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Abstract: It is well known that estuarine systems are significantly affected by hydrodynamic condi-
tions such as river discharge, storm surges, waves and tidal conditions. In addition to this, human
interferences through developmental projects have the capability of disrupting the natural morpho-
logical processes occurring at estuaries. In West Africa, the goal to improve standards of living
through large-scale dam construction, offshore ports and coastal erosion countermeasures has trig-
gered alarming changes in the morphodynamics of estuarine systems. The estuaries at the Volta River
mouth (Ghana) and “Bouche du Roi” inlet (Benin), located along the Bight of Benin coast, West Africa,
were selected as two case study sites to examine their long-term morphodynamics and sandspit
evolution. In this study, we primarily analyzed estuarine morphology using remotely sensed images
acquired from 1984 to 2020. We further estimated the longshore sediment transport for this region
using results from the image analysis and the depth of active sediment motion. Our results reveal
that the longshore sediment transport rates for this region are in the magnitude of 105–106 m3/year.
Comparative analysis with other estuaries and sandy coasts suggests that the longshore sediment
transport along this coast has one of the largest rates estimated in the world.

Keywords: estuarine systems; river mouth; tidal inlet; longshore sediment transport; morphodynamics;
satellite image analysis; sandspit; coastal erosion; morphological evolution; Bight of Benin

1. Introduction

Estuarine systems are among the most essential ecological environments in the world
and support not only socio-economic growth but also the biodiversity of the natural
environment [1–3]. The morphological evolution of estuarine systems and the forces
driving this evolution have been of interest to coastal researchers, especially at river mouths
and tidal inlets [4–10]. The morphodynamics of estuarine systems, i.e., wave climate
variability, sediment supply, tidal exchange and river discharge, controls evolutionary
processes and therefore requires a thorough understanding through extensive research [11].
Moreover, assessment of the impact of human interferences on estuarine morphology is
of great importance to distinguish between naturally and artificially induced evolutions.
Anthropogenic activities which include dam construction, dredging works and coastal
structures around estuarine systems are undoubtedly aimed towards improving the socio-
economic conditions in and around these areas. However, these activities could result in
unforeseen knock-on effects in estuarine environments which necessitates identifying and
predicting these impacts [12–14].

A prominent geological feature at some estuaries is the development of sandspits
which have a significant impact on the morphological evolutions ensuing at such locations.
These geological features provide a great variety of benefits such as protection from storm
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surges and floods, tourism, settlements and sea turtle nesting [15]. Without proper manage-
ment, the development of sandspits may result in the closure or migration of river mouths
or tidal inlets at estuaries. Sandspits are basically formed by deposited sediment driven
under the combined effect of wave action, river discharge and longshore and cross-shore
currents [16,17]. Variations in the form and complexity of sandspits depend on the environ-
mental conditions and geological setting of the location where they develop [18]. Historical
sandspit dynamics and predicted dynamics through numerical modeling have been exam-
ined extensively all over the world. In recent years, access to high-resolution aerial and
satellite images for many estuaries has intensified long-term analysis on sandspit variabil-
ity, growth and their associated morphological evolution [19–22]. A better understanding
of historical sandspit morphological evolution enables future predictions using results
from these analyses. Sandspit numerical simulations are essentially focused on describing
the formation processes and examining the influence of hydrodynamic processes on their
growth or variability [23–28].

The Bight of Benin is an open bay within the Gulf of Guinea in West Africa. Its
boundaries span from the southeastern part of Ghana to the southwestern part of Nigeria
(Figure 1). Incessant coastal erosion along the Bight of Benin coast has disrupted socio-
economic activities and displaced several coastal communities in the region. Quantification
of coastal erosion rates and shoreline variations along this coast has been comprehen-
sively investigated [29–32]. These studies have successfully identified the most vulnerable
coastal zones undergoing severe erosion under the influence of prevailing hydrodynamic
conditions, climate change and the impact of human activities. Along the Bight of Benin, es-
tuarine systems are subjected to both naturally and artificially induced morphological evo-
lutions. A predominant factor in these evolutions are those caused by human interferences
through coastal protection structures, and dam and offshore port construction [30,33,34].
In terms of estuarine sandspits, Anthony [35] tentatively described the barrier dynamics
in the Bight of Benin and the development of the sandspits at the Volta River mouth in
Ghana and the Senegal River mouth in Senegal. In addition, Laïbi et al. [36] examined
the dynamics of the “Bouche du Roi” inlet in Benin before and after the construction of a
large-scale dam using Landsat satellite images.
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In this study, we performed long-term analysis to investigate estuarine sandspit
evolutions at two selected estuaries along the Bight of Benin in West Africa. The selected
study areas were the estuaries at the Volta River mouth in Ghana and the “Bouche du
Roi” inlet in Benin (Figure 1). Since the morphological evolutions of sandspits are driven
by wave climate, longshore and/or cross-shore sediment transport, river discharge, tidal
conditions and human interferences, we sought to quantify the sandspit growth rates
and longshore sediment transport along the Bight of Benin coast. We also examined the
characteristic hydrodynamic conditions at these estuaries and their influence on coastal
morphodynamics. Furthermore, we investigated the impact of engineering works (shore
protection structures, estuary/river dredging, dam and port constructions) on estuarine
morphology along this coast. A comprehensive understanding of the morphodynamics
and evolution of estuarine systems helps to identify potential developmental projects for
these areas and their impact on morphological processes.

To achieve these goals, this study employed the use of historical satellite images from
1984 to 2020 which were acquired from multiple sources (Landsat, Sentinel-2 and Google
Earth). Sandspit growth and longshore sediment transport rates (LSTR) were calculated us-
ing an analytical model governed by the conservation of sand volume (Sections 3.1 and 3.2).
A modified version of the sand volume conservation equation by Duc Anh et al. [37] was
adopted to establish a relationship between sandspit growth rates and the width of the
sandspit (Section 3.3). Estimated morphodynamic parameters in this study were compared
with other estuaries and sandy coasts in the world using results from previous studies
(Section 4.1). We further discuss the impact of dam construction and shore protection
structures on estuarine morphology and propose future management options for the Bight
of Benin coast (Section 4.2).

2. Materials and Methods
2.1. Study Areas
2.1.1. The Volta River Mouth, Ghana

The Volta River mouth is located along the southeastern coast of Ghana which forms
part of the downdrift deflected Volta Delta System (Figure 2a). The river mouth drains the
Volta basin into the Gulf of Guinea with an approximate catchment area of 400,000 km2 and
a river network of about 1500 km. The river basin falls within six West African countries,
namely, Mali, Burkina Faso, Ivory Coast, Ghana, Togo and Benin. The Volta Delta is among
the three largest deltas in West Africa with the others being the Senegal Delta and the Niger
Delta. Present at the river mouth are two sandspits that are involved in controlling the
morphodynamics within the estuary (Figure 2b). A typical example is the west to east
elongation of the updrift sandspit that leads to narrowing of the river mouth. However,
this morphological activity has been halted by the construction of a jetty and groyne system
on the western side of the river mouth. These countermeasures were part of the Ada Sea
Defence Project (ASDP) executed from 2012 to 2016 (Figure 2b).
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The Akosombo and Kpong dams are two hydro-electric dams located about 65 km
and 45 km upstream of the river mouth, respectively. River discharge datasets from 1936
to 2018 were acquired from the Global Runoff Data Centre (GRDC) and the Volta River
Authority (VRA). The GRDC data (1936–1984) corresponded to measurements from the
Senchi Gauge Station (located 54 km upstream of the river mouth), whereas those of the
VRA were measurements from the Kpong Dam. Before construction of the dams, the
Volta River recorded mean monthly river discharges of over 4000 m3/s. However, dam
operations have seen a mean monthly river discharge below 2000 m3/s (Figure 3a). In
addition, dam regulation has resulted in a drastic reduction in sediment supply to the
river mouth from 180 × 106 to 13 × 106 m3/year [38]. This alteration in the river sediment
supply is believed to be among several factors exacerbating coastal erosion in the downdrift
section of the river mouth [34].
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Figure 3. (a) Monthly averaged river discharge at the Senchi Station and Kpong Dam (1936–2018).
(b) Significant wave heights for the Volta River mouth extracted from the WaveWatch III model
(2005–2019).

The estuary at the Volta River mouth is a wave-dominated estuary. The high wave
energies recorded at the river mouth are influential on beach and sandspit evolution. Wave
information was obtained from the WaveWatch III model from 2005 to 2019 (Figure 3b).
The data were collected at an offshore distance of about 60 km from the river mouth.
Figure 4 also shows the offshore wave height (Hrep), period (Trep) and direction (θrep). In
this study area, wave heights approaching the coastline are influenced by the West African
Monsoon. From March to October, the wave heights are affected by the Southwest Trade
Winds originating from the Atlantic Ocean, and the remaining months of the year are
affected by the Northeast Trade Winds from the Sahara Desert. Figure 4 also shows the
shore-normal direction of the shoreline with an angle of about 180◦. The wave incidence
on this rectilinear coastline varies between 15◦ and 20◦ with dominant waves coming from
the southwest direction. The influence of tidal conditions on river mouth morphology is
minimal. The tides are semi-diurnal with spring tides normally at 1.28 m and neap tides at
0.64 m [39]. The tidal range for this area is 1 m which makes it a micro-tidal environment.
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Figure 4. Wave energies for the Volta River mouth and Bouche du Roi inlet obtained from the
WaveWatch III model (2005–2019).

2.1.2. The “Bouche du Roi” Inlet, Benin

The Bouche du Roi inlet is located along the southwestern stretch of the Benin coast
(Figure 5a). It is the main outlet for the Mono River and Lake Aheme into the Gulf of
Guinea. The Mono River has a catchment area of about 30,000 km3 and a total river
network of about 400 km. The inlet is located 140 km downdrift of the Volta River mouth.
Unlike the restricted updrift sandspit at the Volta River mouth (after 2012), both sandspits
at the Bouche du Roi inlet remain unrestricted (Figure 5b). However, the severe coastal
erosion and seasonal coastal flooding remain a major issue between these two study areas.
The Mono River forms part of the southern border between Togo and Benin with its
management shared between the two countries. The area of Lake Aheme varies seasonally
between 80 km2 in the dry season and 120 km2 in the rainy season [40].
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Figure 5. (a) Location of the Bouche du Roi inlet in Benin along the Bight of Benin coast. (b) The
unrestricted sandspits at the inlet.

In the upstream section of the Mono River is the Nangbeto hydro-electric dam located
about 135 km from the inlet. River discharge datasets were also collected from the GRDC
from 1944 to 2007 and measured at the Athieme Gauge Station (located 74 km upstream
of the inlet). As shown in Figure 6a, the pre-dam construction period was characterized
by frequent mean monthly discharges of over 200 m3/s, but this significantly reduced
after dam construction. A 25-year numerical simulation (1987–2012) by Rossi et al. [41]
predicted an estimated reduction in the annual river sediment supply to the inlet from
100,000 to 25,000 m3/year after construction of the Nangbeto dam.
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wave heights for the Bouche du Roi inlet collected from the WaveWatch III model (2005–2017).

The yearly wave conditions at the Bouche du Roi inlet are almost identical to those
of the Volta River mouth (Figure 4). Offshore wave information was collected from the
WaveWatch III model at an offshore distance of 35 km from the inlet from 2005 to 2017
(Figure 6b). A slight difference between the two study areas in terms of wave incidence on
the shoreline is the shore-normal direction with an angle of about 178◦. The wave incidence
on the estuary varies between 10◦ and 15◦ with waves approaching from the southwest
direction. Tidal conditions are also identical to those impinging the Volta River mouth,
with neap tides usually at 0.68 m and spring tides at 1.32 m [39].

2.2. Satellite Image Analysis and Shoreline Detection
2.2.1. Landsat and Sentinel-2 Image Processing

The main sets of images used in the analysis were the Landsat satellite collections,
i.e., Landsat 5 (TM), Landsat 7 (EMT+) and Landsat 8 (OLI), and Sentinel-2 (MSI). Image
acquisition, processing and shoreline detection were performed using the Coastsat toolkit
developed by [42]. The Coastsat toolkit is an open-source toolkit with the capability of
retrieving historic satellite images from the Google Earth Engine (GEE). Acquired images
are then taken through a pre-processing stage that involves cloud masking, pan sharpening
and downsampling. This process enables a spatial enhancement of the satellite images.
The spatial enhancement results in a downsampled resolution from 30 to 15 m/pixel for
the Landsat images and from 20 to 10 m/pixel for the Sentinel-2 images. The shorelines are
then extracted using the modified normalized water index (MNDWI) expressed as follows:

MNDWI =
SWIR1 − G
SWIR1 + G

(1)

where SWIR1 is the short-wave infrared band, and G is the green band. The shoreline
detection techniques in the Coastsat toolkit result in the extraction of shorelines with a
horizontal accuracy of 10 m. Further details on the techniques employed in the Coastsat
toolkit can be found in [42,43]. Information on the number of images acquired for the two
study areas is presented in Table 1 below.
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Table 1. Information on retrieved Landsat (5, 7 and 8) and Sentinel-2 images for the study areas.

Satellite Missions Volta River Mouth Bouche du Roi Inlet

Landsat 5 (TM) 7 14
Landsat 7 (EMT+) 17 20

Landsat 8 (OLI) 26 79
Sentinel-2 (MSI) 80 163

In the two study areas analyzed, a no-data gap was present from 1993 to 1997 for the
Landsat satellite collections. In that regard, morphodynamic conditions within this period
are not discussed in this paper. Furthermore, the Landsat satellite images acquired between
2004 and 2012 were characterized by radiometric error (line drop-out), and therefore the
need to use other image sources arose. Corrections for the radiometric error on the Landsat
images are available in the Google Earth Pro software. These images were used as an
alternative source within this period.

2.2.2. Google Earth Image Processing

The radiometrically corrected satellite and aerial images in the Google Earth Pro
software served as the supplementary image source for the Landsat and Sentinel-2 satellite
images. A total of 34 images were retrieved for the Volta River mouth, and 33 images
were retrieved for the Bouche du Roi inlet. Retrieved images were rectified into a single
coordinate system (WGS-84/UTM Zone 31N). The image rectification process required the
selection of sufficient and accurate ground control points (GCPs). Collected images were
rectified using these GCPs in an affine transformation. Subsequently, the shorelines were
detected based on the contrast between the wet and dry sand pixels.

2.3. Sandspit Growth and Longshore Sediment Transport Estimation Model

In this study, a simple analytical model was utilized to estimate the longshore sediment
transport rates (LSTRs). This model was formulated on the sand volume conservation and
the development process of unrestricted sandspits located at river mouths or tidal inlets.
The early works of Tanaka et al. [44] and Kraus [45] form the basis of this model. In a
comprehensive study by Duc Anh et al. [37] for the Central Coast of Vietnam, in which this
model and the Delft3D numerical model were applied, the magnitudes of the estimated
LSTRs were in the same order which makes the simple analytical method suitable for this
study. Furthermore, measurements of impounded longshore sediment transport at jetties,
breakwaters and sandspits have been reported to yield estimates close to the total sediment
transport quantities (i.e., bed load and suspended load transport) [46].

The analytical model assumes that gradients in longshore sediment transport (Qx)
directly feed the elongation of the sandspit. In addition, the sandspit has a constant width
(BS) during its growth, and active movement of the sandspit is confined within the vertical
distance known as the depth of active sediment motion for a specific period (t). The depth
of active sediment motion (D) is given as the sum of the depth of closure (DC) and berm
elevation (DB). Details on the depth of closure and berm elevation estimation methods are
provided in Section 2.4. A schematic diagram of the model is presented in Figure 7 below.
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Based on the assumptions imposed in the model, the volumetric change rate of the
sandspit is equivalent to the amount of sediment directly sustaining the growth of the
sandspit (Qin) within a specific period (∆t). Sediment bypassing (Qout) at the river mouth
or tidal inlet is assumed to be zero. Hence, the LSTR (Qx) is given as follows:

Qin = Qx = D × ∆A
∆t

(2)

where D is the depth of active sediment motion, and ∆A is the sandspit area changes
within a specific period (∆t).

2.4. Estimation of Depth of Closure and Berm Elevation

In the model applied in this study, the depth of closure and berm elevation are two
valuable parameters required for the estimation of the longshore sediment transport rates.
The depth of closure is an important morphological parameter used in defining the seaward
limit of significant changes in the beach profile. Hallermeier [47,48] successfully defined
this depth using both laboratory and field data. Wave data spanning over a decadal or
yearly time scale is required to define the depth of closure when using the Hallermeier
equation which is expressed as:

DC = 2.28HS − 68.5

(
H2

S
gT2

S

)
(3)

where HS is the effective significant wave height with an exceedance probability of 0.137%
per year, TS is the associated wave period and g is the acceleration due to gravity. The
limitations of applying Equation (3) have been discussed in studies by Udo et al. [49] and
Razak and Khan [50]. These limitations were identified by comparing results for field
surveys of wave conditions and wave data obtained from hindcast wave models. Based
on these limitations, we applied a ±20% error margin to our depth of closure calculations
which is reflected in the cumulative error of our estimates (Section 4.1).

Regarding the berm elevation, Uda [51] derived an empirical equation that relates the
depth of closure to the berm elevation. This relationship was established using measured
data in Japan and is expressed as:

DB = 0.32 × DC (4)



Water 2021, 13, 2977 9 of 25

In the absence of field measurements, this relationship can prove useful in obtaining
an approximate value for the berm elevation. Table 2 lists the depth of closure and berm
elevation values for the Bouche du Roi inlet using offshore wave data from the WaveWatch
III model. Additionally, the depth of closure calculated by Roest [52] using nearshore wave
data and the Hallermeier equation for the coastal system of the Volta Delta is provided in
Table 2. For analysis involving the Volta River mouth, the depth of closure calculated by
Roest [52] was used since nearshore wave information accounts for wave shoaling effects
on the beach profile morphology.

Table 2. Estimated depth of closure and berm elevation for the study areas.

Study Area Depth of Closure, DC (m) Berm Elevation, DB (m)

Volta River mouth [52] 7.40 2.4
Bouche du Roi inlet 6.03 1.92

3. Results
3.1. The Case of the Volta River Mouth, Ghana
3.1.1. Morphological Timelines

The sandspits at the Volta River mouth are directly shaped by both anthropogenic
and natural processes in its morphological evolution. To have a clear understanding of
how these processes affect the development of the sandspits, we divided the study period
into three distinct morphological timelines (Figure 8). The first and second periods are
referred to as the pre-ASDP period, and the third period as the post-ASDP period. In the
first period (1984–1999), rapid elongation of the updrift sandspit is observed from the west
to east direction (Figure 8b). This direction of sandspit growth is analogous to the direction
of longshore sediment transport along the Bight of Benin coast. The constant elongation of
the updrift sandspit results in the subsequent migration and narrowing of the river mouth.
Before stabilization of the updrift sandspit by the ASDP, regular artificial breaching of the
sandspits was undertaken (Figure 8c,f,g). The breaches in these figures are indicated by
green-outlined circles for the updrift sandspit breaching and red-outlined circles for the
downdrift sandspit breaching. These breaches, i.e., VB-01, VB-02 and VB-03, were aimed
at reducing flooding events and increasing salinity levels in the estuary to eradicate the
intermediary hosts of schistosomiasis [53].
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In the second period (2002–2012), similar morphological trends to those of the first
period were observed. In Figure 8e, accretion of longshore sediment transport by the
updrift sandspit begins after the breached portion of the spit is completely washed away in
the downdrift direction. The post-ASDP period (2013–2020) is denoted by morphological
trends completely different to those of the first and second periods. This period depicts the
river mouth’s response to the ASDP and is a useful indicator of the cascading effects of
engineering activities on natural coastal processes. A notable response of the river mouth is
the intrusion of both the updrift and downdrift sandspits into the estuary. In the case of the
updrift sandspit, the intrusion could be attributed to sediment bypassing the jetty which
is then deposited on the unrestricted tip of the spit via wave breaking (Figure 8k). This
has manifested in the “drumstick” shape of the intruded updrift sandspit. With respect to
the downdrift sandspit, intrusion is advanced by the attachment of swash bars formed in
the ebb delta (Figure 8j). The swash bars are formed under the influence of wave action.
Subsequently, high wave energies at the river mouth lead to the landward migration of
the swash bars and attachment to the downdrift sandspit. Further assessment of sandspit
intrusion and its knock-on effects is provided in Section 3.1.4.

3.1.2. Sandspit Growth Rates

After detection of the river mouth shorelines from the acquired satellite images, we
schematically defined sandspit parameters relevant to our analysis. As detailed in Figure 9a,
we defined the alongshore coordinates of the updrift and downdrift sandspits as xV1 and
xV2, respectively. The definition of the alongshore sandspit coordinates shows the sandspit
tip position when each satellite image was captured. In our analysis, we focused solely
on the updrift accreting sandspit in terms of sandspit growth rates and areal changes. By
plotting a time variation of the updrift sandspit xV1 tip positions, the long-term variability
of the sandspit can be depicted (Figure 9b). Even though the Landsat, Sentinel-2 and
Google Earth images were of different resolutions, we see a close agreement between these
image sources in the time variation plots.
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From Figure 9b, linear regression can be applied to Periods 1 and 2 to obtain the
sandspit growth rates. The regression analysis yielded Equations (5) and (6) for Period 1
and Period 2, respectively, which are given as follows:

For Period 1:
∆xV1 = 674.06 × (t − 1984) + 6276 (5)

For Period 2:
∆xV1 = 495.79 × (t − 2003) + 2505 (6)

where ∆xV1 is the updrift sandspit growth rate (m/year) and t is the time (year).
As shown in Figure 9b, the updrift sandspit constantly elongates in Period 1 until

it reaches a maximum length of 9672 m when it was artificially breached in 1990. Using
Equation (5) for Period 1, a growth rate of 674 m/year was estimated for this period. In
the second period, updrift sandspit elongation trends that are identical to the first period
were observed. However, the maximum length before breaching of the sandspit was at
approximately 5438 m in 2009. The non-growth of the sandspit between 1991 and 2003
was due to the breached portion of the sandspit inhibiting the growth of the spit which is
attached to the headland. Sediment from the breached spit was gradually deposited onto
the downdrift beach (Figure 8c,d). Additionally, the sandspit was manually breached in
1996 as reported by [53]. In contrast, the overlap of xV1 tip positions between 2009 and 2011
in Figure 9b is due to accretion of longshore sediment by the breached portion of the spit
after the breaching event (VB-02). From Equation (6), the growth rate for the second period
was estimated at 496 m/year. In the third period, it is observed that the xV1 tip position
becomes constant after 2012 due to stabilization by the ASDP.

3.1.3. Longshore Sediment Transport Rates

As discussed in Section 2.3, the LSTR for a specific period is evaluated as the product
of the depth of active sediment motion and the sandspit area change rate during that
period. For the Volta River mouth, the updrift sandspit area is defined as AV1 (Figure 9b).
Figure 10 shows the time variation of the updrift sandspit area from 1984 to 2020.
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After performing regression analysis for Period 1 and Period 2, the estimated sandspit
area change rates were 1.32 × 105 m2/year and 1.24 × 105 m2/year, respectively. These
rates were obtained using Equations (7) and (8) for Period 1 and Period 2, respectively,
which are given by

For Period 1:
∆AV1 = 131, 885 × (t − 1984) + 2.0 × 106 (7)

For Period 2:
∆AV1 = 123, 869 × (t − 2003) + 6.7 × 105 (8)

where ∆AV1 is the updrift sandspit area change rate (m2/year) and t is the time (year).
Using the depth of active sediment motion value in Table 2 for the Volta River mouth,

i.e., D = 9.8 m, the LSTR for Period 1 and Period 2 yields an estimate of 1.29 × 106 m3/year
and 1.21 × 106 m3/year, respectively. Hence, the average longshore sediment transport
rate at the Volta River mouth is at about 1.25 × 106 m3/year.
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3.1.4. Impact of the ASDP on Sandspit Evolution

The response of a river mouth sandspit to alterations induced by jetty construction
or other natural events such as tsunamis varies based on the local hydrodynamic and
topographic conditions. As reported in studies by Hiep et al. [54] and Tanaka and Lee [55],
notable changes in the river mouth morphology can be observed after major alterations in
the vicinity of a river mouth. Sediment deposition and a decrease in wave setup in the river
mouth were some reported observations. For this reason, we assessed the impact of the jetty
and groyne system on the morphology of the Volta River mouth to highlight its localized
response to the ASDP. The project was recognized as a viable solution to the numerous
coastal problems at the Volta River mouth. Figure 11 shows a plot of the river mouth
shorelines after construction of the jetty and groyne system (Period 3). Examining the
shorelines of the western side of the river mouth revealed beach advancement as expected.
In contrast, severe erosion along the eastern side of the river mouth was observed due to the
deficit in the sediment balance at the river mouth initiated by the accreting groyne system.
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From Figure 11, it is observed that the updrift and downdrift sandspits intrude into
the estuary in the post-ASDP period (2013–2020). This is a typical scenario where changes
to the coastal environment through engineering works result in unforeseen or unintended
alterations. Figure 12a,b show the time variation of the corresponding updrift xV1 tip y-
coordinate (yV1) and the corresponding downdrift xV2 tip y-coordinate (yV2), respectively.
These coordinates were used to evaluate the sandspit intrusion rates into the estuary. From
our analysis, the updrift sandspit intrudes into the estuary at a rate of 60 m/year, whereas
the downdrift sandspit intrudes at a rate of 80 m/year. An implication of sandspit intrusion
is the narrowing of the river mouth width (Figure 12c).

3.2. The Case of the Bouche du Roi Inlet, Benin
3.2.1. Morphological Timelines

Considering the Bouche du Roi inlet, we categorized the morphological timelines into
four different periods (Figure 13). Here, we differentiated the timelines based on sandspit
elongation and breaching events. The inlet positions in Figure 13 are indicated by the white-
filled arrows to highlight the constant migration of the inlet, whereas breaches are indicated
by white-filled and red-outlined arrows. On the other hand, breaching of the downdrift
sandspit is marked by a red-outlined circle. In the first period (1984–1991), eastward
elongation of the updrift sandspit is observed (Figure 13a,b). The eastward growth of the
updrift sandspit results in the retreat of the downdrift sandspit or the complete closure of
the inlet. The downdrift sandspit retreats owing to the longshore sediment accumulation
by the updrift sandspit which causes the downdrift sandspit to erode under the influence
of the prevailing wave and river discharge conditions. Within the first period, the inlet
experienced a closure in 1987, as shown in Figure 13c. Upon closure, a new opening of the
inlet was created. However, it is unclear whether the mechanism of sandspit breaching
within this period was natural or artificial due to the limited information from the previous
records and literature. The breach within this period is denoted as BB-01. Furthermore,
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the first period in this study area represents the period within which the Nangbeto dam
was constructed (1984–1986). Hence, the subsequent analysis for the Bouche du Roi inlet
was aimed at evaluating the morphodynamic changes in the estuary before and after
dam construction. The post-dam construction periods, i.e., Period 2 (1998–2008), Period 3
(2009–2016) and Period 4 (2016–2020), are periods in which the estuarine morphological
evolutions greatly differ from the first period. Within the post-dam construction periods,
rapid elongation of the updrift sandspit is a common morphological phenomenon observed
at the inlet (Figure 13e,h,n). Similar to the first period, the effect of rapid updrift sandspit
elongation is the near or complete closure of the inlet (Figure 13h,l,n). This condition
necessitates the breaching of the sandspits to ensure an efficient tidal exchange between the
lagoon and the ocean. It also ensures the prevention of coastal flooding in the surrounding
communities. Manual breaching campaigns such as those conducted in 1999 (Figure 13f)
and 2009 (Figure 13i) are examples of some coastal management programs executed at the
Bouche du Roi inlet to ensure the substantiality of the tidal inlet.
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Figure 12. Time variation of sandspit y-coordinates to depict sandspit intrusion into the Volta River
estuary in the post-ASDP period: (a) updrift sandspit yV1 time variation; (b) downdrift sandspit yV2

time variation; (c) variation in the river mouth width.

3.2.2. Sandspit Growth Rates

To quantify the sandspit growth rates, a similar approach was used as in the case of
the Volta River mouth in Section 3.1.2. Figure 14a shows the definition of the coordinate
system created for the Bouche du Roi inlet. Here, the alongshore coordinate of the updrift
sandspit tip is defined as xB1. The time variation of the xB1 tip positions from 1984 to 2020
is presented in Figure 14b. In the sandspit growth rate analysis, Period 3 (2009–2016) was
excluded from the analysis due to the varying spit width during the development of the
sandspit. In the sandspit growth and LSTR model described in Section 2.3, it is assumed
that the sandspit maintains a constant width during the growth process. The attachment of
a breached portion of the downdrift sandspit to the updrift sandspit in its development
process is one of the factors responsible for the varying updrift sandspit within this period.
Therefore, the results for the Bouche du Roi inlet in this section and Section 3.2.3 exclude
the analysis for Period 3 (2009–2019).
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From Figure 14b, linear regression equations can be obtained for the respective periods
to obtain the sandspit growth rates. The regression equations for Period 1, Period 2 and
Period 4 are given as follows:

For Period 1:
∆xB1 = 577.82 × (t − 1984) + 2414 (9)
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For Period 2:
∆xB1 = 625.88 × (t − 1999) + 1232 (10)

For Period 4:
∆xB1 = 888.49 × (t − 2016) + 1078 (11)

where ∆xB1 is the updrift sandspit growth rate (m/year) and t is the time (year).
In Period 1, the sandspit growth rate was estimated at the time when the Nangbeto

dam was being constructed (1984–1986). The sandspit attained a maximum length of about
4579 m before it was breached in 1987 (Figure 14b). During this period, the growth rate of
the sandspit was estimated at about 578 m/year. With regard to Period 2 (1998–2009), the
sandspit reached a maximum length of 8440 m before the sandspit was artificially breached.
A growth rate of about 626 m/year was evaluated for this period. Lastly, the fourth period
(2016–2019) revealed an updrift sandspit maximum length of 5083 m and a growth rate of
about 889 m/year.

3.2.3. Longshore Sediment Transport Rates

Estimation of the LSTR follows the same procedure utilized in Section 3.1.3. For the
Bouche du Roi inlet, we defined the updrift sandspit area as AB1 (Figure 14a). The updrift
sandspit areas were calculated, and the time variation of the area changes is presented in
Figure 15.
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Figure 15. Time variation of the updrift sandspit area changes (AB1) for the Bouche du Roi inlet
(1984–2020).

Regression analysis of the updrift sandspit areas for the various periods in Figure 15
resulted in the following equations:

For Period 1:
∆AB1 = 249, 909 × (t − 1984) + 2.32 × 105 (12)

For Period 2:
∆AB1 = 98, 579 × (t − 1999) + 4.02 × 105 (13)

For Period 4:
∆AB1 = 92, 676 × (t − 2016) + 3.35 × 105 (14)

where ∆AB1 is the updrift sandspit area change rate (m2/year) and t is the time (year).
From the equations presented above, the estimated sandspit area change rates for Pe-

riod 1 (1984–1986), Period 2 (1998–2009) and Period 4 (2016–2019) were 2.50 × 105 m2/year,
9.86 × 104 m2/year and 9.30 × 104 m2/year, respectively. Using the depth of active sed-
iment motion value (D = 7.95 m), as provided in Table 2, and the sandspit area change
rate for each period, the LSTR for the Bouche du Roi inlet was determined. The esti-
mated LSTRs for Period 1 (1984–1986), Period 2 (1998–2009) and Period 4 (2016–2019)
were 1.98 × 106 m3/year, 7.81 × 105 m3/year and 7.34 × 105 m3/year, respectively. This
returned an average LSTR of about 1.20 × 106 m3/year estimated from the sandspit
development at the Bouche du Roi inlet.
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3.3. Relationship between Sandpsit Growth Rates and Spit Width

In this section, we adopted a simple equation proposed by [37] to predict the sandspit
growth rates as a function of the LSTR and sandspit width. The equation is centered on
the sand volume conservation equation and assumes that for an unrestricted sandspit, its
growth rate is inversely proportional to the width of the sandspit. In addition, the theory
assumes a constant sandspit width during the elongation process. This is similar to the
assumptions imposed in the LSTR model applied in this study. Hence, the sandspit growth
rate is given as

RS =
Qx

(DB + DC)

1
BS

= α
1

BS
(15)

where RS is the sandspit growth rate (m/year), BS is the sandspit width (m) and α is the
change rate coefficient (m2/year). The relationship between the sandspit growth rates and
the spit width for the Volta River mouth and Bouche du Roi inlet is shown in Figure 16.
The results for the Volta River mouth (Periods 1 and 2) are marked by the blue-filled
circles and those of the Bouche du Roi inlet (Periods 1, 2 and 4) are represented by the
green-filled circles.
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Figure 16. Relationship between sandspit growth rates and sandspit width for the current study and
other estuaries.

Additionally, this figure presents the sandspit morphodynamic properties of other
tidal inlets and river mouths in the world. These include sandspit characteristics for the
Badreveln spit in Sweden and Fire Island Inlet investigated by [56], and the Sangomar in
Senegal studied by [57]. In addition, six tidal inlets along the coast of Vietnam, namely, the
Ken, Ly Hoa, Cua Loa, An Du, Phan and Loc An inlets, analyzed by [37,58–60], were also
included in the plot. Table 3 summarizes the sandspit characteristics for the Volta River
mouth, Bouche du Roi inlet and the other study areas considered in the sandspit growth
rate and spit width relationship.
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Table 3. Summary of morphodynamic properties of study areas considered in the sandspit growth rate and sandspit width
relationship.

Study Area Location RS (m/year) BS (m) LSTR (m3/year)

Volta River mouth
(Period 1)

Ghana
674 342 1.29 × 106

Volta River mouth
(Period 2) 496 348 1.21 × 106

Bouche du Roi inlet
(Period 1)

Benin

578 255 1.98 × 106

Bouche du Roi inlet
(Period 2) 626 145 7.81 × 105

Bouche du Roi inlet
(Period 4) 889 115 7.34 × 105

Badreveln spit Sweden 28 70 1.0 × 104

Fire Island Inlet USA 43 500 2.20 × 105

Sangomar spit Senegal 300 124 4.65 × 105

Ken inlet

Vietnam

55 180 1.33 × 105

Ly Hoa inlet 90 130 1.30 × 105

Cua Loa inlet 50 280 1.60 × 105

An Du inlet 140 70 1.70 × 105

Phan inlet 183 60 1.45 × 105

Loc An inlet 85 150 2.0 × 105

From Figure 16, it is apparent that the results for Periods 2 and 4 (Bouche du Roi
inlet) perfectly fit the α contour lines for the RS − BS relationship. However, a contrast is
observed for Periods 1 and 2 for the Volta River mouth and Period 1 for the Bouche du Roi
inlet. Within these three periods, an LSTR of magnitude 106 m3/year was recorded. This
provides an indication that the results from Equation (13) at tidal inlets or river mouths with
LSTR magnitudes in the order of 106 m3/year may substantially vary from those measured
through satellite images or actual measurements. Other morphodynamic parameters may
account for this variation [61]. In Table 4, the differences between the sandspit growth rates
from satellite images and those calculated using Equation (15) for the Volta River mouth
and Bouche du Roi inlet are presented.

Table 4. Sandspit growth rates for the Volta River mouth and Bouche du Roi inlet from satellite
measurements and predicted growth rates from Equation (15).

Study Area
RS (m/year) RS (m/year)

(Satellite Images) (Equation (15))

Volta River mouth
(Period 1) 674 382

Volta River mouth
(Period 2) 496 358

Bouche du Roi inlet
(Period 1) 578 977

Bouche du Roi inlet
(Period 2) 626 677

Bouche du Roi inlet
(Period 4) 889 802

4. Discussion
4.1. LSTR Comparative Study

The results from this study suggest that the LSTRs are in the order of 105–106 m3/year
for the Bight of Benin coast (Figure 17). From Figure 17, we report an average error margin
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of ±2.50 × 105 m3/year in the LSTR estimates for this study. Nonetheless, our estimates
are consistent with previous studies that used empirical formulas and measurement of
sediment deposited at port breakwaters to estimate LSTRs for this coast. The LSTR range
obtained from the approaches mentioned lies between 4 × 105 and 1 × 106 m3/year for
the Bight of Benin coast [62]. The estimated LSTRs in the current study are, without doubt,
in close agreement with those obtained using different approaches. The high longshore
sediment transport recorded in the Bight of Benin can be attributed to three distinct morpho-
dynamic processes driving sediment transport along this coast. The first morphodynamic
parameter steering the high magnitude of longshore sediment transport is the predominant
river sediment supply from the Volta River. According to Amenuvor et al. [38], the fluvial
sediment from the Volta River is in the order of 106 m3/year. The river sediment supplied
via the Volta River mouth into the downdrift coast is reworked by the prevailing wave
conditions. The wave climate along this coast accounts for the other two morphodynamic
processes driving the high longshore sediment transport magnitudes. It should be empha-
sized that longshore sediment transport magnitudes are strongly dependent on the height
of the dominant approaching waves and the orientation of the coast relative to the wave
direction (shore-normal direction). The LSTR is maximized for a coast where the angle of
wave incidence is around 45◦ [18]. Contrary to this, a larger angle of incidence results in a
decrease in the LSTR magnitude. Wave analysis for the two study areas indicated a wave
incidence ranging between 10◦ and 20◦. Furthermore, the angle of the wave approach
to the coastline is almost constant throughout the year for both estuaries. This confirms
the influence of the prevailing wave conditions the high longshore sediment transport
magnitudes recorded at the two study areas.
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From the LSTR results obtained, a comparative study was conducted to assess the
difference in magnitudes of other estuaries and sandy beaches in the world. Information
on the LSTR, depth of closure and berm elevation for other estuaries and sandy coasts was
collected from multiple sources and used in the comparative study. For study areas where
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data on berm elevation were inaccessible, Equation (4) was applied to obtain an estimate.
It is worth pointing out that the datasets for the USA are composed of measurements
for both tidal inlets and sandy beaches. Additionally, the datasets obtained for Japan
correspond entirely to measured data along sandy beaches. For Vietnam, all datasets
represent investigations conducted at tidal inlets. The sources for the datasets used in the
comparative study are presented in Table 5. Even though the methodology applied in
our study differs from most of the datasets presented in Table 5, previous studies have
shown that irrespective of the LSTR estimation method applied, the magnitude of the LSTR
remains constant in most cases [17,45,62]. As such, the comparative study conducted here
focused solely on the LSTR magnitudes of different geological settings.

Table 5. Sources of depth of closure, berm elevation and longshore sediment transport datasets for coastal areas used in the
comparative study.

Study Area DC (m) DB (m) LSTR (m3/year)

Africa
Alexandria coast, Egypt Frihy et al. [63] Equation (4) Frihy et al. [63]

Macaneta spit, Mozambique Palalane et al. [64] Palalane et al. [64] Viola et al. [65]
Sangomar spit, Senegal Dennis et al. [66] Palalane et al. [57] Palalane et al. [57]

Europe
Badreveln spit, Sweden Hoan et al. [56] Hoan et al. [56] Hoan et al. [56]
Sahalin spit, Romania Dan et al. [67] Equation (4) Dan et al. [67]

North America
USA USACE [68] Equation (4) USACE [46]

South America
Balneario Solis, Uruguay Alonso et al. [69] Alonso et al. [69] Alonso et al. [69]

Asia
Japan Uda [51] Equation (4) Uda [51]

Vietnam

Duc Anh et al. [37],
Duc Anh et al. [58],

Duy et al. [59],
Duc Anh et al. [60]

Oceania
Gold Coast, Australia Splinter et al. [70] Equation (4) Splinter et al. [70]

The relationship between the LSTR (Qx) and the depth of active sediment motion
(D) is illustrated in Figure 18. This figure also shows the contour lines for the change rate
coefficient (α) from Equation (15). The log–log plot of the Qx − D relationship provides
a simple way to compare morphodynamic conditions among different coastal areas. In
Figure 18, the depth of active sediment motion values for the various estuaries and sandy
beaches range between 5 and 17 m. Interestingly, the magnitudes of the LSTR significantly
vary within this range, with no correlation with a high or low depth of active sediment
motion. This finding could indicate that the prevailing hydrodynamic conditions at these
estuaries and beaches mainly account for the differences in the LSTR magnitudes. From
the selected estuaries and sandy beaches, it is observed from the LSTR for the Bight of
Benin that it is one of the coastal areas in the world with an LSTR of a high magnitude.
Hence, to tackle the chronic erosion being witnessed along this coast, a coordinated coastal
management plan among countries in the Bight of Benin is required to appropriately
capture this high amount of transported sediment.
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4.2. Impact of Dam and Coastal Management on Estuarine Morphology

In this section, the influence of engineering works executed in the upstream and
downstream sections of the Volta River and Mono River is discussed. The construction
of dams and shore protection infrastructure undoubtedly alters morphological and envi-
ronmental patterns at estuaries. Underemphasizing the impact of these alterations could
result in extreme cascading effects beyond a natural or artificial recovery process. The
Akosombo, Kpong and Nangbeto dams have greatly improved the social well-being and
industrialization process in Ghana, Togo, Benin and other neighboring West African coun-
tries. Over the years, substantial studies have been carried out to evaluate the impacts of
dam construction on estuarine communities of the Volta and Mono Rivers. Additionally,
shore protection infrastructure, artificial sandspit breaching and estuary dredging are some
common coastal management activities executed in the Bight of Benin coast. These are
implemented as mitigation measures for the incessant beach erosion and coastal flooding
plaguing this coast. We therefore discuss the impact of these countermeasures on estuarine
morphological changes.

Regarding the Volta River, the pre-Akosombo and Kpong dam construction period was
marked by high annual river discharges which inhibited the rapid growth of the estuarine
sandspit [71]. In the absence of a rapidly elongating sandspit, efficient tidal exchange
can be guaranteed depending on the prevailing hydrodynamic conditions. However,
the low annual river discharges characterized by the post-dam construction on the Volta
River resulted in rapid sandspit growth [71]. This can be confirmed by the growth rates
estimated from the current study. Inefficient tidal exchange at the estuary provided a
conducive environment for the breeding of freshwater snails, consequently leading to a
high prevalence of schistosomiasis among communities in the estuaries [72]. According
to Sokolow et al. [73], surges in schistosomiasis in the Volta basin after dam construction
show a link between water development projects and the prevalence of schistosomiasis.
This is further supported by the fact that in sub-Saharan Africa, dam construction and
irrigation schemes continue to enhance potential transmission sites for schistosomiasis [73].
To increase saltwater intrusion into the estuary, artificial breaching of the sandspits was
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undertaken in 1990, 1996, 2003 and 2009 [53]. A permanent solution has been implemented
through the construction of the jetty as part of the ASDP to restrict the elongation of the
updrift sandspit. At the time of writing this paper, no studies have been found to ascertain
the prevalence rate of schistosomiasis at the estuary after construction of the jetty. The post-
ASDP period has been marked by intrusion of the sandspit into the estuary, as highlighted
in Section 3.1.4. Before construction of the ASDP, the river mouth width was 457 m in
December 2011. Post-ASDP measurements revealed that the river mouth width increased
to about 1948 m in November 2016. However, measurements of the river mouth width in
May 2020 revealed a river mouth width of about 1064 m. The decrease in the river mouth
width can be attributed to the intrusion of both sandspits into the estuary. As such, the
intrusion of the sandspits could result in the initial problem of a narrow river mouth and
inefficient tidal exchange at the estuary.

The Bouche du Roi inlet was analyzed in this study as a case of a tidal inlet with
its morphological evolution critically affected by alterations in updrift areas. Localized
engineering activities around the inlet have also impacted the morphology of the estuary.
The large-scale Nangbeto dam has been extremely beneficial to both Togo and Benin in
terms of socio-economic development. As with Ghana, the schistosomiasis prevalence in
both countries has been described as an endemic [74]. In a study by [73] to assess dam
construction in sub-Saharan Africa and its influence on schistosomiasis cases, a drastic
increase in cases was recorded. The study included both the Volta and Mono basins among
other African basins. Hence, the association between dam construction and its influence
on schistosomiasis infection rates in this region is a typical case where engineering works
have resulted in unintended environmental and health issues. With respect to floods,
low discharges from the Mono River after dam construction have led to a decrease in the
frequency of floods in the lagoon zone [75]. This could be acknowledged as a positive
impact of the dam construction on the estuary system. However, the effect of the reduced
river sediment supply to the estuary system cannot be overlooked. Shoreline analysis by
Anthony et al. [76] revealed severe shoreline retreat around the Bouche du Roi inlet between
2000 and 2005 and 2010 and 2015. This was attributed to the reduction in river sediment
supply from the Mono River and the periodic breaching of the sandspit. Generally, intense
coastal erosion is witnessed in the downdrift section of the Volta River mouth, with erosion
hotspots being the eastern coast of Ghana, Togo, Benin and Nigeria. The reduction in river
sediment supply from the Volta River has been identified as one of the factors influencing
this condition [34]. In addition, the capture of longshore sediment transport by shore
protection structures and ports along the Bight of Benin coast has exacerbated erosion rates
along the coast [39].

In summary, the reduction in river discharge due to damming on the Volta and
Mono Rivers has steered the rapid growth of estuarine sandspits through the accretion
of longshore sediment. Additionally, the decline in the annual river sediment supply
into the Bight of Benin coast from the Volta and Mono rivers has severely disrupted the
sediment budget along the coast. This has therefore intensified erosion rates along the coast.
Furthermore, the uncoordinated construction of shore protection structures and seaports
is among the major factors driving high erosion rates along the Bight of Benin coast. The
way forward to saving the remaining coastal communities and coastlines would require
the creation of a coordinated and integrated coastal development plan among countries
in the Bight of Benin that ensures in-depth environmental impact assessment of coastal
projects to prevent unwarranted cascading effects in downdrift areas. The adoption of such
a plan would also ensure the protection of coastal communities in the Bight of Benin and
consequently promote other socio-economic activities such as fishing, tourism, navigation
and agriculture.

5. Conclusions

The findings of this study contribute to the understanding of estuarine morphody-
namic processes at the Volta River mouth (Ghana) and the Bouche du Roi inlet (Benin),
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along the Bight of Benin coast in West Africa. Freely available remotely sensed images were
used to quantify sandspit growth and longshore sediment transport rates by applying a
simple analytical model based on the conservation of sand volume. Estimates of longshore
sediment transport along this coast were in the order of 105–106 m3/year. In addition, our
comparative analysis of the LSTR for the study areas examined to that of estuaries and
sandy coasts from previous studies revealed that the LSTR for the Bight of Benin has one of
the largest magnitudes in the world. Sediment sourced from the Volta River, the low angle
of wave incidence and the constant angle of the wave approach to the coastline throughout
the year are among the main factors influencing the high magnitude of the LSTR in the
Bight of Benin coast. Anthropogenic activities within and beyond estuarine systems have
directly or indirectly resulted in significant changes at the estuaries considered in this study.
Findings from previous studies and the current study have revealed that dam construction
coupled with shore protection structures along the Bight of Benin coast has altered the
coastal morphodynamics and the evolution of the estuaries considered in this study. Rapid
elongation of estuarine sandspits, sandspit intrusion, downdrift erosion and increased
prevalence of schistosomiasis are among some changes ensuing in and around these estu-
aries. The results obtained for the updrift Volta River mouth and the downdrift Bouche du
Roi inlet show the implications of uncoordinated coastal management within the Bight of
Benin. The implementation of a unified coastal management plan or manual for this coast
would be a step closer to solving the chronic beach erosion and other estuarine-related
problems in West Africa. The findings from this study could support the development
of such a coastal management plan for the Bight of Benin in the future by government
authorities along this coast.
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