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Abstract: The contamination of water resources by toxic hexavalent chromium remains a challenge.
In this study, amino-functionalized iron oxide biobased carbon-silica composites were prepared
through co-precipitation of Fe(II) and Fe(III) over Macadamia activated carbon and explored as
feasible adsorbents for the removal of Cr(VI) from dilute aqueous solutions. The energy dispersive
spectroscopy (EDS) elemental analysis confirmed the existence of Fe, Si, O, and C atoms, which form
the backbone of the composite. The FTIR also showed the presence of Fe-O and Si-O-Si and Si-OH
spectral bands, affirming the backbone of the adsorbents. Cr(VI) adsorption efficiency (5.76 mg/g)
was achieved at pH 1 when an initial concentration of 2.5 mg/L, contact time of 90 min, and dosage
concentration of 1.7 g/L were used. The data were best described by the Langmuir adsorption
model and pseudo-second-order rate model. ∆G◦ (−3 to −12 kJ/mol) and ∆H◦ (46, 12 and 5 kJ/mol)
values affirmed that the adsorption of Cr(VI) was spontaneous and endothermic and dominated by
chemical interactions.

Keywords: adsorption; activated carbon; co-precipitation; functionalization; iron oxide; chromium(VI)

1. Introduction

Chromium, similar to other heavy metals, is a menace to the environment as it persists
and is non-biodegradable [1]. Chromium can be present in both anionic and cationic forms
in aqueous media depending on the pH/Eh conditions. In cationic form, Cr(III) is the most
stable oxidation state. At trace concentrations, Cr(III) is a micronutrient required by animals
and humans [2]. The anionic chromium, Cr(VI), because of its carcinogenic and genotoxic
properties, is classified as the 17th most toxic hazardous substance in the environment by
the Agency for Toxic Substances and Disease Registry. The major sources of Cr(VI) in the
environment are through anthropogenic activities because the kinetic reactions governing
the conversion of natural Cr(III) to Cr(VI) are very slow [3,4]. In particular, Cr(VI) is a major
element for the electroplating and stainless-steel production industries [5]. These industries
use lots of water during their production, hence, the probability of Cr(VI) compounds
leaching to the environment is too high [6]. Industrial wastewater containing chromium
concentrations in the range of 0.5 to 270 mg/L have been reported [7]. The World Health
Organization put stringent regulations to limit the amount of Cr(VI) in drinking water and
surface water to 0.05 mg/L and 0.1 mg/L, respectively [6].

On one hand, current treatment techniques for the elimination of toxic Cr(VI) from
water, which include ion exchange, membrane separation, and chemical precipitation,
have limitations [8–10]. Membrane technology suffers from clogging and fouling [11], ion
exchange is limited by high costs and fouling of resins [10], and chemical precipitation is
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made difficult by the generation of toxic sludge which is costly to dispose of [12]. Adsorp-
tion on the other hand is highly favored due to simplicity in its design, ease of operation,
low cost, low energy inputs, and use of cost-effective adsorbents [5,13]. However, its cost-
effectiveness is dependent on the adsorbent being used, and its regeneration capabilities.

Biobased carbons, such as activated carbons (ACs), are widely used in the industry
on a large scale as adsorbents for water purification, catalytic processes, and separation
processes [14]. Activated carbons are applied in adsorption processes because of their
large surface area, porous structure, and low cost of preparation [14–16]. Although effi-
cient adsorption capacities have been reported for the removal of Cr(VI) using powdered
ACs [17], challenges of separating the adsorbent from the solution have risen concerns of
spent carbons being potential secondary pollutants.

The use of iron-based adsorbents in the removal of hexavalent chromium from aque-
ous solutions has attracted considerable research interest because of their power to trans-
form Cr(VI) into Cr(III) during removal [18,19]. However, the iron-based materials have
a shortfall of being applicable in a limited pH range due to precipitation of iron, and to
address that, SiO2 is often coated on the materials for applicability in a wider pH range [18].
Inorganic silica (SiO2) is widely employed as a supporting material due to its favorable
characteristics of being stable under acidic conditions, its inertness to redox reaction, and
its high content of hydroxyl groups on its surface which allows further functionalization,
ease of binding, and attachment of ligands [20].

Amino functionalized materials such as m-phenylenediamine, polyethyleneimine
(PEI), polypyrrole (PPy), CM-dextran, and chitosan have also been explored as support-
ing materials for nanoparticles owing to their low cost of preparations and operations,
porous structures, environmental stability, and regeneration properties [21]. The high
content of deprotonated amine groups is critical for the adsorption of trace metal ions
through electrostatic interactions and hydrogen bonding [22]. However, metal ions such
as Cr(VI) undergo reductive transformation upon contact with electron donors to yield
less toxic Cr(III) ions [23]. Immobilization of the formed-Cr(III) is also possible because
the amino groups act as Lewis bases and form complexes with the Cr(III) [21]. The lat-
ter prepares the adsorbents via the functionalization of PEI to be of particular interest
to researchers because both the adsorption and reduction mechanisms can be explored
for the removal of Cr(VI). As such, adsorbents prepared by functionalization of PEI on a
substrate have been widely used in the literature for the removal of Cr(VI) [24–29]. How-
ever, none of these were prepared from silica supported on biobased carbons originating
from Macadamia nutshells. This study aimed to synthesize the iron oxide functionalized
biobased carbon–silica–polyethyleneimine composites for the abatement of Cr(VI) in dilute
aqueous solutions. The one-variable-at-a-time approach was used to study the effect of
time, temperature, mass, concentration, and pH in batch mode.

2. Experimental Methods
2.1. Chemical Reagents

Potassium hydroxide (KOH), sodium hydroxide (NaOH), hydrochloric acid (32% HCl),
sulfuric acid (98% H2SO4), iron (III) chloride (FeCl3·6H2O), iron (II) chloride (FeCl2·4H2O),
potassium dichromate (K2Cr2O7), 1,5′-diphenylcarbazide (DPC), ethanol, tetraethyl or-
thosilicate (TEOS), N,N’-dimethylformamide (DMF), acetic acid, 3-glycidyloxypropyltrimet
hoxysilane (GPS), and branched polyethyleneimine Mw = 2500 (PEI) were purchased from
LabChem and Merck Chemical Co. (Johannesburg, South Africa) and were used without
further purification. All chemicals were of reagent grade purity. Commercial Macadamia
activated carbon was supplied by Innovation Carbon Pty LTD (Johannesburg, South Africa).
The water used in this study for the preparation of stock, calibration standard, and working
solutions was purified using Siemens LaboStar equipment (Warrendale, PA, USA). Du-
plicate batch adsorption experiments were conducted on a Scientech Ultrasonic Bath 703
supplied by Labotec (Johannesburg, South Africa). HI 2210 from Hanna Instruments (Johan-
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nesburg, South Africa) was used to adjust the pH of solutions using diluted hydrochloric
acid and sodium hydroxide solutions.

2.2. Preparation of Adsorbents

(i) Hydroxylation of AC

Macadamia activated carbon (AC) (150–300 µm) was firstly pre-treated in 5 mol/L
KOH to achieve more porosity and possibly introduce OH− groups on its surface for ease
of binding and functionalization. The resultant product was then filtered and washed
several times with ultrapure water. The product was further neutralized by washing with
1% acetic acid, then dried in an oven at 60 ◦C for 24 h and finally labeled AC-KOH.

(ii) Preparation of iron oxide modified AC (AC-Fe3O4)

Iron oxide was immobilized on the carbon surface through a co-precipitation method
by dissolving a known amount of FeCl3·6H2O and FeCl2·4H2O salts in 300 mL ultrapure
water and refluxed at 70 ◦C under a nitrogen flow for 2 h. About 5 g of AC-KOH was
added to the Fe2+/Fe3+ solution to obtain a 1:1 ratio and stirred for half an hour while
maintaining the pH between 10 and 11 using 5 mol/L NaOH solution. The solid material
was separated by filtration, then washed several times with ultrapure water and ethanol
and dried at 60 ◦C overnight.

(iii) Preparation of AC-Fe3O4-SiO2

The method reported by [30] was used to prepare the silica-coated biobased carbon.
About 5 g of the recovered AC-Fe3O4 was refluxed in a 500 mL water and ethanol solution
of 4:1 ratio at 60 ◦C under nitrogen flow. Tetraethyl orthosilicate (TEOS) was added
dropwise to the solution to form AC-Fe3O4-SiO2 maintaining the pH in basic conditions
(pH 9 to 11). The formed product AC-Fe3O4-SiO2 was separated by filtration, washed
several times with ultrapure water and ethanol, and dried at 60 ◦C overnight.

(iv) Preparation of amino-modified adsorbent (AC-Fe3O4-SiO2-PEI)

To bind the PEI ligand on AC-Fe3O4-SiO2, the material was first hydroxylated using
a method reported by [20] to increase the density of hydroxyl groups on the adsorbent
surface. A 500 mL piranha solution (3:1 v/v H2SO4: H2O2) was prepared and allowed to
cool for 24 h. About 5 g of AC-Fe3O4-SiO2 was then added to the cooled piranha solution
and sonicated for 10 min under nitrogen flow. The solid sample was then separated by
centrifuge and washed several times with ultrapure water and ethanol followed by drying
at 60 ◦C for 12 h. To the solid sample, 10 mL of 3-glycidyloxypropyltrimethoxysilane
(GPS) and 20 mL toluene were added and stirred at 70 ◦C for 8 h under nitrogen flow. The
adsorbent was separated from the solution by a centrifuge, washed several times with
ultrapure water and ethanol, and dried at 60 ◦C overnight. About 5 g of GPS-treated
AC-Fe3O4-SiO2 was refluxed in a 5% solution of branched polyethyleneimine (PEI) 100 mL
at 70 ◦C for 12 h. The material was filtered and washed several times with ultrapure
water and ethanol, then dried at 60 ◦C in an oven overnight. The resultant product was
designated AC-Fe3O4-SiO2-PEI.

2.3. Adsorption Experiments

Batch adsorption experiments were performed using AC-Fe3O4, AC-Fe3O4-SiO2, and
AC-Fe3O4-SiO2-PEI in duplicate for the adsorption of Cr(VI). Parameters such as solution
pH (1–12), contact time (5–150 min), initial Cr(VI) concentration (1–12.5 mg/L), mass of
adsorbent (0.05–3.0 g) and temperature (25, 35 and 45 ◦C) were investigated by varying
one parameter at a time while keeping others constant. Diluted solutions (0.1 mol/L) of
HCl and NaOH were used to adjust the pH of the solution. An ultrasonicator (Scientech
ultrasonic cleaner 703) set at low-frequency H1 was used for agitation and contact between
the adsorbent and Cr(VI) solution. The total chromium and chromium (VI) remaining
after adsorption were determined using a flame atomic absorption spectroscopy (AA-7000
Shimazu, Kyoto, Japan), and UV-Vis spectrophotometer (Evolution 220, ThermoScientific,
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Johannesburg, South Africa), respectively. The Cr(VI) complex was developed by reacting
0.1 mol/L of 1,5′-diphenylcarbazide solution in 10% sulfuric acid solution and the purplish
solutions were analyzed with the UV-Vis at a wavelength of 540 nm. The adsorption capacity
(qe) and percent (%R) removal and were calculated using Equations (1) and (2), respectively.

qe =
V(Co − Ce)

W
(1)

% Removal =
(Co − Ce)

Co
·100 (2)

where Co is the analyte initial concentration (mg/L), Ce is the final concentration (mg/L),
M is the mass of the adsorbent (g) and V is the volume of the eluent (L).

2.4. Adsorption Isotherms

The Langmuir (Equation (3)), Freundlich (Equation (4)), and Dubinin-Radushrkevich
(Equation (5)) adsorption isotherms were used to deduce the removal mechanisms, the
adsorption affinity and intensity of adsorption for Cr(VI) onto AC-Fe3O4, AC-Fe3O4-SiO2,
and AC-Fe3O4-SiO2-PEI adsorbents. The equilibrium data were fitted into nonlinear mod-
els, as illustrated in Equations (3)–(5). The two well-known two-parameter models describe
the adsorption of adsorbates onto adsorbents in two distinct phenomena. The Langmuir
isotherm predicts the adsorption to proceed by a monolayer attachment of adsorbate on
a single binding site that is on a homogeneous adsorbent surface. The Langmuir further
assumes that no interactive bonding between adsorbates from adjacent sites occurs [31].
Conversely, the Freundlich isotherm allows for the interaction of adsorbates from adjacent
active sites to take place, thus resulting in a heterogeneous surface with a multi-layered
coverage. The Dubinin–Radushkevich isotherm can be used to confirm if the adsorption
process is through physical or chemical interactions.

qe =
qmLbCe

(1 + bC e)
(3)

qe= KFC1/n
e (4)

qe= qmDR exp

{
−KDR

[
RT ln

(
1+

1
Ce

)]2
}

(5)

where b is the Langmuir isotherm constant (L/mg), qmL is the adsorption capacity at equilib-
rium (mg/g), KF is Freundlich constant (mg/g)(mg/L)−1/n, n is the Freundlich adsorption
intensity exponent (dimensionless), qmDR is the Dubinin–Radushkevich adsorption capac-
ity (mg/g), KDR is the Dubinin–Radushkevich isotherm constant (mol2/kJ2), R is the gas
constant (8.314 J/(mol K)) and T is temperature (K).

3. Results and Discussion
3.1. Adsorbent Characterization

Figure 1 displays the FTIR spectra of AC-Fe3O4, AC-Fe3O4-SiO2, and AC-Fe3O4-SiO2-
PEI. The vibration of Fe-O stretch in Fe3O4 was observed at 533.99 cm−1 together with
the sp2 C=C bonds of the active carbon at 441 to 406 cm−1. Compared to AC-Fe3O4, new
bands appeared in AC-Fe3O4-SiO2 at 1054.45 cm−1 assigned to the stretching vibrations
of Si-O-Fe [21] and/or C-O-C [28], while those at 948.73 and 791.46 cm−1 were assigned
to the asymmetric and symmetric stretches of Si-O-Si of the SiO2. The AC-Fe3O4-SiO2-
PEI exhibited a peak at 3289 cm−1 assigned to the –OH stretch which overlaps with the
NH-stretch of the amine groups of PEI and the peaks at 2932.34 and 2816.03 cm−1 were
assigned to the asymmetric and symmetric –CH2- stretching vibrations of the ethyl groups
on PEI branches [32]. The new peaks at 1658, 1570, and 1454 cm−1 in AC-Fe3O4-SiO2-PEI
were assigned to the vibration of C=O (-CONH amide band I), C-N (amide band II), and
N-H (amide band III) C-N stretch of amide, suggesting a covalent bonding of PEI to the
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epoxide ring [21,28,33]. The C-O-C peak of AC-Fe3O4-SiO2 at 1054.45 cm−1 was replaced
by two peaks of the primary amine groups of the PEI at 1092–1030 cm−1, representing the
stretching N-H bends [28]. This suggested that the C-O-C functionality participated in
the bonding of PEI to AC-Fe3O4-SiO2 [28]. Moreover, these findings revealed that the PEI
was bonded on the SiO2 [32]. Although the peak of the SiO2 was replaced by the amine
groups, the symmetric shifted Si-O-Si peak at 759.24 cm−1 was still visible together with
the vibrating stretches of the Fe-O at 559.94 cm−1 [21].
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Figure 1. FTIR spectra of AC-Fe3O4, AC-Fe3O4-SiO2, and AC-Fe3O4-SiO2-PEI.

The elemental composition and specific surface area (SBET) analyses of the prepared
adsorbents together with that of AC reference material are shown in Table 1. The inclusion
of Fe3O4 nanoparticles on AC lowered the %C from 83.27% to 44.03% and the SBET surface
area decreased from 546 to 386.89 m2/g. The decrease in %C was attributed to the presence
of Fe, which is a much heavier atom than C, while the surface area reduction was probably
due to the filling of AC pores by Fe3O4 nanoparticles or surface coverage through the
formation of a semi-permeable layer of Fe3O4 on the AC surface. The atomic percent of
C and H increased upon functionalization of AC-Fe3O4 by silica due to the attachment
of CH3CH2- branches of the TEOS, but the surface area decreased to 234.51 m2/g. The
%residual increased as functionalization occurred implying that other components except
those of C, H, N, and S were present. The inclusion of an impervious layer of PEI on
AC-Fe3O4-SiO2 drastically decreased the BET value from 234.51 to 0.15 m2/g. Elsewhere,
it was also observed that functionalization of AC with PEI led to a decrease in specific
surface area from 942 to 32 m2/g due to surface passivation [34]. All the adsorbents had
pore sizes ranging between 2 and 50 nm, signifying that the adsorbents had a mesoporous
character as per the IUPAC categorization of pore sizes.
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Table 1. Elemental analysis and surface characterization of adsorbents.

Adsorbents Elemental Analysis Surface Characterization

%C %H %N %S %R * Surface Area
(m2/g)

Pore Volume
(cm3/g)

Pore Size
(nm)

AC 83.27 1.53 0.50 - 14.70 546.00 0.354 2.59
AC-Fe3O4 44.03 1.41 0.25 <0.1 55.69 386.89 0.294 7.85
AC-Fe3O4-SiO2 68.30 1.79 0.44 <0.1 29.47 234.51 0.149 5.75
AC-Fe3O4-SiO2-PEI 38.50 6.71 3.00 - 57.75 0.15 0.267 26.48

* R = residual (O, Fe, Si) calculated by difference.

The nitrogen adsorption-desorption plots are shown in Figure 2. These plots were used
to determine the adsorption type and porosity structure of the adsorbent. AC-Fe3O4 and
AC-Fe3O4-SiO2 exhibited similar-shaped graphs. The graphs were of Type II adsorption
isotherms hinting at a monolayer or multi-layered adsorption process. The graphs seemed
to run parallel to P/Po at relative pressures below 0.9, in particular the AC-Fe3O4-SiO2 and
AC-Fe3O4-SiO2-PEI, and then manifested a hysterical loop which suggested the formation
of a microporous structure. AC-Fe3O4-SiO2-PEI demonstrated a Type IV adsorption which
is associated with capillary condensation of the mesoporous structure. A sharp hysterical
loop at relatively low pressures represents adsorption-desorption hysteresis and is most
common in oxide gels and mesoporous carbon materials [15].
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The X-ray-diffraction patterns for AC-Fe3O4, AC-Fe3O4-SiO2, and AC-Fe3O4-SiO2-
PEI are presented in Figure 3. AC-Fe3O4 and AC-Fe3O4-SiO2 exhibited six diffraction
peaks at 2θ = 30◦, 35◦, 43◦, 54◦, 57◦, and 63◦ which were related to 220, 311, 400, 511 and
440 crystal planes according to Bragg’s reflection [16]. These diffraction peaks belong to the
magnetite reference with a PDF card 19–0629 showing that Fe3O4 was successfully attached
to the activated carbon [35]. The peak at 2θ of 35◦ in AC-Fe3O4-SiO2-PEI was related to
Bragg’s reflection of 311 for the magnetite. This shows that even though the surface of the
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AC was fully covered by the PEI, some Fe content was still present in the adsorbent. A
large amorphous peak observed at 2θ = 20◦ in AC-Fe3O4-SiO2-PEI was attributed to the
amorphous structure of the PEI.
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The SEM, TEM, and EDS graphs were used to study the morphology and elemental
content of the prepared adsorbents (Figure 4). In the SEM image of AC-Fe3O4 shown
in Figure 4a, small white precipitates of the Fe3O4 are observed as deposits in the large
spherical pores of the AC. The EDS spectrum of AC-Fe3O4 in Figure 4b depicts the adsor-
bent to contain C, Fe, and O atoms in relative abundances of 62.2, 20.76, and 16.11 wt.%,
respectively, among other things. The amorphousness observed in the SEM image of AC-
Fe3O4-SiO2 in Figure 4c was attributed to the deposition of silica to the AC-Fe3O4 surface,
and this was confirmed by the elemental contents shown in the EDS spectrum (12.7 wt.% Si
and 17.1 wt.% Fe) (Figure 4d). The increase in O atom abundance from 16.11 to 25.4 wt.%
also corroborates the presence of SiO2. Figure 4e,f depict the SEM and EDS spectral data of
AC-Fe3O4-SiO2-PEI. Irregular-shaped particles with smooth surfaces attributable to the
gelatinous character of the PEI were observed. The EDS data (Figure 4f) confirmed the
presence of C (51.0 wt.%), Fe (1.7 wt.%), and Si (12.1 wt.%) which formed the backbone
of the adsorbent material. The C and O percent increased to 51.0 wt. % and 34.3 wt.%,
respectively, signifying the presence of alkyl branched chains of PEI. The decrease in Fe
content from 17.1 wt.% to 1.7 wt.% was attributed to leaching and oxidization of Fe3O4
as functionalization occurred. No N content was recorded on the EDS probably due to
its lower atomic mass. The TEM images of AC-Fe3O4, AC-Fe3O4-SiO2, and AC-Fe3O4-
SiO2-PEI are illustrated in Figure 5a–c. The darker shades in TEM were attributed to the
presence of Fe3O4 while the lighter ones were due to AC backbone and silica.
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Figure 5. TEM images of AC-Fe3O4 (a), AC-Fe3O4-SiO2 (b), and AC-Fe3O4-SiO2-PEI (c).

Thermogravimetric analysis (TGA) and derivative thermogravimetric analysis (DTA)
were used to study the thermal stability and decomposition stages of AC-Fe3O4, AC-Fe3O4-
SiO2, and AC-Fe3O4-SiO2-PEI. The results are demonstrated in Figure 6. The decomposition
curves exhibit different patterns as distinctly shown by the derivatives curves. However,
some commonalities were observed, such as the decomposition stage taking place between
40 and 100 ◦C credited to moisture loss. This was quantified to 5, 5, and 10% weight loss
for AC-Fe3O4, AC-Fe3O4-SiO2, and AC-Fe3O4-SiO2-PEI, respectively. The second weight
loss was observed between 100 and 800 ◦C with 5% weight loss for AC-Fe3O4, between 100
and 300 ◦C for AC-Fe3O4-SiO2 with 15% weight loss, and lastly between 300 and 600 ◦C for
AC-Fe3O4-SiO2-PEI with 40% weight loss. This stage was attributed to the loss of volatile
compounds such as CO2, CH4, CO, and decomposition of adsorbents [36]. More of this
weight loss was expressed with AC-Fe3O4-SiO2 and AC-Fe3O4-SiO2-PEI as compared to
AC-Fe3O4. This was attributed to longer chains of CH3CH2- of the TEOS and those of
the branched PEI. The last decomposition stage was attributed to the loss of lignin of the
adsorbent which was more pronounced with AC-Fe3O4-SiO2 and AC-Fe3O4-SiO2-PEI than
with AC-Fe3O4. Less weight loss observed by AC-Fe3O4 was attributed to the thermal
stability of the Fe3O4 nanoparticles.
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3.2. Influence of Solution pH on Adsorption of Cr(VI)

The zeta potential data of AC-Fe3O4, AC-Fe3O4-SiO2, and AC-Fe3O4-SiO2-PEI mea-
sured at different solution pH values are illustrated in Figure 7. The isoelectric point (IEP)
can be determined from the graph as the pH point at which the surface charge of the
adsorbent is zero or rather surface had electrical neutrality. It can be observed in Figure 7
that the zeta potential (mV) magnitude decreased with increasing solution pH for all
adsorbents. At pH values below the IEP, the surface of the adsorbent is mostly positively
charged and above IEP the surface is negatively charged [5,7,37]. The pHIEP of AC-Fe3O4,
AC-Fe3O4-SiO2, and AC-Fe3O4-SiO2-PEI was found to be 4.95, 3.53, and 11.69, respectively.
The high IEP (pH 11.69) observed for AC-Fe3O4-SiO2-PEI was attributed to the cationic
characteristic of PEI [38,39].
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The pH of a solution affects the surface chemistry of adsorbents, ionization, and
bioavailability of adsorbates [25,40]. Hence, the investigation of its influence on adsorption
is crucial. The influence of solution pH was investigated over the range of pH 1–12 and the
result depicting the adsorption capacities against the pH is referred to in Figure 8a–c. All
adsorbents exhibited a similar trend where the adsorption capacity of Cr(VI) decreased as
the pH of the solution increased. The highest removal efficiencies were obtained between
pH 1 and 3 for all three adsorbents. Explicitly, the optimum pH for AC-Fe3O4 (4.75 mg/g)
was pH 3, and for both AC-Fe3O4-SiO2 (4.47 mg/g) and AC-Fe3O4-SiO2-PEI (3.63 mg/g),
it was pH 1. The low removal efficiencies at high pH levels were attributed to forces of
repulsion between negative sites on the adsorbent’s surface and the anionic Cr(VI) ions in
solutions. The negative sites on adsorbent surfaces are caused by the presence of a high
concentration of OH− ions resulting from the NaOH solution used for the pH adjustments.
In the case of AC-Fe3O4-SiO2-PEI with high IEP at pH 11.69, the repulsion of Cr(VI) at
high pHs could be due to the preferential binding of OH− groups to the cationic sites
of adsorbents.
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and AC-Fe3O4-SiO2-PEI (c). (conditions: 8 mg/L initial concentration 60 min contact time, 0.05 g
adsorbent mass, 25 ◦C temperature and 30 mL solution volume).

The stability of the oxyanion character of Cr(VI) in solution is dependent on the solu-
tion pH, thus, the predominating species in acidic media (pH 1–5) is mostly HCrO4

−, which
is yielded by the hydrolysis of the dichromate ion (Cr2O7

2−) [25]. The oxyanions (HCrO4
−,

CrO4
2− and Cr2O7

2−) at acidic conditions turn to become electrostatically attracted to the
positively charged surface functional groups of the adsorbent [41]. The positive surface
functional groups may be the results of protonation of NH2, COOH, OH- functional groups
on the surface of the adsorbents to form NH3

+, COOH2+, OH+ [36,42]. Because these
functional groups are rich in electrons, it is possible that during Cr(VI) adsorption, some
portion of the Cr(VI) is transformed to Cr(III) through receiving electrons from, for example,
NH2. In addition to the electrostatic attraction of Cr(VI) to the positively charged functional
groups of the adsorbents at low acidic solutions, the reduction of Cr(VI) to Cr(III) due to
the presence of electron-donating groups such as OH, NH2, SH, COOH, and the oxidation
of Fe2+ to Fe3+ are the other possible mechanisms for Cr(VI) removal by the prepared
adsorbents [43]. The higher removal exhibited by AC-Fe3O4 compared to AC-Fe3O4-SiO2
and AC-Fe3O4-SiO2-PEI at acidic conditions could be attributed to the effects of adsorption
and reduction of Cr(VI) to Cr(III) by Fe2+ ions on the surface of AC-Fe3O4 [37,44]. The same
can be said of silica-containing adsorbent (AC-Fe3O4-SiO2). The presence of PEI could
enhance the repulsion of Cr(VI) due to hydrophobicity of PEI, hence low adsorption. At
basic pH conditions, the amino groups of the PEI may attract the OH− through hydrogen
bonding (R-NH2—–OH−), thus rendering the surface of adsorbent more electronegative,
resulting in the repulsion of chromate ions and less adsorption effectiveness [42]. Moreover,
the competition for adsorption sites between OH− and CrO4

2− at higher pH (pH>6) has
been reported by numerous researchers [7,40,45]. From pH 4 onwards, AC-Fe3O4 appears
to have inferior performance compared to AC-Fe3O4-SiO2, probably due to preferential
binding of OH− by the exposed Fe2+/Fe3+ ions on AC-Fe3O4.

3.3. Adsorption Isotherms

The equilibrium sorption data of Cr(VI) on AC-Fe3O4 at 45 ◦C, AC-Fe3O4-SiO2 at
45 ◦C, and AC-Fe3O4-SiO2-PEI at 45 ◦C were fitted into Langmuir and Freundlich isotherm
models to infer the type of interactions between the adsorbate and the adsorbents. The
results are illustrated in Figure 9 and further summarized in Table 2. In Figure 9a the
approximation line of Langmuir was closer to the experimental data points as compared to
the Freundlich estimation. The coefficient of determination (R2), residual standard error
(RSE), and the adsorption capacity (qm) were used to infer which isotherm model best fitted
the results. The R2 value for AC-Fe3O4 was 0.828 in Langmuir and 0.737 in Freundlich.
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Similarly, the RSE values were 0.172 and 0.263 in Langmuir and Freundlich models, re-
spectively. In this regard, the higher R2 value and lower RSE in Langmuir concurred
with the visual observation that the data were best described by a monolayer, adsorption
phenomenon of Langmuir. Additionally, AC-Fe3O4-SiO2 data fitted to the Langmuir model
better using the same reasoning applied above. In addition, the experimental (qe) and
estimated (qm) adsorption capacity values for AC-Fe3O4-SiO2 were closer to each other for
each respective adsorbent. However, the data for AC-Fe3O4-SiO2-PEI seemed to follow a
different trend, as depicted by its better fitting to Freundlich (R2 = 0.957; low RSE of 0.043),
which suggests the complex adsorption of Cr(VI) through a multilayer process.
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Figure 9. Isotherm modeling for the adsorption of Cr(VI) by AC-Fe3O4 (a), AC-Fe3O4-SiO2 (b), and AC-Fe3O4-SiO2-PEI (c)
at 45 ◦C.
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Table 2. The Freundlich and Langmuir adsorption isotherm parameters at 45 ◦C.

Isotherms Parameters AC-Fe3O4 AC-Fe3O4-SiO2 AC-Fe3O4-SiO2-PEI

Langmuir isotherm

qmL (mg/g) 5.43 4.67 8.00
b (L/mg) 7.07 3.16 0.80
R2 0.828 0.837 0.921
RSE 0.172 0.163 0.079

Freundlich isotherm

n 3.55 2.99 2.00
KF (mg/g)(mg/L)−1/n 4.23 3.07 3.46
R2 0.737 0.778 0.957
RSE 0.263 0.222 0.043

Dubinin-Radushkevich
isotherm

qmDR (mg/g) 5.23 4.22 4.72
KDR (mol2/kJ2) 0.02 0.04 0.03
R2 0.840 0.850 0.852
RSE 0.160 0.150 0.148

3.4. Adsorption Kinetics

Pseudo-first-order (PFO) (Equation (6)) and pseudo-second-order (PSO) (Equation (7))
kinetic rate models were used to study the reaction kinetics for chromium (VI) adsorp-
tion by the three adsorbents (AC-Fe3O4, AC-Fe3O4-SiO2, and AC-Fe3O4-SiO2-PEI). The
Elovich model was also fitted to the kinetic data to confirm the chemisorption nature of the
adsorption process expressed using Equation (8).

qt= qe[1− exp(−k1t)] (6)

qt =
tk2·q2

e
(1 + k2tqe)

(7)

qt =
1
β

ln(1 + αβt) (8)

where qt (mg/g) is the adsorption capacity of the adsorbent at time t, k1 (1/min) and
k2 (g/mg/min) are the PFO and PSO rates constants, respectively. In Equation (8), β
(mg/g) denotes the desorption rate, α (mg/g.min) is the initial adsorption rate and t is the
time (min).

The data from fitting kinetics curves are referred to in Figure 10 and the numerical data
is summarized in Table 3. The R2 and RSE were used to decide on which model was best
fitted to the experimental data. The high R2 (0.949, 0.948, and 0.925) and low RSE (0.051,
0.052, and 0.075) values observed with the PSO model indicated its better fit compared to
the PFO for AC-Fe3O4, AC-Fe3O4-SiO2, and AC-Fe3O4-SiO2-PEI, respectively. The Elovich
error terms (R2 and RSE) values were in agreement with the PSO data and suggested that
chemisorption was the dominant mode of Cr(VI) removal. The high initial adsorption
rates (α) show that the adsorption process was slow, probably due to the reaction being of
chemical nature and poor porosity observed in Table 1.
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Figure 10. Kinetic modeling for the adsorption of Cr(VI) by AC-Fe3O4 (a), AC-Fe3O4-SiO2 (b), and AC-Fe3O4-SiO2-PEI (c).

Table 3. Kinetics isotherm parameters of AC-Fe3O4, AC-Fe3O4-SiO2, and AC-Fe3O4SiO2-PEI.

Model Parameters AC-Fe3O4 AC-Fe3O4-SiO2 AC-Fe3O4-SiO2-PEI

Pseudo-first order

qt (mg/g) 2.33 2.30 2.98
k1 (1/min) 0.16 0.12 0.11
R2 0.829 0.889 0.794
RSE 0.171 0.111 0.206

Pseudo-second order

qt (mg/g) 2.50 2.51 3.27
k2 ((g/(mg min)) 0.10 0.07 0.05
R2 0.949 0.948 0.925
RSE 0.051 0.052 0.075

Elovich

α (mg/(g min)) 8.98 2.41 2.25
β (mg/g) 3.28 2.70 1.96
R2 0.953 0.914 0.978
RSE 0.047 0.086 0.022
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3.5. Performance Comparison

The Cr(VI) adsorption capacities of AC-Fe3O4, AC-Fe3O4-SiO2, AC-Fe3O4-SiO2-PEI
were compared to similar materials found in the literature (Table 4). The adsorbents were
compared based on initial solution pH, initial Cr(VI) concentration, and Langmuir adsorp-
tion capacity qmL. Table 4 reveals that the adsorbents worked better at acidic conditions
for the uptake of Cr(VI) from an aqueous solution. Numerous studies in the literature
have reported the existence of electrostatic attraction forces between anionic Cr(VI) and
positively charged adsorbent surface groups as the mode of the removal [33,46,47]. The
initial concentration of Cr(VI), Co, being studied varies as depicted in Table 3, depending
on the type of water targeted for the clean-up. Those targeting wastewater normally use a
high Co concentration of Cr(VI), while those aiming for analysis of drinking water use low
concentration. The selected iron oxide functionalized materials presented in Table 4 also
reveal that producing these types of materials that possess high adsorption capacity values
presents a challenge [48]. Based on this observation, it can be concluded that the materials
produced in this study performed fairly well in comparison to the literature. Hence, the
current material extends the research on the type of adsorbents that can be evaluated for
Cr(VI) adsorption. It has been reported that despite the high content of amino groups
on PEI, high loading of PEI may lead to reduced surface areas, which may lead to lower
adsorption capacities [28]. Lower adsorption capacities were observed with PEI-loaded
adsorbents as compared to magnetite-loaded AC due to reduced surface areas.

Table 4. Comparison of adsorption capacities of Cr(VI) by different adsorbents as to AC-Fe3O4,
AC-Fe3O4SiO2 and AC-Fe3O4-SiO2-PEI.

Adsorbent pH Co (mg/L) qmL (mg/g) Reference

Magnetic biochar 3 100 8.35 [35]
MBC/PPy 3 10 19.23 [49]
Magnetic biochar (MMABC) 3 10 25.27 [50]
Fe3O4-PEI800-MNT 1–9 10–25 8.77 [51]
Fe3O4-PEI25000-MNT 1–9 10–25 7.69 [51]
AC-Fe3O4 3 5 5.43 This study
AC-Fe3O4-SiO2 1 5 4.67 This study
AC-Fe3O4-SiO2-PEI 1 5 8.00 This study

3.6. Thermodynamic Studies

The thermodynamic studies for the adsorption of Cr(VI) by AC-Fe3O4, AC-Fe3O4-
SiO2, and AC-Fe3O4-SiO2-PEI adsorbents were evaluated at different temperatures (25, 35,
and 45 ◦C) to predict the adsorption nature and spontaneity of the process. Parameters
such as the entropy change (∆So, J/(mol K)), enthalpy change (∆Ho, J/mol), and Gibb’s
free energy (∆Go, J/mol) were calculated by relating Gibb’s free energy to the equilibrium
constant Kc using Equations (9)–(12).

∆Go = ∆Ho− T∆So (9)

∆Go = −RT ln Ko
c (10)

Ko
c =

Mw(HCrO4−) · 1000 · b · [HCrO−4 ]o

γ
(11)

ln

Mw(HCrO4−) · 1000 · b · [HCrO−4
]o

γ

 =
∆So

R
− ∆Ho

RT
(12)

where ∆G◦ is Gibb’s free energy (J/mol), R is the universal gas constant (8.3144 J/mol K),
Ko

c is the dimensionless equilibrium constant, Mw(HCrO4-) is the molecular weight of model
pollutant HCrO4

−, γ is the coefficient of activity (dimensionless) [52], b is the Langmuir
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isotherm constant (L/mg), [HCrO4
−]◦ is the standard concentration of the adsorbate

(1 mol/L) and T is the temperature (K).
The ∆Go, ∆Ho and ∆So results are stipulated in Table 5. The ∆Go values were found

to be negative for AC-Fe3O4, AC-Fe3O4-SiO2 and AC-Fe3O4-SiO2-PEI at all temperatures
investigated (298, 308, and 318 K). The values of ∆Go ranged between −17 and −36 kJ/mol,
indicating a spontaneous adsorption process. The positive ∆Ho values (871.45 kJ/mol for
AC-Fe3O4-SiO2-PEI) indicated that the Cr(VI) adsorption process was endothermic and fell
outside the 2–30 kJ/mol range which is characteristic of chemisorption [49]. In addition, the
positive ∆Ho values are associated with the proven endothermic reaction of Cr(VI) to Cr(III)
reduction [33,53]. The adsorption of Cr(VI) by AC-Fe3O4-SiO2 and AC-Fe3O4-SiO2-PEI was
regarded as highly randomized, as the ∆So values were above zero [54]. The adsorption
of Cr(VI) using AC-Fe3O4-SiO2 and AC-Fe3O4-SiO2-PEI adsorbents was dominated by
entropy change as opposed to enthalpy change due to |T∆S◦| > |∆H◦| [55].

Table 5. Thermodynamics parameters of AC-Fe3O4, AC-Fe3O4-SiO2, and AC-Fe3O4-SiO2-PEI at different temperatures.

Adsorbent T (K) b (L/mg) ln (Ko
c) ∆Go (kJ/mol) |T∆So| (kJ/mol) ∆Ho (kJ/mol) ∆So (J/(mol K))

AC-Fe3O4 298 20.85 14.71 −25.43 160.03 133.45 537.00
308 5.51 13.38 −34.25 165.40
318 7.07 13.68 −36.17 170.77

AC-Fe3O4-SiO2 298 5.44 13.36 −23.11 160.62 136.09 539.00
308 3.10 12.80 −32.78 166.01
318 3.16 12.82 −33.89 171.40

AC-Fe3O4-SiO2-PEI 298 0.15 9.77 −16.90 881.63 871.45 2958.50
308 0.25 10.28 −26.33 911.22
318 0.80 28.77 −76.07 940.80

4. Conclusions

Amino functionalized activated carbon silica composites were prepared and explored
as adsorbents for the removal of Cr(VI) from aqueous solutions. The FTIR analysis showed
the presence of asymmetric and symmetric peaks of Fe-O, Si-O-Si, and Si-OH bonds at
533, 791, and 1054 cm−1 alluding to the successful incorporation of Fe3O4 and SiO2 on
the surface of the AC. The EDS data further confirmed the presence of Fe, Si, O, and C
atoms in proportional amounts on the adsorbents. Small deposits representing Fe3O4
precipitates were observed in the large pores of AC-Fe3O4 SEM images. The BET surface
area of AC-Fe3O4 decreased from 387 to 0.15 m2/g following the attachment of SiO2
and PEI to the biobased carbon. Attachment of SiO2 on AC-Fe3O4 resulted in increased
%C and %H correlating to the inclusion of CH3-CH2 chains of TEOS. The isoelectric
points of AC-Fe3O4, AC-Fe3O4-SiO2, and AC-Fe3O4-SiO2-PEI were at pH 4.95, 3.53, and
11.69, respectively. The high positivity in isoelectric charge predicts increased electrostatic
interaction between the positively charged adsorbent and negatively charged Cr(VI) ions.
The batch adsorption experiments displayed optimum conditions of pH 3 and 1, initial
concentration 5 mg/L, 0.15 g adsorbent mass, 120 min contact time, and 45 ◦C temperature.
The experimental data were best fitted to Langmuir adsorption isotherm for all three
prepared adsorbents, predicting that the adsorption process occurred over a homogenous,
mono-layered coverage. The kinetics data were best fitted to the pseudo-second-order
rate model. According to the thermodynamics parameters, the adsorption of Cr(VI) by
the composites was spontaneous and endothermic. The high enthalpy change energy
suggested chemical transformation of adsorbed Cr(VI) into Cr(III), thus overruling the
physisorption as the dominant mechanism but chemisorption. Additionally, the poor
porosity of the main sorbent favored the chemisorption uptake of Cr(VI). In comparison
to similar adsorbents, the AC-Fe3O4, AC-Fe3O4-SiO2, and AC-Fe3O4-SiO2-PEI showed
promising adsorption capacities and can be used as adsorbents for the removal of Cr(VI)
from dilute aqueous solutions but adsorbents need improvement or testing using other
pollutants like organic dyes.
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