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Abstract: As an important primary producer in aquatic ecosystems, the various parameters within
the mathematical models are used to describe the growth of microalgae and need to be estimated
by carefully designed experiments. Non-uniform sampling has proved to generate a deliberately
optimized sampling temporal schedule that can benefit parameter estimation. However, the current
non-uniform sampling method depends on prior knowledge of the nominal values of the model
parameters. It also largely ignores the uncertainty associated with the nominal values, thus inducing
unacceptable parameter estimates. This study focuses on the uncertainty problem and describes
a new sampling design that couples the traditional uniform and non-uniform sampling schedules
to benefit from the merits of both methods. Based on D-optimal design, we first derive the non-
uniform optimal sampling points by maximizing the determinant of the Fisher information matrix.
Then the confidence interval around the non-uniform sampling points is determined by Monte
Carlo simulations based on the prior knowledge of parameter distribution. Finally, we wrap the
non-uniform sampling points with the uniform sampling points within the confidence interval to
obtain the ultimate optimal experimental design. Scenedesmus obliquus, whose growth curve follows
a four-parameter model, was used as a case study. Compared with the traditional sampling design,
the simulation results show that our proposed coupled sampling schedule can partly eliminate
the uncertainty in parameter estimates caused by fixed systematic errors in observations. Our
coupled sampling can also retain some advantages belonging to non-uniform sampling, in exploiting
information maximization and managing the cost of sampling.

Keywords: optimal experimental design; D-optimal design; sampling time; microalgae growth
models

1. Introduction

As a type of phytoplankton ubiquitous in various water bodies, microalgae—particularly
their growth—have attracted wide attention [1]. Microalgae is an important primary
producer in aquatic ecosystems, whose growth is influenced by dynamic of water bodies [2].
It is common to use mathematical models, and more specifically, microalgae growth
models, to describe microbiological population dynamics [3,4]. Mathematical models
describe microalgae growth with a set of model parameters that summarize a variety of
biological and physical behaviours in microalgae processes that are of interest [5–8]. For
example, shape parameters straightforwardly refer to the general shape of the growth
curve [9] and help classify the different growth phases. Another example is the growth rate
parameter [10], which can be used to drive the doubling time, a valuable index that gives us
an intuitive sense of a microorganism’s current proliferation ability [11,12]. Thus, obtaining
parameter values through microalgae growth experiments and the process of parameter
estimation is crucial for successfully interpreting population-level characteristics [13].

Water 2021, 13, 2996. https://doi.org/10.3390/w13212996 https://www.mdpi.com/journal/water

https://www.mdpi.com/journal/water
https://www.mdpi.com
https://doi.org/10.3390/w13212996
https://doi.org/10.3390/w13212996
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/w13212996
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w13212996?type=check_update&version=1


Water 2021, 13, 2996 2 of 16

Parameter estimation procedures involve a branch of statistics such as the least-
squares method, to approximate the true values of the parameters [14]. However, for
microalgae growth models with nonlinear relationships and random measurement errors
in experimental data, accurate parameter estimation remains a challenge [15]. Furthermore,
in addition to selecting appropriate statistical methods, optimizing the experimental design
is another vital approach that benefits parameter estimation [16].

A general concern of experiment design is the temporal aspect—i.e., the choice of sam-
pling time [17,18], as this can significantly impact the parameter estimation in a microalgae
growth experiment [19]. An approach frequently used in the design of the sampling sched-
ule is uniform or linear sampling [20], which refers to sampling at equal time intervals [21].
Uniform sampling is widely used because of its perceived intuition and convenience [22].
With the development of optimal experimental design theory, however, a non-uniform
sampling method has been suggested [23]. This focuses on obtaining information at an
acceptable cost while obtaining maximum utilization efficiency of resources [24]. The sam-
ples are not taken at fixed time intervals but at irregular sampling times based on a class
of optimality criteria [25,26]. The optimality criteria are related to the Fisher information
matrix (FIM) which can quantify the information content of an experiment with regard
to parameter estimation [27]. The inverse of the Fisher information matrix is equivalent
to the asymptotic covariance of the parameter estimates [28]. One of the most popular
optimality criteria in practice is D-optimal design, namely maximizing the determinant
of the FIM, which focuses on minimizing the asymptotic covariance of the parameter
estimates [29]. When a specific mathematical model and the total number of samples
are given, non-uniform sampling under this D-optimal designs will optimize sampling
time and then arrange the number of repeated samplings corresponding to each sampling
time [16,30,31]. It has been demonstrated that these optimal sampling time points under
non-uniform sampling produce maximal information [32].

As laboratory equipment advances and optimal experimental design gains more
focus, recent research has greatly benefited from both uniform and non-uniform sam-
pling [33]. Nevertheless, each sampling schedule has its strengths and limitations. Under
uniform sampling, the sampling frequency and size are usually determined by experimen-
tal equipment restrictions or labor costs [34]. Some modern cell culture instruments, such as
microfluidic platforms, can provide unprecedented temporal resolution [35]. However, too
many samples may be redundant and not independent, since measurement errors are often
auto-correlated [36]. For example, uniform sampling during the adaptation phase and the
stable phase will lead to redundant and useless samples, because the number of cells in the
sample does not change much [37]. A large number of samples will consume experimental
resources and only resulting in many similar results. Moreover, sampling data with a
high temporal frequency also increase cost and usually mean a time-consuming task for
data analysis without significantly improving estimation accuracy [38]. For non-uniform
sampling, since it tends to lead to more accurate parameter estimates and reduces the cost
of the experiment, optimal experiment design has been shown to be a powerful method in
predictive microbiology [39]. However, for a time-series experiment of microalgae growth,
the applicability of traditional non-uniform sampling is questionable. The microalgae are
cultured in experimental incubators in a defined environment [40]. At any given instant
of time, the plate readers can only obtain one single observation; there can be no multiple
measurements or resampling at the same time in the strict sense. Each experimental data
point on the growth curve is based merely on one plate count or on the mean of a batch
culture. Thus, when the total size of samples is greater than the number of optimized
sampling times determined by the principle of optimized experimental design, repeated
sampling is infeasible, although it could increase the amount of information obtained in
microorganism growth experiments. What is more, a non-uniform sampling time point is
usually obtained based on the specification of the initial parameter’s value, i.e., the nominal
value [41]. While there is often uncertain prior knowledge of the parameters, existing
research still pays little attention to the impact of this uncertainty on experimental design.
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Therefore, this study argues that setting a specific initial probability distribution for the
initial parameters is necessary, to optimize sampling time selection.

In order to overcome the above problems, this study proposes a new sampling sched-
ule for choosing the optimal sampling time in microalgae growth experiments. This new
sampling schedule couples the traditional uniform and non-uniform samplings to lever-
age the advantages of both while overcoming their shortcomings. It is more flexible for
describing the growth of microalgal populations and can be used in many cases where
conventional sampling methods do not apply.

We first use a Fisher information matrix to derive the optimal sampling center point
according to the principle of non-uniform sampling. The number of sampling center points
is related to the number of model parameters but not to the total sampling size. We then
use Monte Carlo simulation to determine the confidence interval around the sampling
center point. This determines the sampling range in the experiment. This step overcomes
the uncertainty caused by the prior knowledge in non-uniform sampling. Finally, to avoid
repeat sampling at a given time instant, the experiment can be recorded uniformly utilizing
the power of modern instruments. Based on a well-known ecological model known as the
four-parameter logistic model, we conduct several numerical simulations to investigate
the difference in parameter estimation between the present sampling method and the
traditional method. The results show that without losing the general ability of parameter
estimation in various situations, the proposed method could actually outperform other
sampling methods in some particular scenarios such as observation with fixed systematic
observation error.

2. Materials and Methods

The first part of the method is the introduction of the microalgae growth experiment.
Data from the experiment are used to drive the nominal values of the model parameters.
Then we introduce the mathematical model used here: the four-parameter logistic model.
Next, we introduce uniform sampling, non-uniform sampling based on D optimization, and
the new coupled sampling method proposed in this research. Finally, we use mathematical
simulation to generate an experimental dataset based on the nominal values to test the
performance of each sampling schedule.

2.1. Microalgae and Culture Conditions
2.1.1. Algae Culture

The experiments were carried out with the widely dispersed green microalgae Scenedesmus
obliquus, currently named Tetradesmus obliquus (FACHB-12), sourced from the Freshwater
Algae Culture Bank, Institute of Aquatic Sciences, Chinese Academy of Sciences. The mi-
croalgae were cultivated with 100 mL of sterile blue-green medium (BG11, pH = 7.1 ± 0.2)
in autoclaved 250-mL Erlenmeyer flasks [42]. The cultivation was conducted in an illumina-
tion incubator at 25 ◦C on a 12 L: 12 D cycle under nutrient- and light-saturated conditions
for one week before the start of the experiments. The algae solutions were manually shaken
three times a day to maintain uniformity. Regular inoculations were performed to keep the
algae cells in a logarithmic growth phase for subsequent experiments. All cultivations and
experiments were carried out under sterile conditions.

2.1.2. Experimental Microfluidics

A CellASIC® ONIX M04S-03 Microfluidic Plate was used with the CellASIC® ONIX
Microfluidic System and CellASIC® ONIX F84 Manifolds (Merck, Kenilworth, NJ, USA) for
the imaging of the cells [43]. Before the experiment, the BG11 medium was charged to the
injection wells, and distilled water was charged at the cell inlet. These were flooded into the
microfluidic plate at 5 and 8 pounds of pressure, respectively. After pretreatment to remove
the waste at the outlet, 5 µL of cell suspension was filled into the cell inlet, and 350 µL of
BG11 medium was filled into the inlet well. The plate was tightly sealed to the manifold.
Cells were loaded into the micro-chamber by applying pressure (8 psi) to cell inlets for 5–8 s.
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The number of cells was checked microscopically, and the loading process was repeated
as necessary. BG11 medium was provided continuously to the chamber throughout the
experiment with low pressure (0.4 psi) at the inlet well. Cells in the microfluidic chamber
were grown at 25 ◦C. All treatments were conducted thrice.

2.1.3. Image Analysis

Single layers of cells were imaged every 2 h under 20× objective lens. The density of
algae was counted by image analysis software (Image-Pro Plus, Media Cybernetics, Inc.,
Bethesda, MD, USA) and confirmed with a hemacytometer (Qiujing, Inc., Shanghai, China).
The growth curve is plotted as cell density versus time, enabling the population growth
rate to be determined during cultivation [44].

2.2. Logistic Growth Model

Logistic growth models have been widely used to simulate the exponential growth
of microalgae in a resource-limited environment. The logistic growth model was initially
developed by Verhulst [45]. By adding multiplicative factors to the exponents, logistic
growth models can better simulate population growth in resource-limited situations [46].

The logistic growth model can be used to model microalgae growth, which contains
several phases: a lag phase, an exponential phase, a deceleration phase, and a stable phase.
The model assumes that when microalgae enter a new environment, there will be a short
adaptation period. Due to the abundance of resources, algal growth accelerates as it adapts
to the new environment. When resources become scarce, algal growth decelerates. Algal
growth finally halts when resources are depleted. In the present work, a four-parameter
logistic growth model was used to simulate the growth of microalgae [47]:

N(t) = c +
d− c

1 + exp(b(t− e))
(1)

where N(t) is the population density (cell/mL) at time t (h); b, c, d and e are the four
parameters that characterize the shape of the logistic growth curve: c is the minimum
population density (cell/mL); d is the carrying capacity (cell/mL); b relates to the slope
around the inflection point; and e is the experimental time when N(t) value is equal to
half-way between d and c. The parameters in the logistic growth model can be denoted as
a four-element parameter vector θ:

θ = (b, c, d, e)

In the next section, the sample design is carried out on the basis of nominal values
θ*. The nominal values come from the parameter values estimated with the experimental
microalgae data. The model was fitted to the data using the drc (analysis of multiple dose
response curves) package in R [48].

2.3. Sampling Design

In this work, the uniform sampling design is obtained when observation is uniformly
taken along a time continuum. Then the non-uniform sampling design is derived by using
D-optimal design. Further, the coupled sampling design is developed: uniform sampling
within confidence limits on optimal sampling time of the non-uniform sampling design.
We assume that a total of 16 sampling points need to be assigned. The design space is set to
be the same as in our preliminary experiment, starting from 0 h and ending at the 346th h.
The sampling points need to be measured at the integral points within 346 h.

2.3.1. Uniform Sampling

Uniform sampling is easily implemented, and the observation can be recorded utiliz-
ing the power of modern instruments at equal time intervals along the experimental time
continuum.
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2.3.2. Non-Uniform Sampling

Non-uniform sampling is derived based on the criterion of D-optimality (maximizing
the determinant of the Fisher information matrix). Here, we just briefly introduce the
process of non-uniform sampling and all the method is implemented using the NLoed
package in Python 3 [49].

The sampling statistics,ωi, characterize the distribution that describes a given observation:

ωi= f(xi, θ) (2)

where the xi captures the ith input time of model, the θ stands for the vector of the model
parameters. When an observation variable is normally distributed, the sampling statistics
consist of the mean and variance.

We assume that random observation variable, yi, is expected to have a normal distribution:

Yi ∼ p(yi|ωi) (3)

Here, Yi is the observation as drawn from the probability distribution specified by the
sampling statisticsωi.

The individual Fisher information matrices, Fi(xi, θ*), are defined as:

Fi(xi, θ∗) = E(
∂ log(p(yi|f(xi, θ)))

∂θ∗ ·
∂ log(p(yi|f(xi, θ)))

∂θ∗

T

) (4)

where E is the expected value.
An experimental design is defined by a pair of sets A = {α, β} characterizing inputs and

observation replicate counts. Here α is the set of input time, xi and the set β contains the
observable Yi. δi is the number of observables at the ith input time. These are (non-negative)
integer valued counts.

The expected Fisher information matrix for experimental design A, F(A, θ*), is defined
as:

F(A, θ∗) =
M

∑
i
δiFi(xi, θ∗) (5)

Here the integer M is the number of input time considered in the design.
The weight ζj is defined as the fraction that the observation sample size of the jth

optimal sampling points to the total sample size. We relax this integer constraint so that
the weights ζ replaces δ. Further, the weights ζj are non-negative and real-valued.

0 < ζj < 1 (6)

The objective function, ϕ(), maps the Fisher information matrix to a scalar objective.
We used the determinant of the inverse of the Fisher information matrix as its objec-

tive. This results in a D-optimal design which minimizes the generalized variance of the
parameter estimates, accomplished by maximizing the determinant of the FIM.

max
D
ϕ(F(A, θ0)) (7)

2.3.3. The Proposed Coupled Sampling

The construction of this sampling method comes with the idea of D-optimal design.
First, the model parameter estimates are assumed to follow a normal distribution. Mean
and variance of model parameters are estimated using maximum likelihood method from
the experimental data. Because the model parameter has biological significance and must
be positive, its distribution is truncated at zero. Second, a large data set corresponding to
the candidate design are generated using Monte Carlo simulation based on the normal
distribution of the model parameter [50]. The number of Monte Carlo simulation iterations
is set to 1000, sufficient for reliable results. Then, the number of sampling center points is
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related to the number of model parameters and has nothing to do with the total sampling
size. We use the Fisher information matrix to derive the optimal sampling center point
and the histogram of the optimal sampling time of the parameter is plotted. Finally, from
the histogram, the 95% confidence intervals can be calculated using the distribution of
the optimal sampling point and are finally set as the sampling domains of the uniform
sampling.

2.4. Mathematical Simulation

Here, the mathematical simulation is carried out based on nominal values θ* = (b0,
c0, d0, e0). The count represents observation data that are the deterministic output of the
model.

First, to compare different sampling designs, this study simulates four scenarios based
on different kinds of experimental errors. Each scenario contains two hundred simulated
experimental observation points. Scenario I: the observation data are normally distributed
with a small random error, and the standard deviation is set to 0.1 times the nominal
value of parameter c0. Scenario II: the observation data are normally distributed with a
large random error, and the standard deviation is set to the value of 0.3 times the nominal
value of parameter c0. Scenario III: the observation data are normally distributed with a
proportional systematic error, and the standard deviation is 0.05 times the count. Scenario
IV: for simplicity, the observation data are normally distributed with a constant systematic
error, the same as in Scenario I. However, we add 0.2 times the nominal value of parameter
c0 to the count. Figure 1 shows the simulated curves of the different error types. The
blue color code is used for small random error, sky blue for large random error, red for
proportional systematic error and magenta for constant systematic error.
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Under each scenario, the total number of sampling points is set to 16 within each
sampling design. We estimate the parameters of the logical growth model given by
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Equation (1) within different sampling designs under each scenario. Further, we compute
designs on their prospective parameter calibration accuracy, and include the estimate’s
MSE, covariance and bias as well as the FIM.

3. Results and Discussion
3.1. Model Fitting Results

The experimental growth data together with the fitted four-parameter logistic growth
model is shown in Figure 2. The growth curve is plotted as cell density (or cell/mL) versus
time. Algae show a phase in which the specific growth rate starts at a minimum value, then
accelerates to a maximum value for a certain period of time, and then gradually decreases.
Therefore, there is a short adaptation phase, followed by an exponential phase of rapid
population density growth then a stable phase of reaching a maximum population level.
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Estimates for these parameters are given in Table 1, along with their respective statis-
tics. The p-values indicate that all parameters can be estimated significantly. It is clear that
the parameter d has the largest boundaries on the interval—i.e., it has the largest estima-
tion error, and the parameter b has the smallest boundaries on the interval—the smallest
estimation error. It is worth noting that when the curve trend is rising, the parameter b is
a negative value. When the population density (N(t), cell/mL) is close to c (cell/mL) or
approaches d (cell/mL) then the slope of the logistic model (Equation (1)) approaches zero.

Table 1. Parameter estimates.

Parameter Estimate Std. Error t-Value p-Value

b −2.145 × 10−2 1.649 × 10−3 −13.008 <0.001 ***
c 1.387 × 105 1.179 × 104 11.772 <0.001 ***
d 1.253 × 106 4.326 × 104 28.953 <0.001 ***
e 2.496 × 102 3.992 62.532 <0.001 ***

*** Significance at the p < 0.001 levels, respectively.

3.2. Optimal Sample Points and Confidence Interval

Table 2 shows the results of the optimal sampling points obtained by using a D-optimal
design criterion. Since the growth model contains four model parameters, the number of
corresponding optimal sampling points is also four. Assuming that the total experiment
duration is 346 h, the sampling times of the four sampling points, in this case, are the 0th
hour, the 142nd h, the 241st h, and the 346th h. Among these, the first sampling point is
when the experiment starts, and the fourth sampling point is when the experiment ends,
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according to our assumption. It could also be shown that the third sampling point locates
the exponential growth period correspondence.

Table 2. Results of the optimal sampling points obtained using a D-optimal design criterion.

Sample Point Time Weights

0 0 0.25
1 142 0.25
2 241 0.25
3 346 0.25

According to the physical meaning of the model parameters, parameter b represents
the position of the asymptotic line at the beginning of the curve. Combined with the time
distribution of the sampling points obtained by D optimization, it can be inferred that the
purpose of setting the first optimal sampling point at the beginning of the experiment is to
determine the parameter c more accurately. Similarly, the last of the four optimal sampling
points is at the end of the experiment; it measures the parameter d as closely as possible:
that is, it determines the upper asymptote of the growth curve. Another noteworthy
phenomenon is that the third optimal sampling point determines the maximum growth
rate of the microalgae, which is related to Parameter b. Therefore, according to the exclusion
method, the second optimal sampling point is used to determine the Parameter e.

As we assign all four parameters the same importance, all the four optimal sampling
points have uniform weights—0.25. Thus, under the non-uniform sampling, we treat the
four optimal sampling points equally and assign the same sampling times at or around each
sampling point. The four optimal sampling points are also used as the center position in
each sampling interval for the coupled sampling method proposed in this study. Therefore,
of the 16 sampling points set in this study, four are arranged around each optimal sampling
point. In addition, the sampling points corresponding to the first and last optimal sampling
points need to be as close as possible to the start and end times of the experiment. This
study assumes that sampling can only be performed once at the same time point—that
sampling cannot be repeated. Moreover, all sampling times are taken as integers. For
non-uniform sampling, we arrange the sample points in sequence at the beginning and
end of the experiment as follows: 0 h, 1 h, 2 h, 3 h and 343 h, 344 h, 345 h, 346 h.

The focus of the experimental design is on the arrangement of sampling points related
to the third and fourth optimal sampling points. The non-uniform sampling points are
located next to the two optimal sampling points, while the distribution of sampling points
in the coupled sampling method proposed in this study is slightly more dispersed. The op-
timal sampling point obtained from D optimization is conditioned on the prior knowledge
from preliminary experiments or domain-specific knowledge. The specific prior knowl-
edge here is mainly the nominal value of the model parameters. Since we use previous
experiments to calibrate the nominal value in this study, there is a degree of uncertainty
in our understanding of the nominal value. This study is based on the parameter fitting
results of experimental data to determine the random parameter nominal values generated
by Monte Carlo simulation. The distribution characteristics of the second and third optimal
sampling points obtained according to the random nominal value are shown in Figure 3.
Since the distribution of the nominal value of a parameter is a normal distribution, the time
distribution of the optimal sampling point derived from the D optimization is also a normal
distribution. Thus, we use a normal distribution to fit the time of the optimal sampling
points. The upper and low bounds of the 95% confidence interval derived from the normal
distribution are also shown in the yellow and blue lines in Figure 3 and Table 3. They
directly determine the design space of the proposed coupled sampling method. Compared
with the third optimal sampling point with the confidence interval ranging from about 234
to 247, the second optimal sampling point has a larger confidence interval, ranging from
about 127 to 156.
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Table 3. The 95% confidence intervals of Sample Points 2 and 3.

Sample Point
95% Confidence Intervals

Lower Upper

2 127 156
3 234 247

In the ideal case, if we had a lot of data about the parameters, then a distribution of the
parameters could be found. However, we do not have so many data to find the distribution
of the parameters. We have chosen a normal distribution for the parameters taking into
account previous knowledge [51]. However, the parameter distribution has a positive or
negative shift, so the normal distribution can affect the accuracy of the results. The normal
distribution is not ideal in many cases. Beta distribution is also an important distribution of
the parameters. The beta distribution has a symmetrical and biased distribution, depending
on the selected parameter values. Therefore, in the future, it is necessary to collect a large
amount of data about the parameters to find the parameter distribution.

To conclude the process, we finalized the specific sampling implementation plan for
different sampling methods (Figure 4). Under uniform sampling, 16 sampling points are
evenly distributed in the design space. The non-uniform and coupled sampling points are
roughly distributed around the four optimal sampling points obtained by D optimization.
There are four points arranged around each optimal sampling point. The latter two
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methods tend to concentrate resources on the estimations of the four parameters. The main
difference between these two methods is that the sampling range of coupled sampling is
set wider. This is because at the start and the end, there is greater confidence that d and
c can be estimated well, hence the narrow region, while at the central part, there is more
uncertainty that d and c can be estimated well, hence the wider range.
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3.3. Precision of the Parameter Estimates

Without conditions on the simulated experimental data, we first conducted a prelimi-
nary evaluation of the performance of the three sampling methods based on the nominal
values of the parameters. The asymptotic approximation of the parameter accuracy metrics
of each of the three sampling methods is shown in Tables 4–6. The accuracy metrics include
FIM, covariance and bias, as well as MSE. FIM is the fundamental calculation basis for
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D optimization. The purpose of D optimization is to maximize the determinant of FIM
by optimizing the locations and number of sampling points. Hence, we calculate and
compare the D optimization as the determinant of the FIMs of the three sampling designs.
After approximation, the determinants were calculated as 1.146 × 10−10, 1.672 × 10−10 and
1.618 × 10−10. It can be seen that the amount of information contained in the estimates of
both non-uniform sampling and coupled sampling is relatively large, and the amount of
information held in uniform sampling is the smallest. The covariance is approximated by
the matrix inverse of the total FIM, which characterizes certain estimation intervals. The
bias measures the expected difference between the estimate and the true parameter value.
The MSE describes the second central moment of each parameter estimate around its true
value.

Table 4. Asymptotic approximations of the parameter accuracy metrics of uniform sampling.

Parameter
FIM Covariance

Bias MSE
b c d e b c d e

b 5.19 × 106 0.2659 0.1147 1.39 × 102 1.15 × 106 5.8530 30.9349 0.0028 0.0001 1.15× 10−6

c 0.2659 4.83 × 10−8 9.55 × 10−9 0.0001 5.8530 6.46 × 107 1.2 × 108 6.88 × 103 1.25 × 103 6.55 × 107

d 0.1147 9.55 × 10−9 1.58 × 10−8 0.0001 30.9350 1.2 × 108 1.04 × 109 9.86 × 104 6.67 × 103 1.08 × 109

e 1.39 × 102 0.0001 0.0001 0.9793 0.0028 6.88 × 103 9.8578×104 10.5297 0.5960 10.7796

Table 5. Asymptotic approximations of the parameter accuracy metrics of non-uniform sampling.

Parameter
FIM Covariance

Bias MSE
b c d e b c d e

b 4.55 × 106 0.2153 0.1569 1.63 × 102 1.44 × 10−6 6.1712 25.452 0.0025 3.40 × 10−7 1.40×10−6

c 0.2153 4.41 × 10−8 9.04 × 10−9 0.0001 6.1712 5.66 × 107 1 × 108 6.09 × 103 6.22 × 102 5.64 × 107

d 0.1569 9.04 × 10−9 2.09 × 10−8 0.0001 25.452 1 × 108 5.68 × 108 5.80 × 104 1.82 × 103 5.65 × 108

e 1.63 × 102 0.0001 0.0001 0.9278 0.0025 6.09 × 103 5.80 × 104 7.4048 0.2505 7.3935

Table 6. Asymptotic approximations of the parameter accuracy metrics of coupled sampling.

Parameter
FIM Covariance

Bias MSE
b c d e b c d e

b 4.56 × 106 0.2173 0.1544 2.02 × 102 1.82 × 10−6 7.9475 30.1286 0.0028 5.01 × 10−5 1.81×10−6

c 0.2173 4.44 × 10−8 8.99 × 10−9 0.0001 7.9475 7.47 × 107 1.10 × 108 4.73 × 103 84.2448 7.39 × 107

d 0.1544 8.99 × 10−9 2.08 × 10−8 0.0001 30.1286 1.10 × 108 6.30 × 108 6.36 × 104 4.31 × 103 6.42 × 108

e 2.02 × 102 0.0001 0.0001 0.9209 0.0028 4.73 × 103 6.36 × 104 8.4634 0.7047 8.8753

It should be noted that the parameter accuracy metrics here are data-free methods.
When the total number of samples is set the same, no sampling method can perform better
in all the accuracy metrics. For example, uniform sampling has relative advantages in the
bias and MSE of parameter b. However, the estimated performance of other parameters is
not as good as in either non-uniform sampling or coupled sampling. The actual optimiza-
tion goals and the trade-off among different accuracy metrics must be considered for any
particular application in order to decode which sampling method is more reasonable in
practice

Figure 5 shows the fitting of the model parameters after substituting the simulated
experimental data. A total of four sets of data (datasets from Scenarios I, II, III, IV) were
generated in this study, and each set of data contains two hundred simulated experimental
observation data points. The dot markers at the middle of the attached error bar represent
the means of the estimated parameters. The upper and lower bounds of the attached error
bars represent the 95% confidence intervals. The red horizontal lines indicate the nominal
values used to simulate the dataset. Unlike the above-mentioned data-free analysis results,
this analysis considers the experimental data of different types of experimental errors.
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The combination of different observation errors and sampling methods will have
complex and diverse effects on parameter estimation. Considering datasets from Scenarios
I and IV, when the random error of the observation is small, the sizes of the confidence
intervals corresponding to different sampling methods do not differ much. The difference
is mainly reflected in the mean value of the parameter estimates. The confidence intervals
corresponding to datasets for Scenarios II and III are relatively large, indicating that
the observation error is crucial in determining parameter estimation uncertainty. The
proportional systematic error in Scenario III will cause considerable parameter estimation
result deviation between uniform sampling and the other two kinds of sampling. For one
thing, it will cause the confidence interval of uniform sampling to be wider than those of
either non-uniform or coupled sampling. The mean values of the estimated Parameters c,
d, and e of uniform sampling and the mean values of the other two kinds of sampling are
distributed on opposite sides of the nominal value. What is more, the mean values of the
uniform sampling are farther away from the nominal values.

Our proposed coupled sampling method is more suitable for an observation dataset
with small variance and observation errors. In Scenario I, coupled sampling is the only
sampling design that can ensure that the nominal value of parameter b is in the 95%
confident interval. In contrast, the other sampling methods may produce inaccurate or
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incorrect inferences for the model, Parameter b. When the observation error is signifi-
cant, the proposed coupled sampling method can often provide more accurate parameter
estimation for c and d than can non-uniform sampling, because the observation points
of coupled sampling are more widely scattered—closer to the beginning and end of the
experiment—than the observation points of non-uniform sampling: that is to say, closer to
the best time to determine d and c.

Coupled sampling can perform slightly better than other sampling methods for the
mean value of parameter estimation. When sampling needs to be repeated, uniform
sampling will result in a waste of resources. At this time, certain prior information is
helpful for preliminary estimation of model parameters. Furthermore, coupled sampling is
very helpful for knowing when to measure the growth curve. D-optimal sampling relies on
certain prior knowledge to find the optimal sampling point. However, the disadvantage of
D-optimal sampling is that it places a strong emphasis on the most sensitive parameters.
In addition, it may show increased correlation among the parameters, despite the decrease
in the total confidence interval.

The coupled experimental design is based on D-optimal design, with uniform sam-
pling in the confidence interval, which can solve the optimal number of problems and
optimize resource utilization but there are some limitations. Firstly, the coupled experiment
design ignored the situation of repeated sampling at a given time. Due to the limitations
of the automatic plate reader which requires time to take a picture, it can only obtain one
observation at any given time. There can be no multiple measurements or resampling at
the same time in the strict sense. Secondly, in this study, the coupled experiment design
did not consider the case where the weights of the optimal sampling points are not equal.
Weighting is a critical factor affecting the sample size assigned to the sampling points.
Assigning unequal weights can definitively affect the experiment design results. For ex-
ample, we can assign larger weights at the central part and less weights at the start and
end. Larger weights at the central part will have larger sample sizes. This can improve
parameter estimation accuracy. This problem is very complex and may introduce a lot of
work to solve. It is our limitation for this study, and we think we could study effects of
different weights in the future. This will be a very good research topic.

4. Conclusions

Sampling design is critical to parameter estimation, and a suitable sampling schedule
can improve the estimation accuracy while reducing labor and economic costs. Based on D
optimization, the widely used non-uniform sampling relies on prior knowledge—more
precisely, the nominal value of the parameter. Current sampling designs often fail to
account for the uncertainty associated with the nominal value setting in the optimization,
and will ultimately lead to poor parameter estimates. To handle this uncertainty problem,
we have proposed a new sampling design that couples the idea of both uniform and non-
uniform sampling. Based on D optimization, the sampling domain corresponding to each
parameter is decided by the confidence interval obtained from the Monte Carlo simulation
of the optimal sampling points, which is roughly derived from the concept of non-uniform
sampling. We then suggest conducting uniform sampling in the above-mentioned sampling
domain to further reduce the impact of uncertainty.

To demonstrate the performance of the proposed sampling method, we used the
four-parameter logistic model as a mathematical model, and simulated the experimental
observation data with different kinds of experiment errors. The three kinds of sampling
methods—uniform sampling, non-uniform sampling based on D optimization, and our
newly developed coupled method—were tested against a simulated dataset. When the
experimental data have only a fixed number of random observation errors, the three
sampling methods perform basically at the same level. However, when the simulated
data present systematic errors proportional to the observed values, non-uniform sampling
and coupled sampling have a practical advantage over uniform sampling in parameter
estimates, showing a smaller confidence interval and being closer to the nominal value.
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When there is a fixed systematic observation error, the sampling method proposed in this
study benefits from the characteristics of both concentration and dispersion, making it
slightly better than other sampling methods for determining the mean value of parameter
estimation.

For experiment designs in the study of microalgae growth, it is important to consider
various sampling strategies such as the coupled method developed in this study. At the
same time, the use of experimental instruments with higher observational accuracy and
the standardization of experimental operating procedures will also be beneficial to the
estimation of model parameters.
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10. Konopacki, M.; Augustyniak, A.; Grygorcewicz, B.; Dołęgowska, B.; Kordas, M.; Rakoczy, R. Single Mathematical Parameter for
Evaluation of the Microorganisms’ Growth as the Objective Function in the Optimization by the DOE Techniques. Microorganisms
2020, 8, 1706. [CrossRef]

11. Hall, B.G.; Acar, H.; Nandipati, A.; Barlow, M. Growth rates made easy. Mol. Biol. Evol. 2014, 31, 232–238. [CrossRef] [PubMed]
12. Hossain, N.; Mahlia, T.M.I. Progress in physicochemical parameters of microalgae cultivation for biofuel production. Crit. Rev.

Biotechnol. 2019, 39, 835–859. [CrossRef] [PubMed]
13. Vilas, C.; Arias-Méndez, A.; García, M.R.; Alonso, A.A.; Balsa-Canto, E. Toward predictive food process models: A protocol for

parameter estimation. Crit. Rev. Food Sci. 2018, 58, 436–449. [CrossRef]
14. Wright, S.E.; Bailer, A.J. Optimal experimental design for a nonlinear response in environmental toxicology. Biometrics 2006, 62,

886–892. [CrossRef]
15. Hagen, D.R.; White, J.K.; Tidor, B. Convergence in parameters and predictions using computational experimental design. Interface

Focus. 2013, 3, 20130008. [CrossRef] [PubMed]

http://doi.org/10.1146/annurev-micro-090817-062650
http://www.ncbi.nlm.nih.gov/pubmed/31500535
http://doi.org/10.1016/j.jphotobiol.2014.04.001
http://doi.org/10.1016/j.watres.2016.07.026
http://doi.org/10.1016/j.ijfoodmicro.2004.01.006
http://doi.org/10.1016/j.ymben.2017.11.002
http://doi.org/10.1016/j.biortech.2016.01.087
http://doi.org/10.1016/j.ijfoodmicro.2011.12.035
http://doi.org/10.1016/j.chemosphere.2020.127939
http://www.ncbi.nlm.nih.gov/pubmed/33182115
http://doi.org/10.1371/journal.pone.0178691
http://www.ncbi.nlm.nih.gov/pubmed/28582419
http://doi.org/10.3390/microorganisms8111706
http://doi.org/10.1093/molbev/mst187
http://www.ncbi.nlm.nih.gov/pubmed/24170494
http://doi.org/10.1080/07388551.2019.1624945
http://www.ncbi.nlm.nih.gov/pubmed/31185749
http://doi.org/10.1080/10408398.2016.1186591
http://doi.org/10.1111/j.1541-0420.2005.00515.x
http://doi.org/10.1098/rsfs.2013.0008
http://www.ncbi.nlm.nih.gov/pubmed/24511374


Water 2021, 13, 2996 15 of 16

16. Chandran, K.; Smets, B.F. Optimizing experimental design to estimate ammonia and nitrite oxidation biokinetic parameters from
batch respirograms. Water Res. 2005, 39, 4969–4978. [CrossRef]

17. Peñalver-Soto, J.L.; Garre, A.; Esnoz, A.; Fernández, P.S.; Egea, J.A. Guidelines for the design of (optimal) isothermal inactivation
experiments. Food Res. Int. 2019, 126, 108714. [CrossRef]

18. Vilmin, L.; Flipo, N.; Escoffier, N.; Groleau, A. Research, P. Estimation of the water quality of a large urbanized river as defined by
the European WFD: What is the optimal sampling frequency? Environ. Sci. Pollut. R. 2018, 25, 23485–23501. [CrossRef]

19. Kreutz, C.; Timmer, J. Systems biology: Experimental design. FEBS J. 2009, 276, 923–942. [CrossRef]
20. Chen, Y.B.; Chen, J.X.; Chen, X.; Wang, M.; Wang, W. Uniform Sampling Table Method and its Applications II—Evaluating the

Uniform Sampling by Experiment. J. AOAC Int. 2015, 98, 1455–1461. [CrossRef]
21. Dai, Y.P.; Chen, X.L.; Yin, J.P.; Wang, G.D.; Wang, B.; Zhan, Y.H.; Nie, Y.Z.; Wu, K.C.; Liang, J.M. Investigation of the influence of

sampling schemes on quantitative dynamic fluorescence imaging. Biomed. Opt. Express 2018, 9, 1859–1870. [CrossRef]
22. Jaques, A.V.; Barraza, M.B.; Lacombe, J.C. The impact of variable measurement spacing in concentration profiles used in diffusion

experiments. J. Phase Equilib. Diff. 2015, 36, 22–27. [CrossRef]
23. Dragalin, V.; Fedorov, V.; Wu, Y.H. Adaptive designs for selecting drug combinations based on efficacy–toxicity response. J. Stat.

Plan. Infer. 2008, 138, 352–373. [CrossRef]
24. Holland-Letz, T.; Kopp-Schneider, A. Optimal experimental designs for dose–response studies with continuous endpoints. Arch.

Toxicol. 2015, 89, 2059–2068. [CrossRef]
25. Altmann-Dieses, A.E.; Schlöder, J.P.; Bock, H.G.; Richter, O. Optimal experimental design for parameter estimation in column

outflow experiments. Water Resour. Res. 2002, 38, 4-1–4-11. [CrossRef]
26. Smucker, B.; Krzywinski, M.; Altman, N. Optimal experimental design. Nat. Methods 2018, 15, 559–560. [CrossRef]
27. Schenk, J.; Poeter, E.; Navidi, W. Demystifying Fisher information: What observation data reveal about our models. Groundwater

2018, 56, 547–556. [CrossRef]
28. Muñoz-Tamayo, R.; Martinon, P.; Bougaran, G.; Mairet, F.; Bernard, O. Getting the most out of it: Optimal experiments for

parameter estimation of microalgae growth models. J. Process. Control 2014, 24, 991–1001. [CrossRef]
29. Li, G.; Majumdar, D. D-optimal designs for logistic models with three and four parameters. J. Stat. Plan. Infer. 2008, 138, 1950–1959.

[CrossRef]
30. Yao, K.Z.; Shaw, B.M.; Kou, B.; McAuley, K.B.; Bacon, D.W. Modeling ethylene/butene copolymerization with multi-site catalysts:

Parameter estimability and experimental design. Polym. React. Eng. 2003, 11, 563–588. [CrossRef]
31. Swintek, J.; Etterson, M.; Flynn, K.; Johnson, R. Optimized temporal sampling designs of the Weibull growth curve with extensions

to the von Bertalanffy model. Environmetrics 2019, 30, e2552. [CrossRef]
32. Sinkoe, A.; Hahn, J. Optimal Experimental Design for Parameter Estimation of an IL-6 Signaling Model. Processes 2017, 5, 49.

[CrossRef]
33. Props, R.; Rubbens, P.; Besmer, M.; Buysschaert, B.; Sigrist, J.; Weilenmann, H.; Waegeman, W.; Boon, N.; Hammes, F. Detection of

microbial disturbances in a drinking water microbial community through continuous acquisition and advanced analysis of flow
cytometry data. Water Res. 2018, 145, 73–82. [CrossRef]

34. Li, H.; Lyu, P.J.; Sun, Y.C.; Wang, Y.; Liang, X.Y. A quantitative study of 3D-scanning frequency and ∆d of tracking points on the
tooth surface. Sci. Rep.-UK 2015, 5, 14350. [CrossRef]

35. Coluccio, M.L.; Perozziello, G.; Malara, N.; Parrotta, E.; Zhang, P.; Gentile, F.; Limongi, T.; Raj, P.M.; Cuda, G.; Candeloro, P.; et al.
Microfluidic platforms for cell cultures and investigations. Microelectron. Eng. 2019, 208, 14–28. [CrossRef]

36. Teo, C.L.; Atta, M.; Bukhari, A.; Taisir, M.; Yusuf, A.M.; Idris, A. Enhancing growth and lipid production of marine microalgae for
biodiesel production via the use of different LED wavelengths. Bioresource Technol. 2014, 162, 38–44. [CrossRef]

37. Paakkunainen, M.; Reinikainen, S.P.; Minkkinen, P. Estimation of the variance of sampling of process analytical and environmental
emissions measurements. Chemometr. Intell. Lab. 2007, 88, 26–34. [CrossRef]

38. Tamburic, B.; Evenhuis, C.R.; Crosswell, J.R.; Ralpha, P.J. An empirical process model to predict microalgal carbon fixation rates
in photobioreactors. Algal Res. 2018, 31, 334–346. [CrossRef]

39. Bernaerts, K.; Gysemans, K.P.m.; Nhan Minh, T.; Van Impe, J.F. Optimal experiment design for cardinal values estimation:
Guidelines for data collection. Int. J. Food Microbiol. 2005, 100, 153–165. [CrossRef]

40. Liu, M.D.; Wu, T.; Zhao, X.Y.; Zan, F.Y.; Yang, G.; Miao, Y.P. Cyanobacteria blooms potentially enhance volatile organic compound
(VOC) emissions from a eutrophic lake: Field and experimental evidence. Environ. Res. 2021, 202, 111664. [CrossRef] [PubMed]

41. Chèvre, N.; Brazzale, A.R. Cost-effective experimental design to support modeling of concentration–response functions. Chemo-
sphere 2008, 72, 803–810. [CrossRef]

42. Hu, Y.; Meng, F.L.; Hu, Y.Y.; Habibul, N.; Sheng, G.P. Concentration-and nutrient-dependent cellular responses of microalgae
Chlorella pyrenoidosa to perfluorooctanoic acid. Water Res. 2020, 185, 116248. [CrossRef]

43. Kamimura, Y.; Tanaka, H.; Kobayashi, Y.; Shikanai, T.; Nishimura, Y. Chloroplast nucleoids as a transformable network revealed
by live imaging with a microfluidic device. Commun. Biol. 2018, 1, 47. [CrossRef]

44. Lai, H.T.; Hou, J.H.; Su, C.I.; Chen, C.L. Effects of chloramphenicol, florfenicol, and thiamphenicol on growth of algae Chlorella
pyrenoidosa, Isochrysis galbana, and Tetraselmis chui. Ecotox. Environ. Safe 2009, 72, 329–334. [CrossRef]

45. Tsoularis, A.; Wallace, J. Analysis of logistic growth models. Math. Biosci. 2002, 179, 21–55. [CrossRef]
46. Cramer, J.S. The early origins of the logit model. Stud. Hist. Phi. Part C 2004, 35, 613–626. [CrossRef]

http://doi.org/10.1016/j.watres.2005.10.001
http://doi.org/10.1016/j.foodres.2019.108714
http://doi.org/10.1007/s11356-016-7109-z
http://doi.org/10.1111/j.1742-4658.2008.06843.x
http://doi.org/10.5740/jaoacint.13-265
http://doi.org/10.1364/BOE.9.001859
http://doi.org/10.1007/s11669-014-0347-1
http://doi.org/10.1016/j.jspi.2007.06.017
http://doi.org/10.1007/s00204-014-1335-2
http://doi.org/10.1029/2001WR000358
http://doi.org/10.1038/s41592-018-0083-2
http://doi.org/10.1111/gwat.12668
http://doi.org/10.1016/j.jprocont.2014.04.021
http://doi.org/10.1016/j.jspi.2007.07.010
http://doi.org/10.1081/PRE-120024426
http://doi.org/10.1002/env.2552
http://doi.org/10.3390/pr5030049
http://doi.org/10.1016/j.watres.2018.08.013
http://doi.org/10.1038/srep14350
http://doi.org/10.1016/j.mee.2019.01.004
http://doi.org/10.1016/j.biortech.2014.03.113
http://doi.org/10.1016/j.chemolab.2006.11.001
http://doi.org/10.1016/j.algal.2018.02.014
http://doi.org/10.1016/j.ijfoodmicro.2004.10.012
http://doi.org/10.1016/j.envres.2021.111664
http://www.ncbi.nlm.nih.gov/pubmed/34256073
http://doi.org/10.1016/j.chemosphere.2008.03.001
http://doi.org/10.1016/j.watres.2020.116248
http://doi.org/10.1038/s42003-018-0055-1
http://doi.org/10.1016/j.ecoenv.2008.03.005
http://doi.org/10.1016/S0025-5564(02)00096-2
http://doi.org/10.1016/j.shpsc.2004.09.003


Water 2021, 13, 2996 16 of 16

47. Dalgaard, P.; Koutsoumanis, K. Comparison of maximum specific growth rates and lag times estimated from absorbance and
viable count data by different mathematical models. J. Microbiol. Meth. 2001, 43, 183–196. [CrossRef]

48. Ritz, C.; Streibig, J.C. Bioassay analysis using R. J. Stat. Softw. 2005, 12, 1–22. [CrossRef]
49. Braniff, N. Optimal Experimental Design Applied to Models of Microbial Gene Regulation. Ph.D. Thesis, University of Waterloo,

Waterloo, ON, Canada, 2020.
50. Bonate, P.L. A brief introduction to Monte Carlo simulation. Clin. Pharmacokinet. 2001, 40, 15–22. [CrossRef]
51. Grijspeerdt, K.; Vanrolleghem, P. Estimating the parameters of the Baranyi model for bacterial growth. Int. J. Food Microbiol. 1999,

16, 593–605. [CrossRef]

http://doi.org/10.1016/S0167-7012(00)00219-0
http://doi.org/10.18637/jss.v012.i05
http://doi.org/10.2165/00003088-200140010-00002
http://doi.org/10.1006/fmic.1999.0285

	Introduction 
	Materials and Methods 
	Microalgae and Culture Conditions 
	Algae Culture 
	Experimental Microfluidics 
	Image Analysis 

	Logistic Growth Model 
	Sampling Design 
	Uniform Sampling 
	Non-Uniform Sampling 
	The Proposed Coupled Sampling 

	Mathematical Simulation 

	Results and Discussion 
	Model Fitting Results 
	Optimal Sample Points and Confidence Interval 
	Precision of the Parameter Estimates 

	Conclusions 
	References

