and chemical oxygen demand (COD) over

two years that was calculated for all potential combinations of each three-band from 390–750 nm.

Table 6. Determination coefficients (R2) values for the relationship among 18 SRIs and total nitrogen
(TN), ammonium (NH4

+), orthophosphate (PO4
3−), and chemical oxygen demand (COD) over

two years.

SRIs TN NH4
+ PO43− COD

RSI700,560 0.59 *** 0.56 *** 0.62 *** 0.45 **
RSI700,675 0.36 ** 0.29 * 0.35 ** 0.35 **

NDSI699,705,670,677 0.00 0.00 0.01 0.03
RSI850,550 0.25 * 0.20 * 0.30 * 0.21 *

NDSI560,520 0.62 *** 0.59 *** 0.66 ** 0.50 **
RSI622,602 0.73 *** 0.69 *** 0.64 *** 0.51 **
RSI690,650 0.71 *** 0.62 *** 0.68 *** 0.61 ***
RSI760,484 0.65 *** 0.60 *** 0.68 *** 0.55 ***
RSI700,650 0.63 *** 0.54 ** 0.62 *** 0.58 ***
RSI1130,500 0.70 *** 0.66 *** 0.70 *** 0.51 **

NDSI610,614,608 0.74 *** 0.71 *** 0.63 *** 0.53 **
NDSI700,650,712 0.75 *** 0.66 *** 0.73 *** 0.64 ***
NDSI700,648,712 0.75 *** 0.65 *** 0.72 *** 0.64 ***
NDSI648,712,696 0.77 *** 0.69 *** 0.74 *** 0.63 ***
NDSI698,650,712 0.77 *** 0.68 *** 0.74 *** 0.64 ***
NDSI620,614,602 0.75 *** 0.72 *** 0.67 *** 0.53 **
NDSI620,600,614 0.74 *** 0.71 *** 0.66 *** 0.52 **
NDSI696,710,652 0.77 *** 0.69 *** 0.75 *** 0.62 ***

Levels of significance: *: p-value < 0.05, **: p-value < 0.01, and ***: p-value < 0.001.
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Orthophosphates are one of the most important plant nutrients, as they aid in the
rapid growth of plants and algae. The concentration of Chl-a is proportional to total phos-
phorus [4]. The NDSI696,710,652 index, which was used to estimate TN, presented a strong
relationship with PO4

3− (R2 = 0.75). Shafique et al. [68] reported that the spectral index
(R554/R675), calculated from green and red regions, was sensitive to phosphorus concen-
trations with R2 = 0.59. In this study, most of the indices, including the wavelength from
green and red regions, could be used to estimate PO4

3−. Other studies have demonstrated
that spectral reflectance indices based on the blue (450–510 nm) and green (500–600 nm)
regions are very sensitive to variations in total phosphorus concentrations in water [73–75].
One of the most important pollutant variables in water (chemical oxygen demand (COD)
alters light radiation by changing its absorption and scattering characteristics, resulting in
different characteristic absorption spectra that are strongly correlated with pollutant level
and spectral reflectance. In this study, the most of spectral indices of two- and three-band
presented significant relationships with the R2 varied from 0.21 to o.64. the most of NSRIs-
2b and NSRIs-3 which included the wavelength from green or red, or both, which could be
used to assess COD.

3.4. Performance of Artificial Neural Networks Based on SRIs to Asess WQPs

The neural network architectures after gathering senior 3D-VI features are illustrated
in Figure 6. The figure showed the best neural network structure with the variants chosen.
Every network topology offers basic data, such as the synaptic weights trained on a range
of hidden neuron layers, steps for converging, and the overall errors. The network topology
is constructed with a specific combination of input parameters, with a number of hidden
neuron layers and different activation functions. For instance, the model of ANN-TN-
VI-5 had hidden neuron layers (22, 2) at the ReLu function, ANN- NH4

+-VI-1 needed
(20, 8) at the logistic function, ANN- PO4

3−VI-17 required (2, 18) at the tanh function,
and ANN-COD-VI-1 chosen (14, 2) at the tanh function. The layout presented in Figure 6
depicts advanced models for estimating TN, NH4

+, PO4
3−, and COD. The calibrating

process obligated 300, 1000, 314, and 245 steps, respectively for achieving a lower error
function. The process has an overall error rate of roughly 1.047, 0.289, 0.00011, and
5.111, respectively. The expected performance was improved as noted by Thawornwong
and Enke [76]; to avoid over-fitting, the network was trained by the back-propagation
mathematical algorithm with early stopping.

From the results, the 3D vegetation indices (VI) were the premium integration to filter
the uppermost variables. These indices had a high ranking for measuring the considered
parameters of the water. The neural network was trained with the super indices features
(independent variables) for predicting the studied parameters (dependent variable). The
expected values were then compared with the reserved values not implemented for the
neural network. This study evaluated multivariate methods, and compared the results
clearly, so the use of multivariate methods greatly enhanced predictability. Independent
validation can also be considered the most reliable method for assessing the accuracy of the
regression model, since validation data are not involved in the model development process.
The ANN-TN-VI-5 was the optimum predictive model, as evidenced by the performance,
and showed a stronger relationship between the superlative features and TN. The five
features involved in this model are of great significance for predicting TN. Its outputs with
R2 were 0.92 (calibration) and 0.84 (validation), as listed in Table 7. The ANN-NH4

+-VI-1
model was ranked first in performance to measure NH4

+. The R2 value was 0.968 and 0.798
in the training and validation datasets, respectively. The ANN-PO4

3−-VI-17 was the highest
accurate model for observing PO4

3− (R2 = 0.98 and 0.89 for calibration and validation,
respectively). The model ANN-COD-VI-1 constructed for determining COD had higher
performance expectations (R2 = 0.79 and 0.66 for calibration and validation, respectively),
as presented in Table 7. The expected performance was improved, as demonstrated by
Elsherbiny et al. [77]; to upgrade the regression algorithms for robust prediction, some
actions were required during training, such as filtering high-level features and optimizing
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hyperparameters of the model. Lui et al. [72] found that IKONOS imagery data coupled
with ANNs models could be used to estimate TN and TP concentrations with R2 = 0.98
and 0.94, respectively.
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Table 7. Results of calibration and validation models of artificial neural networks of the association between spec-
tral reflectance indices and total nitrogen (TN), ammonium (NH4

+), orthophosphate (PO4
3−), and chemical oxygen

demand (COD).

WQPs Parameters Indices
Calibration Validation

R2 R2 RMSE

TN (22, 2),
ReLu

DSI698,650,712; NDSI620,610,622; NDSI620,600,614;
RSI760,48; RSI1130,500

0.92 *** 0.84 *** 1.558

NH4
+ (20, 8)

logistic DSI696,710,652 0.97 *** 0.80 *** 0.695

PO4
3− (2, 18)

tanh

NDSI620,600,614; NDSI620,614,602; RSI760,484;
RSI700,650; RSI700,560; RSI622,602; NDSI700,650,712;

NDSI698,650,712; NDSI700,648,712; NDSI560,520;
RSI700,675; NDSI696,710,652; NDSI648,712,696;
NDSI699,705,670,677; RSI833,1004; RSI1130,500;

NDSI620,610,622

0.98 *** 0.89 *** 0.014

COD (14, 2)
tanh DSI698,650,712 0.79 *** 0.66 *** 2.644

Levels of significance: ***: p < 0.001.
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4. Advantages and Limitations of Our Research and Expected Future Work

Among surface water resources, lakes play a vital role in water supply for different
purposes (agriculture, industry, and domestic uses) in many regions worldwide. The
WQPs of a lake will be drastically altered as a result of predicted global warming, making
it necessary to monitor and assess WQPs of the lake ecosystem in order to conserve life
across the entire lake, necessitating the use of increasingly advanced monitoring tools.
In this regard, it is argued that spatially resolved, regional-scale data obtained using
remote sensing techniques would be reliable in lake monitoring. The findings of our
research revealed that ground-based spectral indices have been shown as a useful tool
for predicting and assessing various WQPs, but this is on a small-scale, and needs to be
extrapolated using satellite data. Using ground-based remote sensing data, researchers
were able to characterize spatio-temporal variability at the lake scale, allowing point-
sampling procedures to be extrapolated to the larger ecosystem. As a result, remote sensing
data can make a significant contribution to the interpretation of lake function, and hence
will be indirectly valuable to the general public. Using ground-based remote sensing
measurements, it was shown that precise estimation of WQPs is possible. One of the
limitations to our research was obtaining high spatial and high spectral satellite images in
order to extrapolate the results at a regional scale. Due to the lack of spatial and spectral
resolution capacities of satellite imagery until the first decade of the 21st century, plus a
high total cost, it was not easy to use satellite imagery in assessing WQPs. Clouds can
obscure ground features, data may not be captured at important moments, and users may
have to sift through a large number of images to obtain meaningful information. The ANN
model provides good advantages to increase the prediction of WQPs more than spectral
indices, since ANN models can include several spectra bands or several spectral indices
derived from different spectrum regions.

For future investigations, a combined methods of ground- and satellite-based remote
sensing in the evaluation of water status in lakes would be an efficient technique. With the
aid of recently launched hyperspectral satellites, which have a decent number of spectral
bands, it would be easy to assess WQPs on a regional scale via calculating the great number
of two- and three- band indices, based on satellite data. From an economic standpoint,
combining satellite and ground-based datasets will be comparable to the sampling-point
technique in terms of overall cost. These technologies may open an avenue for rapid, high-
resolution assessments of lakes’ ecological conditions, as well as being equally important
for furthering the understanding of lake-scale process and function.

5. Conclusions

This research study examined the efficiency of ground-based remote sensing based
spectral indices for the retrieval of different WQPs, including total nitrogen (TN), am-
monium (NH4

+), orthophosphate (PO4
3−), and chemical oxygen demand (COD), using

hyperspectral data collected from multi-temporal cruises over a two-year campaign (2018
and 2019). The distribution patterns of four different WQPs using GIS maps demonstrated
that the WQPs are contaminated to varying degrees. In the present study, different PSRIs,
NSRIs-2b and NSRIs-3b, as well as ANNs were used for the quantification of some WQPs
of Lake Qaroun. The results showed that all NSRIs-3b presented stronger relationships
for estimating WQPs, compared to other SRIs. For instance, the NSRIs-3b (NDSI696,710,652)
produced the highest relationships with TN and PO4

3−, with respective R2 values = of 0.77,
and 0.75. In both the calibration and validation datasets, the results revealed that ANN
algorithm models based on all SRIs performed best for estimating WQPs. For instance, the
five features involved in this model are of great significance for predicting TN. Its outputs
showed high R2 values of 0.92 and 0.84 for calibration and validation, respectively. In
conclusion, this research suggests that integrating SRIs with ANNs would be a promising
and accurate method for the quantification of different WQPs in Lake Qaroun.
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Abbreviation

ANNs Artificial neural networks
BPNN Back propagation neural network
CCME Canadian Council of Ministers of the Environment
COD Chemical oxygen demand
GIS Geographic information system
NH4

+ Ammonium
IDW Inverse distance weighted interpolation
LOOV Leave-one-out validation
SRIs Spectral reflectance indices
NSI Normalized spectral index
PSRIs Published spectral reflectance indices
NSRIs-2b Newly two-band spectral reflectance indices
NSRIs-3b Newly three-band spectral reflectance indices
pH hydrogen ion concentration
PO4

3− Orthophosphate
QA Quality assurance
QC Quality control
RMSE root mean square error
RMSECV root mean square error for validation
RSI Ratio spectral index
SDR Sabalan dam reservoir
SRIs Spectral reflectance indices
TDS Total dissolved solids
2-D Two–band
3-D Three–band
TN Total nitrogen
UNEP United Nations Environment Program
USEPA United States Environmental Protection Agency
WHO World Health Organization
WQPs Water quality parameters
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