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Abstract: Spillway design is key to the effective and safe operation of dams. Typically, the flow
is characterized by high velocity, high levels of turbulence, and aeration. In the last two decades,
advances in computational fluid dynamics (CFD) made available several numerical tools to aid
hydraulic structures engineers. The most frequent approach is to solve the Reynolds-averaged
Navier–Stokes equations using an Euler type model combined with the volume-of-fluid (VoF) method.
Regardless of a few applications, the complete two-phase Euler is still considered to demand exorbitant
computational resources. An assessment is performed in a spillway offset aerator, comparing the
two-phase volume-of-fluid (TPVoF) with the complete two-phase Euler (CTPE). Both models are included
in the OpenFOAM® toolbox. As expected, the TPVoF results depend highly on the mesh, not showing
convergence in the maximum chute bottom pressure and the lower-nappe aeration, tending to null
aeration as resolution increases. The CTPE combined with the k–ω SST Sato turbulence model
exhibits the most accurate results and mesh convergence in the lower-nappe aeration. Surprisingly,
intermediate mesh resolutions are sufficient to surpass the TPVoF performance with reasonable
calculation efforts. Moreover, compressibility, flow bulking, and several entrained air effects in the
flow are comprehended. Despite not reproducing all aspects of the flow with acceptable accuracy,
the complete two-phase Euler demonstrated an efficient cost-benefit performance and high value in
spillway aerated flows. Nonetheless, further developments are expected to enhance the efficiency
and stability of this model.

Keywords: spillway aerator; aeration; CFD; two-phase Euler; volume-of-fluid; hydraulic structures

1. Introduction

Spillways are essential for dam safety, controlling the reservoir water level and dis-
charge, and preventing dam overtopping, one of the leading causes of structural failure and
rupture. Such a crucial hydraulic structure requires careful design validation. Typically, a
spillway is constituted by: intake, weir, chute, energy dissipation structure, and river resti-
tution. The water flow from the reservoir approaches the intake in the subcritical regime
with low velocity. Next, the flow is guided into the weir, the control section, where the
critical regime is attained. Downstream, the chute flow is supercritical, with high velocities
(frequently larger than 20 m/s), high levels of turbulence, and significant air entrainment
and transport. Frequently, the geometry imposes complex flow patterns, such as cross-
waves, significant free-surface variations, and lateral-mixing. At the end of the spillway,
a structure dissipates energy, allowing proper restitution to the river stream. Moreover,
surrounding and entrained air plays a crucial role in the safe operation of spillways [1]
and may significantly alter the flow characteristics. Aeration must be considered due to
the effects of flow bulking, drag reduction, prevention or mitigation of cavitation damage,
reduction of the breakup length of water jets discharging into atmosphere, interaction with
the turbulence field, re-oxygenation, and transference of atmospheric gases that have a vital
function on stream ecology [2,3]. Besides free-surface aeration–the natural air entrainment
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process along with the air-water interface of high-velocity flows [4]–aerator devices are
commonly designed in chutes, constituting an economical solution to eliminate cavitation
damages [5]. Due to the complexity of air-water flows, they continue to be analyzed mainly
on physical models. Nevertheless, important scale-effects limitations are present, especially
in aeration-related processes [6].

In the XX century, physical modeling was the reference procedure and still is nowadays.
However, over the last 20 years, numerical modeling of hydraulic structures proliferated
among researchers and practical engineers due to advances in hardware and numerical
methods, and the availability of user-friendly computational fluid dynamics (CFD) soft-
ware. Also, the scientific community published plenty of data of physical models, allowing
the calibration and validation of numerical models (e.g., [7–14]). Despite not being com-
pletely established in practical engineering, CFD is becoming a reliable and important tool,
enabling the test of innovative designs quickly with cost-saving, and a detailed analysis
of most phenomena in the flows (e.g., [15–24]). CFD also provides valuable information
in the design and validation stages, predicting problems. Moreover, CFD supplies ben-
eficial information to build the physical model and locate measurement devices. The
most promising approach is an integrated physical and numerical modeling–the hybrid
modeling technique–where both models feed each other iteratively, mitigating time, costs,
and limitations. Nevertheless, the most recent and complex numerical tools need proper
evaluation to be introduced in engineering practice, to ensure accurate predictions to assist
engineering designs.

Chanson [3] remarks that “the modeling of aerated flows is presently restricted by
the complexity of theoretical equations, some limitations of numerical techniques, a lack
of full-scale prototype data, and very-limited detailed experimental data sets suitable for
sound CFD model validation”. The absence of detailed turbulence data in most research is
a major drawback.

Numerical modeling of two-phase air-water highly turbulent flows is a very chal-
lenging field, especially if aeration occurs. Regarding spillways, many difficulties arise.
The large dimensions of the structures require huge computational domains that must cope
with the extended range of flow characteristic lengths. The extreme velocity generates high
turbulence, which is impossible to model directly at all time and length scales. Further-
more, aeration demands more complex CFD models that comply with air, water, and the
mixture. After entrainment, besides being advected by the flow, air packets of different
sizes (e.g., pockets, droplets, bubbles) may suffer extremely complicated processes such
as fragmentation and coalescence, diffusion, dissolution, and buoyant degassing [25,26],
which should all be modeled. The air-water interface is hard to determine [27,28]. Further-
more, the coupling of equations at the air-water interfaces and the turbulence interactions
of the phases are extremely complex. The range of length scales is hugely extent, i.e.,
Kolmogorov length, bubble diameter, surface roughness, flow turbulence eddies, and flow
large characteristic lengths–channels’ depth or width–[3,29]. In the same way, the time
scales of the acoustic and quiescent bubble phases vary from milliseconds to seconds [26].

The constant technological advances keep promoting new numerical methods and
more complex models to simulate spillway flows. Several approaches are presented next.
Direct Numerical Simulations (DNS) are impossible due to the extreme spatial and time
resolutions required to contemplate all the processes. Complete Lagrangian models are also
non-practical due to the exorbitant number of particles necessary to represent all bubbles,
air, and water, resulting in a too-large computational time [27]. On the combined Euler-
Lagrange method, the water phase is continuous and solved in an Euler referential. The
air is represented by a dispersed phase of particles calculated by a Lagrangian approach.
The number of bubbles is unreasonable for most applications, and the air volume fraction
should not exceed 15% [30].

The most popular approaches to solve the Reynolds-averaged Navier–Stokes equations
are the interfacial Euler models volume-of-fluid (VoF) [31] and Level–Set (LS), Ref. [32] which
are meant for two immiscible fluids. Both use only a volume fraction function propagated by
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an advection equation and one set of momentum equations calculated for averaged mixture
flow properties. However, they are still effective tools due to the accurate free surface tracking,
simplicity, stability, and low to average computational costs. The main drawbacks are surface
tension calculation [33], the potential for some unrealistic cavitation and the determination
of interphase surface interactions [30]. However, despite these features, they were applied to
spillways with success (e.g., [19,34–36]).

Interfacial models can be combined with a sub-grid air-bubble density equation model
(SGB), which depends on the local average surface-flow properties such as turbulence. The
VoF or LS simulate the continuous water and surrounding air and the SGB the entrained
air-bubble. The most critical aspects are the lack of a comprehensive air entrainment
model that predicts surface aeration and degassing for distinct types of flows, the bubble
transformations, and the coupling models between the continuous and dispersed fluids.
Nonetheless, this method has a wide range of applications [18,26,27,37].

Mixture models allow the interpenetration of two or more fluids, and may comprehend
interfacial methods between some fluids. For example, two immiscible fluids represent the
continuous air and water, and a third fluid simulates the air bubble that may interpenetrate
both. Therefore, interfacial boundary conditions are highly complex. Several continuity
equations and only a single set of momentum equations for the averaged mixture properties
are solved [30]. Several applications to spillways are found [24,38–40].

Despite the efficiency of the previous methods, the application of models based on a
single set of momentum equations has generally been limited to air-water flows with small
dispersed air-concentrations (<15 to 20%) as per [3,29].However, recent applications of
the VoF and mixture models succeeded in simulating larger air concentrations, including
in chute spillways [18,24]. The complete two-phase Euler is the most complex. Each fluid is
represented by a continuous phase that interpenetrates the other and has its momentum,
energy, and continuity equations. Hence, there are no limitations for the volume fraction
occupied by each fluid. Nevertheless, the closure of these equations, i.e., the interphase
interactions (e.g., heat and species transfer, drag, lift, turbulent dispersion), is extremely
complicated and can be solved by numerous methods based on empirical relations, which
tend to have limitations in scope and accuracy. The complete two-phase Euler is standard in
nuclear and chemical engineering. However, despite the technological advances and efforts
to develop new methods to overcome the vulnerabilities, further applications in hydraulic
structures engineering have been discouraged due to the high complexity, convergence
problems, and calculation esources. Notwithstanding, it is the better-suited multiphase
model for highly aerated flows (air-concentration > 20%) [30]. A few applications evidence
the importance of this tool for spillway aerated flows (e.g., [20,41,42]).

Comparisons of the previous models’ performance are found in [22,43]. In summary,
the most popular approaches to spillway numerical modeling suffer from significant
drawbacks: lack of flow bulking in the interfacial models, and the existence of a threshold
for the maximum air-concentration in the mixture and sub-grid bubble models. Despite
being considered to demand exorbitant resources and be extremely difficult to use, the
complete two-phase Euler model is conceived to simulate highly aerated flows, potentially
overcoming the limitations of the previous models.

The present work compares the efficiency of the complete two-phase Euler model with the
VoF. A spillway with an offset aerator device is used to evaluate both models’ compliance in
different 3D mesh resolutions and turbulence models. Also, calculation time and stability
are analyzed. An accurate application of the VoF needs a fine mesh to reproduce each air
bubble, which is unfeasible in CFD of hydraulic structures due to the large dimensions
and the high velocity. Despite the high dependency on the mesh resolution to simulate
air-entrainment, evaluating the VoF is important because it is still a widely used tool in
practical engineering.

An offset aerator separates the spillway flow from the bottom (Figure 1), creating a jet
and inducing air-entrainment through the lower surface, hereinafter named as lower-nappe
aeration. Immediately downstream of the offset aerator, there is a cavity zone filled with
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air, followed by the impact zone, i.e., where the water jet re-joins the bottom. The high
turbulence levels cause lower-nappe aeration at the air-water interface of the cavity zone.

An unprecedented 3D numerical study is conducted due to the mesh size, the assess-
ment of multiple flow characteristics [44], the physical model with detailed data and high
Weber and Reynolds numbers that reduce scale effects [6], and the enormous computa-
tional efforts.

(a)

(b)

Figure 1. Laboratory setup ([45]-authorized reproduction). (a) Physical model (unknown flow
conditions). (b) Flow characteristics.

The paper is organized as follows. After this introduction, the methodology is de-
scribed, including the laboratory data, the mathematical models, and the numerical setup.
Next, the results are analyzed. Finally, the discussion and conclusions are presented.

2. Methodology

The complete two-phase Euler and the volume-of-fluid models are evaluated against the
physical modeling of an offset chute aerator by Bai et al. [11] (Figure 1).

The main flow characteristic to be evaluated is the lower-nappe aeration induced
by the offset aerator. This phenomenon is quantified by the flow-rate of lower-nappe
entrained air. The bubble diffusion is also assessed through selected water fraction profiles
downstream of the impact zone.

Additionally, two characteristics related to the pressure and flow geometry down-
stream of the aerator are analyzed: the value and location of the maximum pressure
increment at the spillway bottom and the length of the cavity zone.
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A mesh dependence analysis is performed for six different resolutions. The two
most popular Reynolds Averaged Navier-Stokes (RANS) turbulence models are tested in
each model: k–ω SST and k–ε. Hence, the models’ performance is analyzed for a total of
24 combinations (2 models × 6 resolutions × 2 turbulence models).

2.1. Laboratory Data

Bai et al. [11] conducted unmatched physical modeling of a large spillway offset
aerator with high velocity (4 to 9 m s−1) and high inflow water depth (0.15 m). Hence,
presenting high values of the Reynolds (5.5× 105 < Re < 1.2× 106) and Weber numbers
(180 < We0.5 < 405) which comply with Pfister [6] criteria to mitigate aeration related
scale effects: Re > 2.2 × 105 and We0.5 > 140. Moreover, the extent number of tests
and a complete set of measured flow properties (i.e., pressure at the bottom, velocity
profiles, air-concentration, turbulence, and bubble sizes) provide relevant data to validate
numerical models.

The rectangular channel is 5 m long and 0.25 m wide (Figure 1a). The aerator offset
height (hs) varies from 0.025 m to 0.045 m. The upstream emergence angle (θ0) inclination
is variable from 0° to 14.1° and the channel bottom angle (θb) ranges from 5.7° to 14.1°. The
channel bed and side-walls are made of smooth polyethylene with a roughness height of
1× 10−5 m.

A case with inlet velocity (V0) of 9 m s−1, water depth (h0) of 0.15 m, equal emergence
and bottom angle of 14.1° and offset height of 0.045 m are selected to mitigate the scale
effects. Froude number (Fr) is 7.4, Re = 1.2× 106 and We0.5 = 405 .

2.2. Mathematical Models

The CFD solvers and the turbulence models used are included in the OpenFOAM®

toolbox version 2012 [46]. The volume-of-fluid solver is named interFoam. The complete
two-phase Euler solver is named twoPhaseEulerFoam.

2.2.1. Two-Phase Volume-of-Fluid

The two-phase volume-of-fluid solves the Reynolds-averaged Navier–Stokes equations
for two incompressible, isothermal, and immiscible fluids. The interface capture is based on
a volume-of-fluid (VoF) method that incorporates an interfacial compression flux term [47,48].
Hereinafter, this model is mentioned as TPVoF.

The mass Equation (1) and a single-set of momentum conservation equations (2) are
solved. Hence, the two fluids—water and air—share the same velocity field.

∇ · ~V = 0 (1)

∂ρ~V
∂t

+∇ ·
(

ρ~V~V
)
= −∇p∗ −~g~X ·∇ρ +∇ · (2(µ + µt)S) + ~Fσ (2)

~Fσ = σ~κ∇α (3)

where ~V is the RANS velocity vector, ρ is the density, t is the time, p∗ is the pseudo-dynamic
pressure,~g is the gravitational acceleration vector, ~X is the position vector, µ is the molecular
dynamic viscosity, µt is the eddy viscosity coefficient (i.e., turbulent dynamic viscosity)
and S is the strain rate tensor. ~Fσ is the surface tension force term for the momentum
Equation (3). σ is the surface tension,~κ is the curvature of the interface and α is the water
volume fraction.

Any VoF phase property Φ (e.g., ρ, µ) is a volume-average of the intrinsic fluid property
of water (subscript w) and air (subscript a) (4).

Φ = αΦw + (1− α)Φa (4)

Additionally, according to the VoF method implementation in OpenFOAM®, the
fluids volume fraction in each cell is defined by a scalar function (α) ranging from 0 to 1
that allows the interface tracking: α = 1 is a water cell and α = 0 is an air cell. Other α
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values identify interface cells. The phase advection Equation (5) comprehends an artificial
compression meant to preserve a sharp interface (third term).

∂α

∂t
+∇ · ~Vα +∇ · ~Vicα(1− α) = 0 (5)

~Vic = Cα|~V|
∇α

|∇α| (6)

A compression velocity ( ~Vic) (6) proportional to the local velocity field magnitude is
applied perpendicular to the interface. The interface compression is triggered by the Cα

coefficient that usually ranges from 0 to 1.
The solver uses a segregated solution approach. Each time step starts an update of

the interface, followed by a prediction of the velocity. A Pressure Implicit with Splitting
Operators (PISO) type algorithm corrects velocity and implicitly the pressure, advancing
both in time. Finally, the turbulence is calculated.

2.2.2. Complete Two-Phase Euler

The complete two-phase Euler solves the Reynolds-averaged Navier–Stokes equations
for two interpenetrating and compressible fluid phases—a continuous (c) and a dispersed
(d)—including heat transfer [49,50]. Hereinafter, this model is mentioned as CTPE.

The continuity equation is solved for the dispersed phase (7), considering αc = 1− αd.

∂αd
∂t

+∇ ·
(

αdαc~Vr

)
+∇ ·

(
αd~V

)
= αd∇ · ~V + αc∇ · ~Vd − αd∇ · ~Vc (7)

~Vr =
(
~Vd − ~Vc

)
+ TD,d + TD,c (8)

where ~Vr is the phases relative RANS velocity vector, TD,d is the dispersed phase turbulent
dispersion term and TD,c is the continuous phase turbulent dispersion term.

The momentum Equation (9)—written for a generic phase i— is solved for each phase
but not directly. Instead, following Issa [51] methodology, the face flux is initially predicted
and afterward corrected by the pressure, which is shared between the two phases, and
solved iteratively.

∂αiρi~Vi
∂t

+∇ ·
(

αi, f ρi, f~φi~Vi

)
− εcont,i~V + (αiρi + Cvm)

∂~Vi
∂t

=

∇ · Re f f − Cd~V − Cvm

(
D~Vi
Dt
−

D~V j

Dt

) (9)

Re f f
i =

[
∇ ·

(
αiρiνe f f ~Vi

)
−
(

αiρiνe f f

(
∇~VT

i −
2
3

tr
(
∇ · ~Vi

)
I
))

+ αiρi
2
3

ki I
]

(10)

where ~φ is the face-flux vector, εcont is the continuity error, Cd is the drag coeficient and Cvm
is the virtual mass coeficient. Re f f is the stress rate tensor (10), νe f f = ν + νt is the effective
viscosity and k is the turbulent kinetic energy.

The energy conservation equation is solved for each phase (see Equation (11)) in
the form of internal energy or enthalpy. Therefore variable he is a hybrid variable that
represents one or the other.
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∂αiρihei
∂t

+∇ ·
(

αi, f ρi, f~φihei

)
+

∂αiρiKi
∂t

+∇ ·
(

αi, f ρi, f~φiKi

)
− εcont,ihei

−εcont,iKi −∇2
(

αiα
e f f

ihei

)
=

kh,i

(
T IF − Ti

)
+

 ke f f
h,i

Cpv,i
heIF

i

explicit

−

 ke f f
h,i

Cpv,i
hei

implicit

+ αiρi~Vi ·~g

(11)

where K is the kinetic energy, T is the fluid temperature, αe f f is the effective thermal
diffusivity, kh is the convective heat transfer coefficient, ke f f

h is the effective volumetric
convective heat transfer coefficient and Cpv is the specific heat capacity. The IF superscript
refers to an interfacial property.

Several closures for heat transfer, drag, lift, and turbulent dispersion are available.
Only a single-size air bubble can be adopted. The CTPE allows considering both fluids
as continuous or dispersed, depending on the respective volume-fraction value. Using a
blended interfacial model, for each cell, the solver identifies one of the following scenarios:
phase 1 is dispersed and phase 2 is continuous, phase 2 is dispersed and phase 1 is
continuous, or it is a cell with no obvious dispersed phase. Several blending options are
available: constant, linear, and hyperbolic.

The turbulent dispersion force is defined by Burns et al. [52] and Otromke [53],
as follows:

MD = −CD
3
4

αd ρc νt

ddσα
|~Vr|

(
1
αd

+
1
αc

)
∇αd (12)

where CD is the non-dimensional drag coefficient and σα is the turbulent Prandtl number
for interfacial area density. The turbulent dispersion force is a function of the blending
interfacial model chosen and its settings. The solver calculates the turbulent dispersion at
each cell for one of the previous three blending model scenarios. Hence, the turbulence
dispersion action depends totally on the blending model’s chosen parameters, especially on
the maximum volume-fraction value to a phase be considered as dispersed. For example,
the user may define this value as 0.6, i.e., if the volume-fraction values of a phase range from
0 to 0.6, that phase is considered dispersed. Higher values, consider the phase continuous
or with no obvious dispersed phase, depending on the model applied.

Each time step starts by solving the phase continuity, followed by discretization and
linearization of the momentum equations that predict the flux. Next, energy conservation
is solved. At this moment, the pressure is solved, and the flux and velocity are corrected.
Finally, the turbulence is calculated.

2.2.3. Turbulence Models

The k–ε and k–ω SST RANS turbulence models are among the most used in hydraulic
structures, hence are applied in the numerical study of the spillway bottom aerator. The k–ε
model is conceived for internal flows and is the most common in RANS simulations. The
k–ω SST is used due to its advantage for boundary flows. Both models have two transport
equations: one for the turbulent kinetic energy (k) and another for the turbulent dissipation
rate (ε) or the turbulent specific dissipation rate (ω), which are used to determine the eddy
viscosity. In the volume-of-fluid, both models do not include density explicitly. Therefore,
instead of the dynamic form (µt), is calculated the kinematic eddy viscosity (15) [54,55].
The default coefficients are employed.

The k–ε model is based on Launder and Spalding [56] and El Tahry [57], and is
defined by:

Dρk
Dt

= ∇ · (ρDk1∇k) + Gk −
2
3

ρ
(
∇ · ~V

)
k− ρε + Sk (13)

Dρε

Dt
= ∇ · (ρDε∇ε) +

C1Gk ε

k
−
(

2
3

C1 − C3,RDT

)
ρ
(
∇ · ~V

)
ε− C2ρ

ε2

k
+ Sε (14)
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νt = Cµk2/ε (15)

where Dk1 = ν + νt/σk and Dε = ν + νt/σε are the effective viscosity, ν is the kinematic
viscosity, Gk is the k production rate, Sk and Sε are source terms. σk = 1.0, σε = 1.3,
C1 = 1.44, C3,RDT = 0 and C2 = 1.92 and Cµ = 0.09 are the default coefficients.

The k–ω SST turbulence model is based on Menter and Esch [58] with the contributions
of Hellsten [59], Menter et al. [60], Spalart and Rumsey [61], and is defined as follows:

Dρk
Dt

= ∇ · (ρDk2∇k) + ρPk −
2
3

ρk
(
∇ · ~V

)
− ρβ∗ωk + Sk (16)

Dρω

Dt
= ∇ · (ρDω∇ω) +

ργPω

ν
− 2

3
ργω

(
∇ · ~V

)
− ρβω2 + 2ρ(1− F1)aω2

∇k ·∇ω

ω
+ Sω (17)

νt = a1
k

max(a1ω, b1F23S)
(18)

where Dk2 = ν + akνt and Dω = ν + aωνt are the effective viscosity. Pk and Pω are production
terms. Sk and Sω are source terms. β∗ = 0.09, a1 = 0.31, b1 = 1.0, c1 = 10.0, F23 are
coefficients. ak, aω, aω2, β, and γ blend inner and outer coefficient values using the
F1 coefficient.

In the complete two-phase Euler, instead of the standard k–ε model, is applied the
k–ε mixture which is a specific turbulence model for two-phase gas-liquid systems, based
on Behzadi et al. [62] and Lahey [63]. This model solves a single set of equations for the air-
water mixture—m subscript—to determine km (20) and εm (21). The mixture variables are
calculated through an effective density weighted average of air and water properties (19).

Φm(Φw, Φa) =
(

αρwΦw + (1− α)ρa,e f f Φa

)
/ρm (19)

Dkm

Dt
= ∇ ·

(
νm

σk
∇km

)
+ Gm −

2
3

(
∇ · ~Vm

)
km − εm +

Gbkm

ρm
(20)

Dεm

Dt
= ∇ ·

(
νm

σε
∇εm

)
+ C1Gm

εm

km
− 2

3
C1

(
∇ · ~Vm

)
εm − C2

εm
2

km
+

C3εm
2Gb

ρmkm
(21)

ρm = αρw + (1− α)ρa,e f f (22)

where ρa,e f f = ρa + Cvmρw. νm = Φm(νt,w, νt,a) is the mixture turbulent kinematic viscosity,
νt,w and νt,a are water and air tubulent kinematic viscosity. Gm is the km production rate,
~Vm is the mixture velocity vector, Gb is the km production rate by air-bubble, ρw is the water
density, ρa is the air density and ρm is the mixture density (22). Cvm is the virtual mass
coeficient. C3 = 1.92. The remaining constants share same values with the k–ε model.
Furthermore, the k–ε mixture model is improved following Weller et al. [64]. Thus, a phase
fraction limiter is applied to the bubble-generated turbulence (Gb), avoiding spurious
turbulence generation where bubbles are not present. In the current work, Gb is only
activated if αd > 0.3, a standard value.

In the complete two-phase Euler, the standard k–ω SST model is modified to include the
bubble-induced turbulent viscosity model of Sato et al. [65]. Thus, a term is added to the
turbulent viscosity Equation (18), as follows:

νt
Sato = a1

k
max(a1ω, b1F23S)

+
(

1− e−y+/16
)2

cbdbαd~Vr (23)

where y+ is the dimensionless distance from the wall, cb = 0.6 and db is the characteristic
bubble size. Hereinafter, this model is mentioned as k–ω SST Sato.

2.3. Numerical Setup

The numerical domain (Figure 2) is defined by a nozzle with 0.5 m of length and a
rectangular section with 0.25 m of width per 0.15 m of height (h0), followed by a rectangular
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channel with 2 m of length, 0.5 m of height, and the exact width of the nozzle. On each
side wall, by the bottom and next to the step, is placed an air-vent with 0.02× 0.02 m2. The
nozzle and channel bottom have a downward slope angle of 14.1°.

Rules of thumb in hydraulic structures CFD recommend a minimum of 10 to 20 cells
per characteristic hydraulic length (e.g., water depth, pipe radius, etc.). Nevertheless,
the dependence of the result on the mesh resolution must be analyzed for every flow
and numerical setup. Thus, a set of fully orthogonal and hexahedral 3D meshes with
6 different resolutions (Rm) relative to the nozzle height (h0) is considered (Table 1). The
cell edge length (dm) ranges from 2.5 mm (Rm = 60) to 15 mm (Rm = 10). Mesh res-
olution is limited to 60 cells due to the extremely small time-step needed to verify the
Courant–Friedrichs–Lewy condition (∆t < dm/V0 = 2.5× 10−3/9 = 2.8× 10−4 s) that
leads to impractical calculation times, even in high-performance computing clusters (HPC).
To calculate in parallel at the HPC, the mesh was decomposed into 16 to 256 sub-domains,
using the Scotch method.

Table 1. Mesh.

Rm
Edge

Length [mm] Total Cells

10 h0/10 ≈ 15 85,510
15 h0/15 ≈ 10 273,750
20 h0/20 ≈ 7.5 684,080
30 h0/30 ≈ 5 2,190,000
40 h0/40 ≈ 3.75 5,472,640
60 h0/60 ≈ 2.5 17,520,000

Figure 2. Mesh-boundary.

The boundary conditions are presented next. At the inlet, the velocity (V0) is 9 m s−1;
the pressure is automatically calculated to assure the flux. The characteristic turbulent
mixing length is 0.0105 m (0.07h0). At the top, outlet and air vents, a total pressure condi-
tion is defined. At the outlet, the velocity condition is zero gradient for outflow, and the
inflow is blocked. Both top and air vents have a binary velocity condition: zero gradient
for outflow and exclusive pressure-driven normal air inflow. Turbulence for the previ-
ous three boundaries is zero gradient for outflow and for inflow k = 3.1× 10−5 m2 s−2,
ε = 1.6× 10−6 m2 s−3 and ω = 0.58 s−1, considering a turbulent mixing length equal to
the channel width (0.25 m) and an intermediate turbulent intensity of 0.05. Walls have
no-slip tangent velocity and a turbulent wall function for the roughness of 1× 10−5 m,
as described in the physical modeling. Due to the absence of specification of the inflows’
turbulence intensity (TI) in the physical modeling, two values were tested: 0.005 and 0.2. In
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the complete two-phase Euler, the temperature of the fluids is intended to be 300 K (26.85 °C).
Hence, the initial temperature of the domain and the inflow temperature are set to 300 K,
and the walls have a zero-gradient condition.

An arbitrary bubble diameter of 0.1 mm is adopted after observing the multitude
of sizes of air-bubbles and air-packets in Figure 1a). Furthermore, to respect the CTPE’s
conception, the bubble diameter must be inferior to the cells’ size.

The following numerical settings are used: Euler time derivative; gradient is Gauss
linear with multi-directional cell limiter 1.0; the divergence scheme is linear-upwind for
velocity. For turbulence fields, i.e., k, ε and ω, the divergence scheme is upwind. Regarding
the TPVoF model, interface compression is based on a generic limited scheme for the
divergence of α and an interface compression coefficient (Cα) of 0.5. For the CTPE model,
among the available closures, the following models were used: Schiller and Naumaan [66]
for drag, Ranz and Marshall [67] for heat transfer, Tomiyama et al. [68] for lift and the
turbulent dispersion method based on Burns et al. [52] and Otromke [53]. This study
applies a hyperbolic blending function that considers the fluid continuous if the phase
volume-fraction value is larger than 0.6.

The simulations are transient. The PISO pressure-velocity algorithm is used with
standard settings. Hence data is sampled every time step (approximately 2000 to 10,000 Hz,
depending on the mesh) during 1 s and averaged after a warm-up period where semi-steady
flow conditions are reached. Approximate time-independence is attained for lower-nappe
aeration (β), maximum pressure at chute bottom (∆pb

max), open-boundaries air and water
flow-rate, and several other domain properties: water and air volume, total kinetic energy,
total turbulent kinetic energy and minimum, and maximum pressure. The presented profile
plots and bottom data are collected in the central plane along the chute, i.e., the mid-plane
of the chute.

Calculations were performed in two HPC clusters composed of Intel Xeon E5-2680 or
AMD EPYC 7501 CPUs (Central Process Unit). Simulations ranged from 16 to 256 cores
and needed 10 to 50,000 CPU.core hours (2000 CPU core.days). Due to the extremely high
calculation time, the two highest resolution meshes (Rm ≥ 40) are considered unfeasible
for engineering studies. Overall, more than 18,000 CPU core.days, or 50 CPU core.years,
were utilized to deliver the presented results.

3. Results

The main purpose of this study is to assess the lower-nappe aeration (i.e., induced by
the offset aerator) in the different model combinations. Hence, the results are presented
and analyzed as follows. First, a global flow comparison. Second and most important, the
air-water mixture and the lower-nappe aeration. Next, the maximum pressure increment
at the spillway bottom, which is a frequent design criterion. Finally, a geometric parameter
of the flow: the cavity zone length.

Globally, Figure 3 shows similar flow depth (solid blue surface) and velocity (dark-
blue and red streamlines) in all model combinations. The only exception is the CTPE with
k–ε mixture that, downstream of the impact zone, presents a significant increment of the
water-depth and a smeared air-water interface. In all model combinations, the offset aerator
separates the flow from the spillway bottom, creating a jet and a cavity zone filled with air
immediately downstream of the aerator. At the cavity zone, the turbulence of the air-water
lower interface of the jet promotes the entrainment of air into the flow. Thus, to feed this
process, air enters continuously through the air-vents located laterally at the aerator.
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(a)

(b)

(c)

(d)

Figure 3. 3D flow—surface (α = 0.5, solid blue), interface region (0.01 < α < 0.99, transparent blue),
air vents streamlines (red), water inlet streamlines (dark-blue) (Rm = 40, except Rm = 30 for CTPE
k–ε mixture). (a) TPVoF, k–ε. (b) CTPE, k–ε mixture. (c) TPVoF, k–ω SST. (d) CTPE, k–ω SST Sato.

3.1. Air-Water Mixture

Regarding aeration, the primary conditioning to the performance of the models is how
they deal with the air-water interface and if the air is entrained into the water flow. Figure 4,
shows the water fraction along the spillway, in an xz plane, for all model combinations and
four mesh resolutions.

The major standout is the very distinct behavior of the CTPE with k–ε mixture. The
lower-nappe aeration is much more intense, inducing an air-water mixing region at the
bottom that occupies more than half of the flow depth. Moreover, it shows a significant
air-entrainment at the upper water surface, resulting in a diffuse interface, which starts
more upstream as the resolution increases. Therefore, the CTPE with k–ε mixture models
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combination is not tested with the highest mesh resolutions: 40 and 60 cells per inlet height.
These phenomena can be explained by the concept of the k–ε mixture turbulence model
and are addressed in Section 3.5.

The second standout is the absence of an air-water mixture region at the bottom in
the TPVoF combinations. Oppositely, this region is identified in the CTPE. Moreover, in
the TPVoF, an air-water interface is present next to the spillway bottom, though becoming
sharper as resolution increases. Thus, presenting a clear fluid separation and an airflow
next to the bottom. This phenomenon is also noticed in the lower part of the water-fraction
vertical profiles analyzed in Section 3.2.

(a) TPVoF, k–ε; Rm = 10 (b) TPVoF, k–ω SST; Rm = 10

(c) CTPE, k–ε mixture; Rm = 10 (d) CTPE, k–ω SST Sato; Rm = 10

(e) TPVoF, k–ε; Rm = 20 (f) TPVoF, k–ω SST; Rm = 20

(g) CTPE, k–ε mixture; Rm = 20 (h) CTPE, k–ω SST Sato; Rm = 20

(i) TPVoF, k–ε; Rm = 40 (j) TPVoF, k–ω SST; Rm = 40

(not calculated)

(k) CTPE k–ε mixture; Rm = 40 (l) CTPE, k–ω SST Sato; Rm = 40

(m) TPVoF, k–ε; Rm = 60 (n) TPVoF, k–ω SST; Rm = 60

(not calculated)

(o) CTPE k–ε mixture; Rm = 60 (p) CTPE, k–ω SST Sato; Rm = 60

Figure 4. Water fraction (α): vertical central plane.
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3.2. Lower-Nappe Aeration

A spillway aerator is designed to entrain air into the water flow, eliminating cavitation
damage next to the bottom and walls [5]. Air-concentrations ranging from 1 to 8% are
needed to mitigate cavitation damage [8,69]. Further downstream of the aerator, air bubbles
tend to rise to the flow surface, reducing the air-concentration next to the bottom. Therefore,
it is frequent to find several aerators along a spillway.

Thus, the performance of a spillway aerator is determined by the amount of air
entrained at the cavity zone (i.e., lower-nappe aeration) and in the air-concentration profile
next to the bottom along the spillway.

Commonly, lower-nappe aeration is characterized by the ratio (β) between the flow-
rate of air-entrained at the cavity zone (Qal) and water flow-rate at the inlet (Qw), see
Equation (24). Qal is measured by the air flow-rate entering the cavity zone through both
lateral air-vents (Figure 2).

β = Qal/Qw (24)

Figure 5 shows the β coefficient for all model combinations and different mesh res-
olutions. For low mesh resolutions (Rm < 20), all model combinations show the same
behavior: β is approximately twice the reference value ( βre f = 0.0475 in [11]), decreasing
as the resolution increases.

A significant result is that in the TPVoF lower-nappe aeration tends to a null value,
constantly reducing with the increase of the mesh resolution.

The CTPE with k–ω SST Sato presents acceptable results for higher mesh resolutions
(Rm ≥ 30), converging to a lower-nappe aeration slightly inferior to the reference value.
Oppositely, the CTPE with k–ε mixture reveals an unexpected increase of β for Rm ≥ 20,
becoming even more abrupt for higher mesh resolutions. This behavior can be explained
by the concept of the k–ε mixture turbulent model and is addressed in Section 3.5.
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Figure 5. Lower-nappe aeration: ratio β between the flow-rate of air-entrained at the cavity zone and
water flow-rate, for distinct mesh resolutions.

The distribution of the air entrained due to lower-nappe aeration is analyzed in three
vertical profiles of the water volume fraction (α): at the cavity zone, at the impact zone, and
downstream of the impact zone, i.e., 0.2, 0.7, and 1.0 m downstream of the step. Figure 6
presents these profiles for an intermediate mesh resolution (Rm = 30), which represents
the behavior of the models.

For the three profiles, the TPVoF shows no air-water mixing. α is null at the bottom,
and there is an abrupt transition to the complete water flow above, which is exacerbated
with the mesh resolution increase. Thus, all the flow-rate of air from lower-nappe aeration
is located next to the chute invert. The absence of air-water mixing is justified because the
TPVoF model equations do not comprehend turbulent dispersion. Hence, any air-water
mixing is due to the numerical diffusion in the interface, which is reduced with higher
mesh resolution. To respect the TPVoF model conception, the mesh must be fine enough
to reproduce the individual air-bubbles, which is unfeasible in engineering applications
of spillways.
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Better behavior is found in the CTPE with k–ω SST Sato. The mixed flow region is
located in the lower half of the flow, sharing some similarities with the water fraction (α)
profiles of Bai et al. [11]. However, at the bottom, in the cavity zone α = 0.4, and in the
impact zone α = 0.7, which is considerably inferior to the reference profile, where α is 0.8
and 0.92.

At the impact zone (see Figure 6b), the experimental data shows a mixed flow region
with half the thickness of the flow and larger air-concentration in the inner part of the flow
compared to the numerical models, except the CTPE with k–ε mixture. Downstream of
the impact zone (i.e., 1.0 m downstream of the step, see Figure 6c)), despite the reference
profile shows only a point at z = 0.11 m where α ≈ 1, the CTPE with k–ω SST Sato
exhibits a thick layer (0.08 ≤ z ≤ 0.13 m) with α = 1. The presented facts demonstrate the
imperfect modeling of air-bubble vertical transport and turbulent dispersion, which may
be justified by the single-size of the air-bubbles and the absence of significant roughness
and oscillations in the air-water interface of the cavity zone due to the RANS framework,
which is observed in Figure 1a).

The CTPE with k–ε mixture shows a low and non-realistic water concentration (α)
vertical profiles, exposing the exacerbated lower-nappe aeration and bubble diffusion. This
behavior is associated with the k–ε mixture formulation and is explained in Section 3.5.

OpenFOAM mesh compare:
Aerator: interFoam vs twoPhaseEulerFoam: 3D
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Figure 6. Water volume fraction vertical profile at x = {0.2, 0.7, 1.0} m; Rm = 30. (a) x = 0.2 m.
(b) x = 0.7 m. (c) x = 1.0 m.
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3.3. Pressure Increment at the Spillway Bottom

The maximum pressure at the spillway bottom resultant from the jet impact is an
important design criterion, especially in terms of materials lifetime. Thus, it is evaluated the
pressure increment above the atmospheric pressure of 101325 Pa = 1 atm and compared
against the laboratory data of Bai et al. [11]. The profiles of the pressure increment along
the bottom (∆pb) are presented in Figure 7. This analysis is focused on two properties: the
value of the maximum pressure increment (∆pb

max) and its location (Lm).
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Figure 7. Pressure increment along the spillway bottom. (a) TPVoF, k–ε. (b) CTPE, k–ε mixture.
(c) TPVoF, k–ω SST. (d) CTPE, k–ω SST Sato.

Regarding the maximum pressure increment (∆pb
max, see Figure 8), both the TPVoF

and CTPE models yield an increase of ∆pb
max as the mesh resolution increases, which is

even more noticed in the k–ω SST type models. Roughly, for the model combinations, the

∆pb
max is only near to the reference value ( ∆pb

max
re f

= 6.7× 103 Pa in [11]) for the higher
mesh resolutions (Rm ≥ 40). Although the CTPE with k–ε mixture shows simillar ∆pb

max
for the lower mesh resolutions (Rm = {10, 15}), at higher resolutions ∆pb

max suffers an
abrupt drop. For the different model combinations and the tested mesh resolutions, it is
impossible to foresee a convergence of the ∆pb

max.
Besides the flow trajectory and momentum, the pressure next to the bottom is directly

linked to local flow density, i.e., the mixture air-concentration. Thus, the results are coherent
with the lower-nappe aeration (Figure 5) and the water volume-fraction profiles (Figure 6)
presented in Section 3.2.

A sensitivity analysis of the mesh refinement near the walls was performed, evidenc-
ing that the results are not significantly affected. Hence, it is purposely not presented
because it has a much smaller impact on the results than the remaining analyzed variables.
Additionally to the mesh resolution near the bottom, the reproduction of the flow boundary
layer, and the solver framework, including the pressure-velocity coupling scheme, may
have a significant role in determining the pressure next to the bottom.

A y+ analysis was also performed, evidencing that the y+ condition for both models is
never achieved (k–ε: 30 < y+ < 300, k–ω SST: 5 < y+ < 20). Moreover, an estimate based on
the freestream flow (9 m/s) indicates that the height of the first cell next to the chute bottom
should be approximately h0/1000 to respect the k–ε y+ condition and even more to respect
the k–ω SST y+ condition. Therefore, any significant resolution increase is incompatible
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with practical engineering, even refining only near the walls. Nevertheless, the authors
consider it is important to assess the turbulence models that are undoubtedly the most
used with these solvers, in mesh resolutions representative of the commonly applied in
research and practical engineering of hydraulic structures.

OpenFOAM mesh compare:
Aerator: interFoam vs twoPhaseEulerFoam: 3D

mesh, setups IF3D3b and 2Pke3D2j and 2Pko3D2i, kEpsilon, kOmegaSST, kEpsilonMixAlpha and kOmegaSSTSato
previous 1s average
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Figure 8. Maximum pressure increment at the spillway bottom.

The location of the maximum pressure increment Lm is the distance along the chute bot-
tom from the offset step to a point where the pressure increment is maximum (∆pb = ∆pb

max),
see Figure 9.

Lm is similar for all model combinations, except for the CTPE with k–ε mixture, increasing
in higher mesh resolutions. Lm starts to converge in intermediate mesh resolutions Rm ≥ 30
to a value approximately 15 to 35% larger than the reference (Lm

re f = 0.62 m in [11]). The
CTPE with k–ε mixture shows abnormally small values for Rm ≥ 20, due to the exacerbated jet
diffusion. The TPVoF with k–ε and the CTPE with k–ω SST Sato present the peak of pressure
nearer the reference value.

OpenFOAM mesh compare:
Aerator: interFoam vs twoPhaseEulerFoam: 3D

mesh, setups IF3D3b and 2Pke3D2j and 2Pko3D2i, kEpsilon, kOmegaSST, kEpsilonMixAlpha and kOmegaSSTSato
previous 1s average

vert. profile: x='+0.2m' '+0.68m' '+0.8m' '+1.0m' '+1.8m' x

0

0.05

0.1

0.15

0.2

0.25

  10   15   20   30   40   60

β
 [

-]

h0/dm

under jet entrainment: beta=Qair/Qwater

Bai et al. (2016)
TPVoF, k-ε
TPVoF, k-ω SST
CTPE,  k-ε Mix
CTPE,  k-ω SST Sato

−2,500

0

2,500

5,000

7,500

10,000

12,500

   0  0.2  0.4  0.6  0.8    1  1.2  1.4  1.6  1.8    2

Δ
p

b  [
P

a]

x [m]

chute bottom pressure

Bai et al. (2016)
TPVoF, k-{/Symbol e}
TPVoF, k-{/Symbol e}
TPVoF, k-{/Symbol e}
TPVoF, k-{/Symbol e}
TPVoF, k-{/Symbol e}
TPVoF, k-{/Symbol e}
TPVoF, k-{/Symbol w} SST
TPVoF, k-{/Symbol w} SST
TPVoF, k-{/Symbol w} SST
TPVoF, k-{/Symbol w} SST
TPVoF, k-{/Symbol w} SST

TPVoF, k-{/Symbol w} SST
CTPE,  k-{/Symbol e} Mix
CTPE,  k-{/Symbol e} Mix
CTPE,  k-{/Symbol e} Mix
CTPE,  k-{/Symbol e} Mix
CTPE,  k-{/Symbol w} SST Sato
CTPE,  k-{/Symbol w} SST Sato
CTPE,  k-{/Symbol w} SST Sato
CTPE,  k-{/Symbol w} SST Sato
CTPE,  k-{/Symbol w} SST Sato
CTPE,  k-{/Symbol w} SST Sato

0

2,500

5,000

7,500

10,000

  10   15   20   30   40   60

Δ
p

b m
ax

 [
P

a]

h0/dm

Δpb
max [Pa]

Bai et al. (2016)
TPVoF, k-ε
TPVoF, k-ω SST
CTPE,  k-ε Mix
CTPE,  k-ω SST Sato

0

0

0

1

1

1

  10   15   20   30   40   60

L
m

 [
m

]

h0/dm

Lm(Δpb=Δpb
max) [m]

Bai et al. (2016)
TPVoF, k-ε
TPVoF, k-ω SST
CTPE,  k-ε Mix
CTPE,  k-ω SST Sato

0

0

0

0

0

0

0

0

0

0

0

  10   15   20   30   40   60

tk
e 

[J
]

h0/dm

turbulent kinetic energy

TPVoF, k-ε
TPVoF, k-ω SST
CTPE,  k-ε Mix
CTPE,  k-ω SST Sato

0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1

 0.4  0.6  0.8    1  1.2  1.4  1.6  1.8    2

Δ
p

b  /
 Δ

p
b m

ax
 [

-]

x / L [-]

chute bottom pressure / L

Bai et al. (2016)
TPVoF, k-{/Symbol e}
TPVoF, k-{/Symbol e}
TPVoF, k-{/Symbol e}
TPVoF, k-{/Symbol e}
TPVoF, k-{/Symbol e}
TPVoF, k-{/Symbol e}
TPVoF, k-{/Symbol w} SST
TPVoF, k-{/Symbol w} SST
TPVoF, k-{/Symbol w} SST
TPVoF, k-{/Symbol w} SST
TPVoF, k-{/Symbol w} SST

TPVoF, k-{/Symbol w} SST
CTPE,  k-{/Symbol e} Mix
CTPE,  k-{/Symbol e} Mix
CTPE,  k-{/Symbol e} Mix
CTPE,  k-{/Symbol e} Mix
CTPE,  k-{/Symbol w} SST Sato
CTPE,  k-{/Symbol w} SST Sato
CTPE,  k-{/Symbol w} SST Sato
CTPE,  k-{/Symbol w} SST Sato
CTPE,  k-{/Symbol w} SST Sato
CTPE,  k-{/Symbol w} SST Sato

0

0

0

1

1

1

  10   15   20   30   40   60

L
 [

m
]

h0/dm

L(Δpb=0.1*Δpb
max) [m]

Bai et al. (2016)
TPVoF, k-ε
TPVoF, k-ω SST
CTPE,  k-ε Mix
CTPE,  k-ω SST Sato

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

  10   15   20   30   40   60

ke
 [

J]

h0/dm

kinetic energy

TPVoF, k-ε
TPVoF, k-ω SST
CTPE,  k-ε Mix
CTPE,  k-ω SST Sato

0.00

0.05

0.10

0.15

0.20

   0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9    1

z 
[m

]

α [-]

alpha.waterMean 
h0/dm=30, vert. profile: x=+0.2m

Bai et al. (2016)
TPVoF, k-ε
TPVoF, k-ω SST
CTPE,  k-ε Mix
CTPE,  k-ω SST Sato

0.00

0.05

0.10

0.15

0.20

  −4   −3   −2   −1    0    1    2    3    4    5    6    7    8    9   10

z 
[m

]

(m s-1)

UMean 
h0/dm=30, vert. profile: x=+0.2m

TPVoF, k-ε
TPVoF, k-ω SST
CTPE,  k-ε Mix
CTPE,  k-ω SST Sato

0.00

0.05

0.10

0.15

0.20

1e−05 0.0001 0.001 0.01  0.1    1   10  100

z 
[m

]

(m s-1)

kMean 
h0/dm=30, vert. profile: x=+0.2m

TPVoF, k-ε
TPVoF, k-ω SST

0.00

0.05

0.10

0.15

0.20

   0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9    1

z 
[m

]

α [-]

alpha.waterMean 
h0/dm=30, vert. profile: x=+0.68m

Bai et al. (2016)
TPVoF, k-ε
TPVoF, k-ω SST
CTPE,  k-ε Mix
CTPE,  k-ω SST Sato

0.00

0.05

0.10

0.15

0.20

  −1    0    1    2    3    4    5    6    7    8    9   10

z 
[m

]

(m s-1)

UMean 
h0/dm=30, vert. profile: x=+0.68m

TPVoF, k-ε
TPVoF, k-ω SST
CTPE,  k-ε Mix
CTPE,  k-ω SST Sato

0.00

0.05

0.10

0.15

0.20

1e−05 0.0001 0.001 0.01  0.1    1   10  100

z 
[m

]

(m s-1)

kMean 
h0/dm=30, vert. profile: x=+0.68m

TPVoF, k-ε
TPVoF, k-ω SST

0.00

0.05

0.10

0.15

0.20

   0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9    1

z 
[m

]

α [-]

alpha.waterMean 
h0/dm=30, vert. profile: x=+0.8m

Bai et al. (2016)
TPVoF, k-ε
TPVoF, k-ω SST
CTPE,  k-ε Mix
CTPE,  k-ω SST Sato

0.00

0.05

0.10

0.15

0.20

  −1    0    1    2    3    4    5    6    7    8    9   10

z 
[m

]

(m s-1)

UMean 
h0/dm=30, vert. profile: x=+0.8m

TPVoF, k-ε
TPVoF, k-ω SST
CTPE,  k-ε Mix
CTPE,  k-ω SST Sato

0.00

0.05

0.10

0.15

0.20

1e−05 0.0001 0.001 0.01  0.1    1   10  100

z 
[m

]

(m s-1)

kMean 
h0/dm=30, vert. profile: x=+0.8m

TPVoF, k-ε
TPVoF, k-ω SST

0.00

0.05

0.10

0.15

0.20

   0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9    1

z 
[m

]

α [-]

alpha.waterMean 
h0/dm=30, vert. profile: x=+1.0m

Bai et al. (2016)
TPVoF, k-ε
TPVoF, k-ω SST
CTPE,  k-ε Mix
CTPE,  k-ω SST Sato

0.00

0.05

0.10

0.15

0.20

  −1    0    1    2    3    4    5    6    7    8    9   10

z 
[m

]

(m s-1)

UMean 
h0/dm=30, vert. profile: x=+1.0m

TPVoF, k-ε
TPVoF, k-ω SST
CTPE,  k-ε Mix
CTPE,  k-ω SST Sato

0.00

0.05

0.10

0.15

0.20

1e−05 0.0001 0.001 0.01  0.1    1   10  100

z 
[m

]

(m s-1)

kMean 
h0/dm=30, vert. profile: x=+1.0m

TPVoF, k-ε
TPVoF, k-ω SST

0.00

0.05

0.10

0.15

0.20

   0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9    1

z 
[m

]

α [-]

alpha.waterMean 
h0/dm=30, vert. profile: x=+1.8m

TPVoF, k-ε
TPVoF, k-ω SST
CTPE,  k-ε Mix
CTPE,  k-ω SST Sato

0.00

0.05

0.10

0.15

0.20

  −1    0    1    2    3    4    5    6    7    8    9   10

z 
[m

]

(m s-1)

UMean 
h0/dm=30, vert. profile: x=+1.8m

TPVoF, k-ε
TPVoF, k-ω SST
CTPE,  k-ε Mix
CTPE,  k-ω SST Sato

0.00

0.05

0.10

0.15

0.20

1e−05 0.0001 0.001 0.01  0.1    1   10  100

z 
[m

]

(m s-1)

kMean 
h0/dm=30, vert. profile: x=+1.8m

TPVoF, k-ε
TPVoF, k-ω SST

Figure 9. Maximum pressure increment location (Lm).

3.4. Cavity Zone Length

Following Bai et al. [11], the cavity zone length (L, see Figure 10) is the distance along
the chute bottom between the offset step and the most upstream point of the impact zone
where ∆pb = 0.1× ∆pb

max. L also characterizes the jet trajectory.
In all model combinations using a k–ω SST type turbulence model, L tends to con-

verge to a value 15 to 20% larger than the reference (Lre f = 0.52 m in [11]). Comparing
Figures 1a and 4, the air-water interface at the cavity zone is absent of significant roughness
and oscillations in the air-water interface of the cavity zone due to the RANS framework.
Also, the interface sharpness increases with higher resolutions. Thus, the lower interface of
the jet is not diffuse enough, and the first impact point is located downstream than what is
observed experimentally.

The TPVoF with k–ε seems to converge to a value nearer to the reference. The CTPE with
k–ε mixture displays minimal values for Rm = 30, similarly to what is observed in Lm (Figure 9).
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Figure 10. Cavity zone length (L).

3.5. Turbulence

A complete assessment of the turbulence is impossible due to the absence of detailed
experimental data of k, ε, ω, and νt in [11]. Nevertheless, the four turbulence models
are compared.

As presented in Figures 4 and 5, the k–ε and k–ε mixture present larger lower-nappe
aeration than the corresponding k–ω SST and k–ω SST Sato. Analyzing the k of the TPVoF
in Figure 11 and the kw of the CTPE in Figure 12, the turbulent kinetic energy (k) is in
the same order of magnitude at the air-water interface of the cavity zone. In detail, the
TPVoF combinations show larger k at the cavity zone, yet also have the smaller values
of lower-nappe aeration. Despite the CTPE with k–ε mixture show the lower levels of
kw, it is the model combination with the highest amount of lower-nappe aeration. How-
ever, the turbulent viscosity (νt) presented in Figures 13 and 14 expose the lower-nappe
aeration is more significant where the νt is higher, which is displayed clearly by the k–ε
and k–ε mixture models.

These results are justified by the conception of the models and their performance in the
cavity zone, as reported by Bardina et al. [70]: “[the k–ω SST includes] a limitation of the growth
of the eddy viscosity in rapidly strained flows. [...] The shear stress transport (SST) [...] improves
the prediction of flows with strong adverse pressure gradients and separation.”.

Additionally, in the CTPE, the turbulent dispersion is proportional to νt as defined in
Equation (12). Oppositely, the TPVoF model equations do not comprehend the turbulent
dispersion. Hence, any air-water mixing is due to the numerical diffusion in the interface,
which is reduced with higher mesh resolution.

(a) (b)

Figure 11. k at vertical central plane of the TPVoF model with Rm = 20; interface (α = 0.5, black line).
(a) k–ε. (b) k–ω SST.
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(a) (b)

Figure 12. kw at vertical central plane of the CTPE model with Rm = 20; interface (α = 0.5, black line).
(a) k–ε mixture. (b) k–ω SST Sato.

(a) (b)

Figure 13. νt at vertical central plane of the TPVoF model with Rm = 20; interface (α = 0.5, black line).
(a) k–ε. (b) k–ω SST.

(a) (b)

Figure 14. νt,w at vertical central plane of the CTPE model with Rm = 20; interface (α = 0.5, black line).
(a) k–ε mixture. (b) k–ω SST Sato.

The k–ε mixture model exacerbated lower-nappe aeration is explained by the concep-
tion of the model and the problems of the k–ε formulation in rapidly strained flows and with
large pressure gradients [70]. The k–ε mixture model solves a single set of equations for the
air-water mixture, and the variables are calculated through an effective density-weighted
average (19). Thus, this approach increases the gradients, especially at the air-water inter-
face, which can be aggravated with the increase of the mesh resolution. This problem is
not so significant in the k–ε, because the implementation in the TPVoF does not include
density explicitly, which, on the other hand, may lead to several turbulent-related issues at
the fluids interface (i.e., spurious velocities and unrealistic turbulence production) [54,55].
Especially the high k generation at the interface is observed in Figure 11. Moreover, the
k–ε type models exhibit minimal turbulent viscosity next to the chute bottom, which also
conditions the inner turbulence fields.

3.6. Computational Cost

Although the same numerical schemes are employed for all model combinations, for
stability reasons, the time-step definition required a maximum Courant number of 0.7 for
the TPVoF and between 0.25 and 0.4 for the CTPE model. Nevertheless, the CTPE with
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k–ε mixture for the higher mesh resolution is unstable for intermediate and high mesh
resolutions. Nonetheless, an analysis is done considering the necessary CPU time to attain
a stable solution during one second.

Globally, for the same model and mesh resolution, the calculation time is very similar
between the two turbulent models. On average, the CTPE is 4 to 6 times slower than the
TPVoF. The CTPE with k–ε mixture calculation time increased, especially due to spurious
air velocities. On the other hand, for the mesh resolutions (Rm) of 10, 15, 20, 30, 40 and
60, there is an average increment of 4.5 times between two sequential resolutions. Hence,
from Rm = 10 to Rm = 60, calculation time increases by a factor of 2× 103. The CTPE with
k–ω SST Sato shows very high levels of turbulence near the interface, which is probably due
to the overestimation by two-fluid per-phase turbulence models of the turbulent kinetic
energy near large scale interfaces with significant shear [71].

4. Discussion

The TPVoF and the CTPE Reynolds-averaged Navier–Stokes equations models are not
directly comparable. The TPVoF is designed for two incompressible and immiscible fluids
that share one set of momentum equations. Despite not including air-water mixing, the
TPVoF is still used for engineering purposes. The CTPE is designed for two compressible
and interpenetrating fluids, including heat transfer, and is more appropriate for highly-
aerated flows. Besides the significant difference in the number and complexity of the mass,
momentum, and energy conservation equations, the CTPE comprises several complex
closure models (i.e., heat transfer, drag, lift, and turbulent dispersion). Thus, the calculation
times and instability of the CTPE model are larger, and a single less accurate definition of
the boundary conditions or the mesh may lead to pressure or temperature oscillations and
solution divergence.

The interface modeling is also extremely different. The volume-of-fluid method is
conceived to separate the fluids. Thus, the TPVoF does not comprise air and water mixing,
and any air-water mixture present is due to numerical diffusion, especially in low mesh
resolutions. In a RANS approach, with a mesh resolution compatible with most hydraulic
engineering applications, the VoF model cannot reproduce the diversity of bubbles and air
pockets present in the flow.

Oppositely, the CTPE allows the interpenetrability of both phases, which act as dis-
persed or continuous in each cell, according to the phase volume fraction. The mixing
of the phases is mainly promoted by the turbulent dispersion, depending on the local
turbulence conditions. However, the CTPE model has some limitations regarding bubbles
and air pockets. First, the bubble size is limited to a single diameter, only varying due
to pressure or temperature changes. Therefore, no bubble break-up or coalescence is con-
sidered. Secondly, the size of the bubbles must be at least an order of magnitude smaller
than the size of the cells. Third, the interface tends to be more diffused than in the TPVoF,
especially in the presence of high turbulence levels. Fourth, the RANS approach limits
the growth of interface instabilities due to the limitations of the turbulence models and
the respective spatial and temporal discretizations. The implementation of an expeditious
sub-grid bubble model with a multiple-size bubble population in the CTPE could improve
the range of spillway applications without significantly increasing the calculation time.

In the design of spillways, the TPVoF is the primary tool if aeration is nonexistent and
in the absence of entrained air, benefiting from the easy model setup and low computational
cost. The intake is the part of the spillway most suitable for the application of the TPVoF,
considering that the flow is commonly in the subcritical regime, presenting low velocities
and no air-entrainment. Downstream of the weir, where the flow changes from sub-critical
to the supercritical regime, the TPVoF continues to be the best model until the spillway
section where, due to the rise of the boundary layer, free-surface aeration initiates, or if
in the presence of an aerator. Downstream, for the two analyzed solvers, the CTPE is the
only tool that models the phenomena of aeration and air-bubbles transport and dispersion
efficiently, despite showing some limitations due to the single-size bubble formulation. In
some spillways, downstream of the chute, there is an energy dissipation basin where the
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flow regime returns to subcritical, and the majority of the air-bubbles rise to the surface
and are detrained. Hence, it may be useful to apply the TPVoF between the basin and the
river restitution.

Despite not simulating the air-water mixture, the TPVoF may be an appropriate tool
for preliminary analysis of flows with low air-concentrations (<20%), where the tracking of
the free-surface is dominant. Further research should compare the efficiency of the CTPE
with other successful approaches using the VoF or the mixture models combined with a
sub-grid bubble model (e.g., [27,37]), in cases where the air-concentration is lower than
15–20%, or even for larger air concentrations, in light of some recent successful applications
of the VoF and mixture models for highly aerated flows [16,18,24].

5. Conclusions

An assessment performed in a spillway offset aerator compares the two-phase volume-
of-fluid (TPVoF) with the complete two-phase Euler (CTPE).

As expected, the TPVoF results depend highly on the mesh resolution, showing no air-
water mixing. The accuracy for intermediate mesh resolutions is misleading: the lower-nappe
aeration tends to null aeration as resolution increases. This is justified by the fact that the TPVoF
model equations do not comprehend turbulent dispersion. Hence, any air-water mixing is due
to the numerical diffusion in the interface, which is reduced with higher mesh resolution. To
respect the TPVoF model conception, the mesh must be fine enough to reproduce the individual
air-bubbles, which is inviable in engineering applications of spillways.

The CTPE combined with the k–ω SST turbulence model exhibits the most accurate
results. Surprisingly, intermediate mesh resolutions are sufficient to surpass the TPVoF per-
formance with reasonable calculation efforts, and no significant improvements are found
in the highest resolutions, which demand exorbitant computational resources. Moreover,
compressibility, flow bulking, and several entrained air effects in the flow are compre-
hended. Nevertheless, the turbulent dispersion of air-bubbles next to the bottom is not
accurately reproduced, possibly due to the limitations of the single-size bubble population
and the RANS approach to model the air-water interface at the cavity zone. Due to the more
diffusive nature of the Euler-Euler approach, the CTPE may show slower convergence.
Nevertheless, the lower-nappe aeration is expected to converge to a value similar to the
highest resolution mesh. Contrarily to the TPVoF, the CTPE has a turbulent dispersion
model which enhances the mixing of the phases.

The k–ε mixture turbulence model presents an exacerbated lower-nappe aeration,
proving inadequate to simulate aeration in interfaces of rapidly strain flows and with
high-pressure gradients.

Both the TPVoF and the CTPE show an increase of the maximum chute bottom pressure
with higher mesh resolutions, surpassing the reference value, which is linked to the
difficulties to mimic the air-concentration distribution next to the bottom.

Overall, despite not reproducing all aspects of the flow with acceptable accuracy, the
complete two-phase Euler surpasses the two-phase volume-of-fluid model, evidencing an efficient
cost-benefit performance and significant value in hydraulic engineering applications of spillway
aerated flows. Further developments are expected to enhance the tool efficiency and stability.
Nevertheless, the two-phase volume-of-fluid is appropriate to model the spillway intake and
sometimes even the river restitution. Additionally, a comparison of the efficiency of the CTPE
with other successful approaches using the VoF or the mixture models combined with a sub-grid
bubble model is of major interest to identify the most appropriate model for specific hydraulic
engineering applications of spillway aerated flows.
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